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Abstract
Microglia are the brain’s resident macrophages, which guide various developmental processes crucial for brain maturation, 
activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the 
fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we 
know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human 
and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically 
involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the 
evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We 
next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of 
two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technolo-
gies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at 
unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which 
current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and 
suggest novel avenues for future consideration.
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Introduction

Neurodevelopmental disorders (NDDs) are a group of com-
plex conditions, with an onset either early during childhood 
or later during adolescence. They result in motor, sensory, 
and cognitive impairments of varying severity across the 
lifespan [130, 192]. The term ‘neurodevelopmental’ has Rugile Matuleviciute and Elizabeth T. Akinluyi equally contributed 
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been applied broadly to encompass a set of clinically and 
causally different conditions, notably with neurological and 
psychiatric presentations such as autism spectrum conditions 
(ASCs) and schizophrenia (SZ) [134, 192]. ASCs and SZ are 
common NDDs that account for a significant disease burden, 
according to a UK-based population study [72]. This makes 
ASCs and SZ a natural starting point when investigating cel-
lular and molecular mechanisms underlying NDD pathology.

ASCs manifest in early childhood, typically present-
ing before the age of 3 years [72]. The median prevalence 
of ASCs is 1 in 100 and ASCs are 4 times more prevalent 
in males than females [215]. Diagnostic criteria for ASCs 
include persistent deficits in social communication and inter-
action, repetitive behaviours and special interests [4]. SZ 
also affects around 1 in 100 people worldwide [78]. While 
traditionally SZ was thought to affect both sexes equally, a 
meta-analysis suggested a slightly greater risk in men [85]. 
The key symptoms of this condition are classified as posi-
tive, negative, and cognitive [78]. SZ first manifests in late 
adolescence and early adulthood, with negative symptoms 
usually first to appear [78]. While ASCs and SZ are highly 
heterogenous conditions, there is overlap between their 
pathophysiological mechanisms specifically those involv-
ing the immune system.

In this context, changes in the innate immune system 
involving microglial cells have been consistently reported 
in ASCs and SZ [34, 64, 118, 125]. Circulating cytokine 
profiles are altered in patients with ASCs and SZ [37, 220]. 
Increased levels of interleukins- (IL-) 6 and IL-8 have been 
measured in the cerebrospinal fluid (CSF) of SZ patients 
[48]. Molecules linked with inflammation and immune 
function, including IL-8, as well as immunoglobulin A 
(IgA), IL-13 and macrophage migration inhibitory factor 
(MIF) amongst others, have been additionally suggested as 
potential plasma biomarkers for SZ [18, 35]. Changes to 
the cytokine landscape in NDDs may, in part, be shaped 
by environmental exposures prenatally and during early 
life. Indeed, a meta-analysis revealed that viral childhood 
infections are associated with an increased risk of psychotic 
disorders into adulthood [90]. Similarly, mothers admitted 
to hospital, particularly with bacterial infections, are at a 
greater risk of delivering a child later diagnosed with an 
ASC [216]. Multiple infections during pregnancy have also 
been associated with an increased ASC risk in the offspring 
[216]. Immune contributions to ASCs and SZ have been fur-
ther noted on a genetic level. The major histocompatibility 
complex (MHC) region includes a number of loci associated 
with SZ that were identified through genome-wide associa-
tion studies (GWAS) [162, 163]. Amongst those, variants 
of the complement component 4 (C4) genes are particularly 
notable [171]. Similarly, in the case of ASCs, associations 
between variants in human leukocyte antigen (HLA) genes 
and the condition have been identified [196].

Overall, the immune system and NDDs are tightly con-
nected. Microglia which are components of the brain’s 
innate immunity, are inherent to the pathological signature 
of NDDs. However, it remains unclear whether microglia 
directly alter neurodevelopmental trajectories leading to 
NDDs and/or if their effects are reactive to a causative insult. 
Critically, much of our knowledge of microglia in typical 
and atypical brain development derives from rodent studies 
even though there are marked differences between human 
and rodent microglia. Furthermore, cognitive impairments 
in NDDs such as SZ and ASCs involving language, thought 
processing, memory and executive deficits are characteris-
tically human [122, 182]. In this article, we first discuss 
how microglia shape basic neurodevelopmental processes by 
focusing on human-based findings. We then review the state 
of affairs and concur on the role of microglia in two main 
disorders along the neurodevelopmental continuum: ASCs 
and SZ. Finally, we review recent technological advances 
that have helped develop our understanding of microglial 
biology and discuss some promising avenues for future inter-
ventions targeting microglia in NDDs.

Microglial functions during development

The development of neural circuits in the central nervous 
system (CNS) requires the involvement of all its neuronal 
and non-neuronal cells. Amongst these, microglia—the resi-
dent macrophages of the CNS—play a crucial role in medi-
ating optimal brain development, maturation and functioning 
[145, 179]. While most of the work on microglial functions 
in the developing brain comes from rodent studies, we pri-
marily focus here on human-based findings.

Microglia originate from extraembryonic yolk sac pro-
genitors that colonise the neuroepithelium of the human 
forebrain from the 4th postconceptional week (pcw) onwards 
[119, 121, 204]. Microglial progenitors begin to proliferate 
as soon as they arrive to the developing forebrain and as 
early as the 4th pcw [121]. By the 9th pcw, they become 
immunocompetent, meaning that the cells acquire the abil-
ity to adeptly recognise and respond to immune-associated 
stimuli [94].

Microglia coexist in multiple functional and morphologi-
cal states throughout different stages of CNS development, 
transitioning from amoeboid to intermediate rod-like, and 
eventually becoming ramified [121]. These varying mor-
phologies likely correspond to specific functions notably 
associated with the neuroanatomical process or compart-
ment they inhabit or attempt to colonise, the stage of life 
(development, adulthood, or ageing), the sex of the individ-
ual, and the challenges they encounter (disease, injury, etc.) 
across life, as revealed by morphological, ultrastructural, 
epigenetic, transcriptomic, metabolomic, and proteomic 
data [9, 111, 120, 121, 149, 161]. For instance, intermediate 



665Acta Neuropathologica (2023) 146:663–683	

1 3

rod-shaped microglia are observed in white matter tracts, 
such as the corpus callosum and the external capsule, 
towards the end of the 30th pcw where they suggestively 
participate in axonal guidance, synaptogenesis, and neurode-
velopmental apoptosis [204]. Single-cell RNA sequencing 
(scRNA-seq) of fluorescence-activated cell sorting (FACS)-
sorted human microglia obtained from fetuses between the 
7th and 16th pcw following elective pregnancy termina-
tions, revealed a cluster of proliferative-region-associated 
microglia (PAM) which share some transcriptional signa-
ture overlap with phagocytic disease-associated microglia 
(DAM) and neurodegenerative disease microglia (MGnD) 

[94]. These microglial cells express multiple gene markers 
such as apolipoprotein E (APOE), and cluster of differentia-
tion 68 (CD68), which are associated with the DAM and 
MGnD states [88, 94, 95].

Microglia contribute to typical CNS development, and 
these cells play several roles during the prenatal and early 
postnatal stages of development and maturation. Rodent 
studies have shown that microglia participate in neurogen-
esis, oligodendrogenesis [62, 115, 174], astrogliogenesis 
[110], axonal myelination [136], as well as synapse forma-
tion [123], maturation and pruning [145] via specialized 
interactions with neuronal and non-neuronal cells (Fig. 1). 

Fig. 1   Main functions of microglia in the developing human CNS. a 
Microglia regulate the number of neuronal cells, notably by engag-
ing in active phagocytosis of progenitor cells and promoting the 
apoptosis of differentiated cells [17, 158]. b Microglia regulate neu-
ronal migratory processes within the neocortex [17]. c Microglia 
also release factors (such as insulin growth factor 1 (IGF-1), that 
support the growth and survival of neurons [17]. d Microglia impact 
onto  astrocyte differentiation via direct cell-to-cell communication, 

secretion of microglia-derived and trophic factors [5, 135]. e Micro-
glia mediate synapse elimination for instance via the engulfment of 
presynaptic inputs [119, 121]. f Microglia promote the proliferation 
and differentiation of oligodendrocyte precursor cells, and they inter-
act with oligodendrocytes to mediate their maturation and survival, as 
well as contribute to maintaining the myelination status of the CNS 
[77]
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Although studies involving human microglia can be com-
plex, research on chimeric models that involve transplant-
ing human-induced pluripotent stem cells (hiPSCs)-derived 
microglial progenitor cells [41, 66] or microglia [107] into 
the mouse brain, human brain organoids [41], and embry-
onic and fetal tissues [149] have confirmed previous findings 
in animal models. In humans, microglia have been linked 
with crucial developmental processes such as neurogenesis, 
programmed cell death and apoptotic cell clearance, neu-
ronal migration, white matter tract formation, and synaptic 
pruning [119]. The subsequent subsections outline the roles 
of microglia in shaping the developing human brain.

Neurogenesis and neuronal migration. Insights into the 
involvement of human microglia in developmental neuro-
genesis have been gleaned from various studies. These cells 
have been linked with neurogenesis from the 8th pcw to 
the 22nd pcw and neural migration from the 8th pcw to the 
30th pcw [17]. Popova et al. engrafted primary human fetal 
ionised calcium-binding adapter molecule 1 (IBA1) posi-
tive microglia from post-mortem cortical tissue into cerebral 
organoids [155]. By using CD68 staining, they showed that 
prenatal microglia exhibited active phagocytosis of progeni-
tor cells and synapses in the organoids, thereby modulating 
synaptic density and regulating the production and matura-
tion of new neurons [155]. Also, in an in vitro electrophysi-
ological study which aimed to evaluate neuronal functions 
at multiple developmental time points, microglia-like cells 
derived from hiPSCs expedited neuronal maturation by regu-
lating the development of single-cell sodium and potassium 
currents, which ultimately manifested as increased neuronal 
network activity in human cerebral organoids [21].

Developmental apoptosis. During the early develop-
mental processes of neuronal proliferation, migration and 
differentiation, neuronal precursors and neurons that are 
less active and fail to establish appropriate synaptic con-
nections undergo apoptosis [159]. In the developing human 
telencephalon, microglia are associated with early embry-
onic apoptosis and apoptotic cell clearance from the 12th 
pcw to the 16th pcw [158]. This close interaction between 
microglia and neuronal precursors provides support for their 
involvement in the formation of the telencephalon in the 
prenatal stages. Microglial clusters expressing CD68 [2], 
IBA1, CD45, and the lectin, Ricinus Communis agglutinin 
I (RCA-1) [126, 127], have been found to accumulate in the 
cortical subplate and future basal ganglia of post-mortem 
human fetal tissues. It is speculated that these clusters con-
tribute to neurodevelopmental apoptosis, as well as axonal 
guidance, and synaptogenesis [204].

Synapse formation and maturation. In humans, microglial 
cells likely participate in early cortical synaptogenesis which 
occurs in Cajal-Retzius cells, a group of early neurons cru-
cial for cortical development, as early as the 5th pcw and the 
presubplate and preplate neurons as early as the 8.5th pcw 

[92, 119, 121]. However, direct evidence about microglial 
involvement in synapse formation in humans is lacking.

Cortical folding. In addition to shaping the developing 
brain on a cellular and circuit level, there is increasing evi-
dence that microglia may also contribute on a tissue level. 
There is already some direct evidence for a change in cor-
tical structure linked to microglial activities. In humans, 
microglia are found in transient cortical structures during 
fetal brain development, such as the subplate, between 12th 
and 13th pcw [120]. It is also hypothesized that the small 
changes in cell shape that they mediate, such as progeni-
tor cell engulfment [158] and synaptic pruning and wiring 
[119], when combined, can lead to much larger changes in 
cortical organization and consequently cortical shape.

A key feature of human fetal brain development is the 
generation of the cortical folds, the gyri, and sulci, during 
the second half of gestation. This morphological change 
occurs alongside several critical developmental events, 
including neuronal migration, gliogenesis and an increase 
in microglial numbers, all of which are thought to occur 
before 26 pcw [186]. This influx of microglia has been pro-
posed to aid the cortical expansion required for the genera-
tion of cortical folds, in particular their tangential migration 
in the developing cortex [16]. Another possible mechanism 
for microglial contribution to cortical folding is their regu-
lation of basal progenitors, the neural progenitors thought 
to be responsible for the increased number of neural cells 
seen in gyrified species. Microglia were recently linked to 
a reduction in cell stress in these basal progenitors [155], 
which may facilitate their proliferative capacity and the gen-
eration of increased numbers of neurons required for corti-
cal expansion and folding. Further indication of the role of 
microglia in cortical size and shape can be found in patients 
with cortical malformations. Focal clusters of microglia 
were found in patients with Walker Warburg Syndrome, a 
rare genetic disorder, characterised by muscular dystrophy 
and brain malformations, and were associated with areas of 
type II lissencephaly, characterised by a smooth brain sur-
face with cobblestone-like irregularites, in the cortical plate 
[199]. Reactive microglia are also localized in areas of corti-
cal dysplasias [13] and clustered in areas of polymicrogyria 
in patients with Cytomegalovirus (CMV) infections [180]. 
Understanding their role in regulating typical development 
and cortical folding, and how this relates to their inflamma-
tory role in cortical malformations, will be important. This 
is especially relevant for understanding their role in NDDs 
discussed below as some patients will have cortical malfor-
mations and microglial dysfunction as part of their disorder 
as discussed later in this review.

Overall, microglia are dynamic cells that participate in 
various processes in the developing brain. Considerable dif-
ferences between humans and rodents exist highlighting the 
shortcomings in the translatability of microglial findings 
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to human neurodevelopment. We discuss these differences 
below.

Why do we need to focus on human microglia?

Compared to mouse microglia, human microglia are more 
complex morphologically and display reduced prolifera-
tion rates, as well as specific differences in genes regulating 
critical endogenous processes like inflammation and the cell 
cycle [144, 174]. A study analysing microglial heterogene-
ity across species at different stages of life, reveals that the 
human brain has a larger microglial cell volume and a lower 
neuron-to-microglia ratio than the mouse brain. Moreover, 
higher microglial density is observed in the frontal cortex 
of the mouse compared to the human, whereas microglial 
density in the human hippocampus, cerebellum, and white 
matter is higher than in the mouse among corresponding 
regions [51]. In a study employing scRNA-seq on FACS-
purified microglia, significant overlaps were found between 
the transcriptome profiles of human fetal microglia (gesta-
tional age between 12 and 22 pcws) and mouse fetal micro-
glia (E18.5), when investigating the influence of sex and 
the microbiome on microglia. However, the study specifi-
cally highlighted the absence of sexual dimorphism in the 
human versus mouse transcriptomic signatures during mid-
gestation [193]. Contrary to the observed age-dependent 
sex differences in the context of normal neurodevelopment, 
in rodents [169], a recent study employed a combination 
of techniques, including histology, advanced imaging, and 
three-dimensional reconstruction, to investigate microglial 
populations in post-mortem embryonic and fetal brain tis-
sues, using IBA1, transmembrane protein 119 (TMEM119), 
purinergic receptor P2Y12 (P2RY12), and C-X3-C motif 
chemokine receptor 1 (CX3CR1) markers to assess and char-
acterise microglial properties, reporting an extremely low or 
absent sexual dimorphism of microglial density, morphology 
and migrating capacity across human cortical development 
[121].

To further emphasize the importance of considering spe-
cies-specific factors in understanding microglial develop-
ment, a recent study employed principal component analysis 
and batch effect verification techniques to comprehensively 
analyze the developmental transcriptomes of human and 
mouse microglia [213]. The study investigated potential 
species-specific differences in microglial maturation, high-
lighting the significance of species-related factors in this 
process. The researchers utilized mouse microglia samples at 
E14.5, early post-natal stages P4/P5, a juvenile stage (P30), 
and adulthood (P100), alongside human microglia samples 
representing prenatal, pediatric, adolescent, and adult stages. 
The findings revealed distinct expression profiles between 
prenatal and post-natal microglia, and interestingly, E14.5 
and P4/P5 mouse microglia exhibited similarities with 

human prenatal cells. Notably, in mouse pups, microglia 
formed a separate cluster distinct from their juvenile and 
adult counterparts, whereas human pediatric microglia were 
closely grouped with adult and adolescent samples. Based 
on the observed discrepancy, the researchers posited the 
hypothesis that mouse pediatric microglia might experience 
a developmental delay in maturation relative to their human 
counterparts [213].

These observations highlight the importance of studying 
human or humanised models to improve our understanding 
of the roles that microglia play in human conditions such as 
ASCs and SZ amongst other NDDs.

Evidence for microglial involvement in ASCs

ASCs are a heterogeneous group of conditions, diagnosed 
based on symptoms in two core domains: the social com-
munication impairments’ domain and the stereotypical 
behaviours and restricted interests’ domain [4]. ASCs rarely 
present on their own and often, affected individuals have 
sensory anomalies in the visual, olfactory, auditory, and 
somatosensory domains as well as comorbidities such as epi-
lepsy and sleeping disorders [4]. There is no cure for ASCs, 
and early diagnosis is important to identify a treatment plan 
for comorbidities (e.g., epilepsy medication, ADHD medi-
cation, etc.), a care plan and a suitable environment/school 
for affected children to develop and thrive. ASCs are largely 
genetic but maternal factors can increase the risk of an ASC 
in the baby in a subset of cases. Factors can be immune, 
teratogenic, and infectious. Altogether, ASCs represent a 
complex set of disorders with a wide range of severities 
which remain challenging to study.

In humans, whether microglial malfunction can directly 
cause ASCs is unclear. In some neurodevelopmental con-
ditions such as paediatric leukoencephalopathies, homozy-
gous mutations in the colony-stimulating factor 1 receptor 
(CSF1R) gene lead to a permanent absence of microglia 
which corresponds to overt structural abnormalities in the 
corpus callosum, the cerebellum and the ventricles. Affected 
children have poor cognitive, motor, and sensory outcomes 
[142]. These cases place microglia at the core of certain 
developmental conditions. In ASCs, microglia are certainly 
part of the pathological signature in humans based on neuro-
pathological [128, 129, 164, 191, 201], transcriptomic [101, 
148, 202, 203], and neuroimaging findings [187] (Fig. 2). 
Neuropathologically, a chronic inflammatory profile at the 
core of which are microglia has been suggested with several 
studies lending credence to this hypothesis. This includes 
increased expression of MHC-II in the cerebellum and 
frontal cortices in ASCs [201], a primed microglial state 
inferred by a morphological shift in the temporal cortex [53] 
or an amoeboid morphology with reduced process number 
and length in the dorsolateral prefrontal cortex (DLPFC), 
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detected using IBA1 marker [129], and an upregulation of 
miR155 in microglia in the amygdala [3]. Microglial den-
sities tend to be higher, lower, or unchanged with regular 
distributions in grey matter, white matter, the DLPFC, the 
amygdala and the temporal cortex [3, 97, 128, 129], though 
spatial clustering of microglia with respect to neurons is 
altered in ASCs specifically in the DLPFC [128]. Transcrip-
tomically, earlier bulk-sequencing of cortical areas suggests 
a convergence of ASC pathology towards innate immune and 
neuronal dysfunctions [58, 148, 207]. Subsequent single-
cell analyses have identified that sets of genes, specifically, 
in upper layer projection neurons and microglia correlated 
with ASC clinical severity in children and young adults. 
Notably, genes such as FYN binding protein gene (FYB), 
spleen-associated tyrosine kinase (SYK), activator of tran-
scription and developmental regulator (AUTS2), and fork-
head box protein P2 (FOXP2) have been linked to microglial 

activation and developmental regulation in the context of 
ASCs [203]. More recent evidence, suggests that microglial 
genes, particularly those involved in immune signaling and 
phagocytosis, such as interferon alpha and beta receptor 2 
(IFNAR2) and Janus kinase 3 (JAK3), are most upregulated 
in primary sensory areas in ASCs particularly in the parietal 
lobule and the primary visual cortex [49]. Neuroimaging 
findings using positron emission tomography (PET) with 
ligands targeting translocator protein (TSPO) are unclear on 
whether it is a hypo or hyperactivation of microglia in the 
ASC brain and this may partly depend on the generation of 
radioligands used: there is increased ‘neuroinflammation’ in 
multiple brain regions, especially the cerebellum (first-gen-
eration tracer) [187] or lower reactivity in the same regions 
(second-generation tracer) [175, 223]. It should also be 
noted that questions have been raised about TSPO specificity 
to microglia, which is discussed in the next section. Though 

Fig. 2   Microglial findings in ASCs. a Lateral view of the human 
brain with the critical/sensitive windows for ASC development, 
which include the cerebellum and the neocortex [209]. b Microglial 
gene dysregulation observed in ASC samples from the prefrontal and 
cingulate [203] as well as the primary visual areas and the superior 
parietal lobule [49]. c Microglial densities (IBA1+, magenta) are 
unchanged, higher, or lower in these brain areas compared to typi-
cally developing controls (top panel). In the cerebellum and neocor-

tex, neuroinflammatory processes are heightened and microglia 
express MHC-II (brown) and cup Purkinje Calbindin+ cells in the 
cerebellum (CB+, magenta) and neurons in the neocortex (NeuN+, 
magenta) (bottom panel). Scale bars: 25  μm. d Areas of the brain 
demonstrated to show hyperactivation linked to microglial TPSO sig-
nal. Most areas show hyperactivation except the cerebellum and the 
cingulate which show both hyper and hypoactivation depending on 
the study [175, 187, 223]
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the body of evidence suggests that microglial changes are 
characteristic of the ASC brain, it is unknown what micro-
glia could be reacting to and whether microglial dysfunction 
can cause ASCs and/or exacerbate the symptoms. Therefore, 
models based on human tissues are increasingly needed to 
elucidate mechanisms and design targeted therapies, which 
we discuss in further sections of this review.

An interesting characteristic of the ASC brain is the 
increased number of dendritic spines in the cortex main-
tained throughout life compared to typical development 
[71, 150]. Here, microglia represent a potential therapeu-
tic target. Dysfunctions in microglia-expressed fractalkine 
receptor (CX3CR1) pathways, which is involved in cell–cell 
communication [145, 217] (see section on ‘Mediators of the 
fractalkine receptor and the complement system’ for a thor-
ough discussion of this pathway) and triggering receptor 
expressed on myeloid cells 2 (TREM2), involved in micro-
glial phagocytosis and immune responses [45], for example, 
result in impaired synaptic pruning in mice. Altogether, and 
from the human literature on ASCs, much remains to be 
done to better define studied cohorts in terms of heterogene-
ity in the clinical presentation and new human tissue-based 
models which will help to further the consensus on micro-
glial involvement in these disorders [91, 172]. We discuss 
the applications and developments of human-based model 
systems, like human-induced pluripotent stem cells (hiP-
SCs), for NDD research in upcoming sections of this review.

Evidence for microglial involvement in SZ

SZ is a heterogenous, complex, and chronic psychiatric con-
dition. Its key symptoms include delusions and hallucina-
tions (positive), social withdrawal and loss of motivation 
(negative), and memory issues (cognitive), first manifesting 
in late adolescence and early adulthood [78]. Antipsychotic 
drugs remain the current pharmaceutical mainstay for the 
treatment of positive symptoms in SZ and almost exclusively 
target the dopamine and serotonin pathways [84]. While 
antipsychotics have clear benefits in managing the condition, 
they tend to present with significant adverse effects, includ-
ing extrapyramidal symptoms, metabolic and endocrine 
disruption (weight gain, diabetes mellitus) among others 
[117]. More importantly, a quarter to a third of patients are 
or become resistant to treatment over time [131], highlight-
ing the need for different therapy options.

While the exact causes of SZ are largely unknown, a 
combination of genetic and environmental factors have 
been linked with an increased risk for the condition. 
Among those, the contributions of the immune system to 
the development of the disease have been highlighted in 
recent years. For example, a Swedish cohort study found 
that infections, particularly bacterial, during pregnancy 
increase the risk of early-life infections which together lead 

to increased vulnerability to psychosis [12]. Given the links 
between the immune system and SZ, it is not surprising that 
microglia have also been implicated in this condition. For 
example, overexpression of C4A in mice increases synaptic 
uptake by microglia, and leads to altered social behaviour 
and increased anxiety compared to wildtype and knockout 
animals [214], linking findings from genetic studies with 
mechanistic insights [171]. As several recent reviews have 
discussed the latest developments in using animal models in 
SZ research [7, 106, 200], for the purpose of this review, we 
will focus primarily on the evidence linking microglia and 
SZ in human studies.

Most of our understanding regarding cellular mechanisms 
of SZ pathophysiology comes from post-mortem studies of 
the human brain and microglia are no exception in this con-
text (Fig. 3). Two independent meta-analyses of such studies 
suggest that overall, there is evidence for an increase in both 
microglial surface marker expression and microglia cell den-
sity, using markers like CD68, IBA1 and HLA-DR depend-
ing on a study, in post-mortem brain tissue samples donated 
by individuals with SZ as compared to age and sex-matched 
controls [89, 197]. Later studies also found increased IBA1 
positive microglia density in the frontal and temporal corti-
cal regions and a decrease in microglial arborization across 
the board [52]. Similarly, expression of the genes in the 
complement pathway like C1qA and C4 is upregulated in 
microglia from post-mortem SZ midbrain [156] and prefron-
tal cortex [80] samples. In contrast, no changes in microglial 
marker IBA1, HEXB, and CD68 mRNA levels are observed 
in “high inflammation” SZ cohorts, as defined by cortical 
mRNA levels of cytokines and SERPINA3 [139, 222]. Some 
of these findings have been challenged by a recent random 
effect meta-analysis, which showed unaltered microglial 
density with the lack of clear morphological changes in 
SZ [176]. Furthermore, this showed decreased expression 
of CX3CR1, CSF1R, IRF8, OLR1, and TMEM119 [176]. 
Microglial heterogeneity could in part explain some of the 
contrasting findings in the post-mortem data as these cells 
exist in multiple dynamic states with different transcriptomic 
and proteomic signatures, shaped by the environmental con-
text they get exposed to in the brain throughout the lifespan 
[146]. Other factors including the use of antipsychotics and 
other medication, cause of death, comorbidities as well as 
differences in post-mortem sample preparation and storage 
may also confound the results.

Another key line of evidence linking microglial dysfunc-
tion and SZ in humans comes from neuroimaging methods, 
specifically PET (Fig. 3). PET studies using ligands target-
ing translocator protein (TSPO), which has been adopted as 
a proxy for measuring ‘neuroinflammation’ in vivo. While 
such an approach showed great promise to begin to under-
stand some of the mechanisms of SZ in vivo, findings have 
been mixed at best. Marques and colleagues analysed 12 
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studies using TSPO-PET and found a moderate increase in 
TSPO grey matter binding in SZ patients when the bind-
ing potential was used as an outcome measure rather than 
volume of distribution [108]. However, five out of the six 
studies which used binding potential as an outcome used 
the first-generation TSPO tracer [108]. In contrast, a meta-
analysis by Plaven-Sigray et al. found a decrease of TSPO 
in the patient group in studies using the second-generation 
TSPO radioligands [153]. Non-specific binding of TSPO 
ligands between patients with SZ and controls was reported 
to be similar. Therefore, this is unlikely to account for the 
conflicting findings [109]. In an attempt to reconcile this, 
Plaven-Sigray et al. conducted an individual participant 
meta-analysis with the available data from studies using 
second-generation TSPO ligands [154]. Reinforcing their 

previous conclusions and in agreement with Marques et al., 
they observed a decrease in the distribution volume, an index 
of ligand binding to TSPO, in SZ patients compared to con-
trols [154].

It should be noted, however, while TSPO-PET has 
become a proxy measure to assess microglial reactivity, lit-
tle is known about how changes in TSPO binding relate to 
disease-associated microglia phenotypes. Furthermore, con-
cerns have been raised about TSPO specificity for microglia, 
given it is also altered in other cell types, including astro-
cytes, under inflammation conditions, and neurons [140, 
141, 205].

The descriptive nature of much of the post-mortem and 
imaging studies makes it difficult to discern whether micro-
glia play a causative role in SZ. However, some suggestions 

Fig. 3   Microglial impairments in SZ. a Post-mortem studies report 
changes in microglial density [52, 89, 197], arborization and gene 
expression [80, 139, 156, 176, 222] in patients with SZ compared to 
controls. TSPO-PET shows conflicting findings, however, there is a 
suggestion of decreased TSPO binding in grey matter in patients with 
SZ [108, 109, 153, 154]. TSPO structure representation is shown on 
the top right (structure adapted from Guo et  al. [57]). HiPSC and 

patient monocyte microglia show increased IFN-γ signalling upon 
glucocorticoid exposure [211] and increased synaptic uptake com-
pared to control lines, respectively [172]. b Drawing of 3D microglial 
morphology in a control brain (left) and a schizophrenia brain (right). 
Images adapted and redrawn from De Picker et al. [31]'s original con-
focal stack images, scale bar: 10 μm
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about causative microglial roles may include the evidence 
that single nucleotide polymorphisms (SNPs) in genes 
highly expressed in CX3CR1, have been associated with 
increased SZ risk [74]. Consistent with this view, CX3CR1 
knockout in mice leads to social interaction deficits [217]. 
In addition, genome editing of CX3CR1 in hiPSC-derived 
microglia using CRISPR results in disease-associated states 
like increased microglial inflammatory responses and phago-
cytic activity [134]. Indeed, hiPSC models, particularly 
patient-derived lines, are developing to be a crucial tool to 
discern contributions of specific cell types to NDD pathol-
ogy. We highlight two specific approaches below.

Emerging state of the art models and methods 
to investigate neurodevelopmental disorders

hiPSC-derived microglia: the future of NDDs research? 
Given the caveats of post-mortem and neuroimaging-based 
studies, there is a clear need for tools that would allow to 
investigate the mechanisms of microglial dysfunction in 
NDDs in a human context. One of such options includes 
hiPSC-derived microglia. A key advantage of such a model 
system is the ability to combine the influences of genetic 
risk factors by using patient-derived hiPSCs with disease-
relevant environmental exposures to gain better insight into 
the molecular mechanisms at play. Indeed, while stem cell-
based models are used in psychiatric research, most of these 
studies primarily focus on neuronal cell types, leaving other 
cell types, including microglia, understudied [36, 170].

Multiple protocols to differentiate microglia-like cells 
from iPSCs have been published [1, 61, 116, 133]. Tran-
scriptionally, the cells produced this way appear more like 
fetal microglia. However, given the likely neurodevelopmen-
tal origin of conditions like ASCs and SZ, this may confer 
an advantage by enabling researchers to investigate how per-
turbing microglia at key developmental stages may confer an 
increased disease risk.

While hiPSC-derived microglia have been used to study 
neurodegenerative disorders [82, 177, 190], few studies to 
date have harnessed this model for SZ research. A study 
modelling early-life stress by exposing microglial precursors 
to glucocorticoids found that an increased type I interferon 
signalling and cellular senescence in the matured cells [211]. 
Another study differentiated patient iPSCs to neurons but 
derived microglia from patient monocytes instead [172]. 
They found that patient-derived microglia showed increased 
synaptic uptake in co-cultures compared to the cells, derived 
from healthy controls as measured by the uptake of postsyn-
aptic marker PSD-95 within the microglia [172].

Of course, the in vitro environment of hiPSC-derived 
microglial monocultures or co-cultures is artificial. How-
ever, such setup offers a simple system to explore cell intrin-
sic genotype effects or interactions with other cell types. 

To investigate microglia in a more physiologically relevant 
context, chimeric model systems by transplanting hiPSC-
microglia into rodent brains have been developed [43, 66, 
107]. However, species differences and the presence of host 
microglia may impact onto transplanted cell phenotypes. 
Transplantation into cerebral 3D organoids may help to 
prevent these issues. A study suggested that microglia may 
spontaneously develop within the organoids [143], however, 
this seems to result from limited mesodermal suppression 
in the model. On the other hand, a recent report proposed 
an in vivo xenotransplantation model where hiPSC-derived 
erythromyeloid progenitors are seeded to colonise human 
brain organoids, which were subsequently transplanted into 
rodent brains [168]. Transplantation appears to improve 
microglial survival in the organoids and may help to model 
typical developmental processes of microglial colonisation 
of the brain [168]. This provides a unique system to investi-
gate how human microglia may contribute to NDD pathol-
ogy, especially taking advantage of patient-derived lines.

Unifying approaches between different groups as well 
as finding ways to increase physiological model relevance 
(some suggestions have been reviewed by Hanger et al. [65] 
and Hedegaard et al. [67]) will make way for hiPSC-derived 
microglia models to become an important part of the NDD 
research toolkit, complementing other emerging techniques, 
like single-cell and spatial transcriptomics that help to facili-
tate the research of human microglia in NDDs.

Single-cell and spatial transcriptomics as novel tools for 
microglial research in neurodevelopment. In 1996, dysplas-
tic cortical neurons obtained from patients with tuberous 
sclerosis (a rare genetic condition that causes the develop-
ment of mainly benign tumours throughout the body caused 
by mutations in tuberous sclerosis 1 (TSC1), tuberous scle-
rosis 2 (TSC2), and interferon gamma (IFNγ) genes) were 
labelled in tissue sections with antibodies against neuronal 
precursors [28]. The hypothesis here was that these neurons 
retained the molecular signature of fetal neurons. Addition-
ally, with an mRNA amplification step, 20 gene transcripts 
in these labelled neurons were also detected making this 
study one of the earliest examples of single-cell technology 
which combined histopathology and transcriptomics applied 
to a disorder of cortical development. Since then, single-cell 
investigations have developed significantly and can detect 
thousands of transcripts against whole-genome analysis. 
Single-cell and spatial transcriptomics have allowed a com-
prehensive characterisation of the cellular and molecular 
heterogeneities underlying neurodevelopment [178, 221] and 
associated disorders mainly ASCs [49, 68, 203] and SZ [10, 
76]. This has led to key discoveries in neurodevelopment 
such as the identification of key windows for microglial cell 
expansion in the forebrain [121] and microglial immuno-
competence [94]. In ASCs, single-cell investigations bet-
ter defined how the presence of high-confidence risk genes 
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affects brain development in the prefrontal cortex and the 
cingulate [83, 203]. In SZ, common genomic variants for 
the condition map to selectively vulnerable neuronal popu-
lations [10, 105] especially in the DLPFC [113]. Overall, 
the above highlight the potential of single-cell and spatial 
transcriptomics in identifying, characterising, and mapping 
cell types and states pivotal to the neuropathology of neu-
rodevelopmental disorders.

Technically, spatial transcriptomics allow users to map 
the precise anatomical locations of gene expression and the 
method can be further divided into sequencing and imaging-
based approaches (see reviews for the technical differences 

between these approaches [132, 160] and Fig. 4). Imaging-
based approaches rely on dedicated microscopes using fluo-
rescent probes to encode either individual genes directly (for 
e.g., smFISH, Table 1) or using multiple probes to encode 
genes indirectly (for e.g., MERFISH, seqFISH +, EELFISH, 
Table 1) [15, 20, 38, 157]. Sequencing-based platforms, 
however, use spatial barcoding to detect the full transcrip-
tome within a broad resolution range (220 nm to 100 μm) 
[19, 103, 165, 181]. Some methods such as Stereo-seq effec-
tively combine features of image- and sequencing-based 
approaches, resulting in an approach that is unbiased and 
of high resolution [19]. Altogether, spatial transcriptomics 

Fig. 4   Type of data acquired using spatial methods. a Immunohisto-
chemistry (IHC) of the cerebellum tagged with Calbindin for Purkinje 
cell identification, IBA1 for microglia and haematoxylin for all 
nuclei. b Spatial transcriptomics schematisation with cell populations 
approximated topographically in the same section. c In situ hybridi-
sation (ISH)/ in  situ sequencing (ISS) example in the cerebellum 
showing schematisation of transcripts against myelin basic protein. d 
Single-cell RNA seq schematisation of cell populations that can be 

identified in the cerebellum. Overall, spatial barcoding offers a lower 
resolution, whereas ISS/ISH offer a higher resolution. The complex-
ity of the data increases with the resolution. Relative to IHC, the 
number of identified cells would need to be larger going from IHC to 
spatial barcoding and ISS/ISH spatial methods, to scRNA-seq. Con-
ceptually, this would place the two spatial technologies at the heart of 
modern-day developmental science, at the intersection between his-
tology and single-cell sequencing

Table 1   Characteristics of current platforms

Most technologies that are capable of processing formalin-fixed and paraffin-embedded (FFPE) tissues are at the lower end of the resolution, 
calling for more innovation to help achieve a similar resolution as cryopreserved tissues [19, 20, 22, 24, 38, 60, 99, 103, 181, 184, 195, 206]

Technology Year Type Spot size (μm) Tissue compatibility References

Visium 2016 Spatial barcoding 55 Cryopreserved, FFPE [181]
DBit-seq 2020 Spatial barcoding 10 Cryopreserved, FFPE [103]
Nanostring 

GeoMX DSP
2019 Spatial barcoding 10 Cryopreserved, FFPE [195]

Slide-seq2 2021 Spatial barcoding 10 Cryopreserved [184]
HDST 2019 Spatial barcoding 2 Cryopreserved [206]
Seq-scope 2021 Spatial barcoding 0.6 Cryopreserved [22]
Stereo-seq 2022 Spatial barcoding 0.22 Cryopreserved [19]
FIS-SEQ 2014 ISS Amplicon limited (0.5–1 μm) Cryopreserved [99]
HybISS 2020 ISS Amplicon limited (0.5–1 μm) Cryopreserved [60]
MERFISH 2015 ISH Diffraction limited (150–300 nm) Cryopreserved [20]
oSMFISH 2018 ISH Diffraction limited (150–300 nm) Cryopreserved [24]
seqFISH +  2019 ISH Diffraction limited (150–300 nm) Cryopreserved [38]
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can reliably identify single cells and their transcriptome in 
complex tissues.

The main challenges of single-cell methods are tissue 
availability and quality, especially (Table 1) if tissues are 
formalin-fixed and paraffin-embedded (FFPE). Technical 
challenges of data sparsity, low capture efficiency and the 
exclusion of non-polyadenylated mRNA transcripts in cur-
rent analysis pipelines have been reviewed elsewhere [154]. 
Several methodologies have emerged applying spatial tran-
scriptomics to FFPE samples [11, 47, 54, 103, 152, 208]. 
While transcript quality and quantity is higher in snap-frozen 
and cryopreserved sections [132], tissue quality can vary 
and so does the RNA quality. The development of assays 
like spatial RNA integrity number (sRIN) [96] have helped 
with improving tissue quality for better assessments in the 
spatial domain. These innovations are expected to increase 
the use of spatial transcriptomics in developmental tissues 
in health and disease.

In future, spatial transcriptomics combined with cell–cell 
interaction analyses will help unravel the precise interac-
tions between microglia and other brain cell types during 
key developmental windows in humans. This can be done 
by using cell–cell communication tools such as node-centric 
expression models amongst others, specifically designed for 
spatial data [46]. Furthermore, and as microglia migrate to 
the brain rudiment early during gestation in a distinct tra-
jectory [119, 121], changes in gene expression which are 
specific to migrating microglia are currently unknown. This 
is important as microglia are highly transcriptionally heter-
ogenous with distinct identities associated with distinct spa-
tial domains [146]. Therefore, characterising the microglial 
microenvironment and its interactions with other cell types, 
including astrocytes, through transcriptomic alterations 
in NDDs could offer therapeutic opportunities [79, 102]. 
Finally, it may offer the possibility to investigate different 
microglial states simultaneously in the context of their brain 
environment. With the advent of machine learning and the 
multi-omics age, multimodal data acquisition on microglia 
will likely reveal the precise interactions of these cells with 
the neurodevelopmental landscape.

Targeting microglia to alleviate 
neurodevelopmental disorders: current state 
of affairs

Anti-inflammatory agents. It is well known that microglia 
perform contextually dependent functions, sometimes acting 
as a double-edged sword. While microglial contributions, 
for example, those discussed in the context of typical CNS 
development (see ‘Microglial function during development’ 
section) are beneficial, these immune cells are also impli-
cated in sustaining oxidative stress and inflammation in the 
context of NDDs [8, 188]. As a response to the pathological 

changes occurring at the CNS level, microglia can produce 
pro-inflammatory mediators as well as reactive oxygen and 
nitrogen species in vivo, which may lead to neuronal degen-
eration, white matter abnormalities, and decreased neuro-
genesis observed in ASCs [151], and SZ [70]. Aiming to 
target the deleterious actions of microglia in exacerbating 
CNS inflammation, several anti-inflammatory therapies have 
been proposed for the improvement of NNDs outcomes. 
For example, in a rat model of maternal immune activation 
using polyinosinic:polycytidylic acid [poly (I:C)], treatment 
with minocycline, an anti-inflammatory tetracycline which 
actively crosses the blood–brain barrier and modulates (yet 
non-specifically) microglia, improved behavioural dysfunc-
tions, rescued phagocytic activity, and reduced levels of 
TNF-α, IL-1β was observed [112]. As minocycline depletes 
host gut microbiota, it is likely that this interaction—or lack 
of it—shapes microglial responses [40]. The interactions 
between microglia and the gut microbiota are discussed 
further.

The real-time live imaging study conducted on patient-
derived microglia co-cultured with iPSCs (discussed pre-
viously) also reported that at clinically relevant doses, 
minocycline reduced excessive microglial synaptic pruning 
typically observed in the SZ brain [172]. Furthermore, the 
researchers investigated the potential link between long-
term exposure to antibiotics, specifically minocycline and 
doxycycline, and the risk of primary psychotic disorder in 
individuals aged 10–18 years and found that exposure to 
these antibiotics for at least 90 days was associated with 
a significantly decreased risk of incident psychosis [172]. 
An open-label trial in children with ASCs with a history 
of regression revealed that 6-month minocycline treatment 
reduced the serum levels of IL-8 in seven out of ten children 
recruited for the study [147]. In a double-blind, randomised 
placebo-controlled clinical trial, 16-week adjunctive mino-
cycline treatment was reported to decrease plasma levels of 
nitric oxide, without any change in IL-1β or TNF-α levels, in 
55 adult SZ patients treated with a stable dose of risperidone 
[101]. Furthermore, another study revealed that when used 
with risperidone for 3 months, minocycline improved nega-
tive symptoms which correlated with reduced serum levels 
of IL-1β, and IL-6 in 75 treatment-free adult patients with 
SZ [218]. Conversely, in another randomised, double-blind, 
placebo-controlled trial where patients with SZ received 
a daily dose of minocycline while continuing their treatment 
for a period of up to 12 months, the addition of minocycline 
did not show improvement in negative symptoms compared 
to placebo [32]. While minocycline has shown some promise 
as a potential treatment for SZ and ASCs, further investiga-
tion is needed to fully understand its effects, including anti-
inflammatory ones, in these conditions.

The therapeutic potential of second-generation antipsy-
chotics in modulating microglial activity, particularly their 
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pro-inflammatory cytokines and reactive species release, 
has been reported in several studies. Risperidone, an FDA-
approved drug for treating ASCs' symptoms in children, 
reduced plasma levels of the chemokine (C–C motif) ligand 
2 (CCL2) and eotaxin [23], and when used in combination 
with celecoxib, a non-steroidal anti-inflammatory drug in a 
randomised controlled trial, led to an improvement of ASC 
symptoms in children with severe behavioural alterations 
[6]. A dietary formulation containing the neuroprotective fla-
vonoids, luteolin, quercetin, and rutin, also decreased serum 
levels of TNF-α and IL-6, and improved social interactions 
in children with ASCs [188, 198]. While targeting micro-
glia-driven oxidative stress and pro-inflammatory cytokines 
release may show promising neuroprotective outcomes, 
as documented in humans, it is crucial to strike a balance 
between curbing excessive inflammation and maintaining 
beneficial microglial physiological functions when devising 
target strategies.

Mediators of the fractalkine receptor and the complement 
system. Although synaptic pruning by microglia is essential 
for the organisation of neuronal circuits during neurode-
velopment, excessive or insufficient pruning of synapses 
by microglia may instead participate in the pathogenesis of 
SZ [75] and ASCs [219], respectively. Mouse studies show 
that microglial synaptic engulfment notably depends on 
fractalkine (CX3CL1) and its receptor CX3CR1, which is 
highly expressed by microglia (reviewed in [212]). Frac-
talkine is a chemokine involved in regulating the immune 
system and inflammation, which has been shown to play a 
key role in synaptic plasticity and neuronal communication 
in the CNS. CX3CR1 is a principal mediator of neuron-
microglia interaction, and as already mentioned, previous 
studies have linked rare genetic variations in CX3CR1 to an 
increased risk of developing SZ and ASCs [74]. Moreover, 
a quantitative assessment of fractalkine and CX3CR1 using 
immunoblotting and polymerase chain reaction (PCR) on 
post-mortem brain samples from individuals diagnosed with 
either SZ or bipolar disorder and their age-matched non-
psychiatric controls revealed a significant reduction in levels 
of fractalkine in the prefrontal cortex of individuals with SZ 
compared to both the bipolar disorder and control groups. 
There were no significant differences in fractalkine levels 
between the bipolar disorder and control groups, suggesting 
that the alterations in fractalkine levels may represent a spe-
cific biomarker for SZ [69]. An experimental study that used 
repeated sub-anaesthetic doses of ketamine to induce schiz-
ophrenia-like cognitive deficits in rats further showed that 
cannabidiol improves cognitive impairment associated with 
schizophrenia-like behaviours while upregulating CX3CR1 
transcript levels in the prelimbic, limbinc and cingulate areas 
(the human equivalent would be the prefrontal cortex) [93]. 
These findings suggest that cannabidiol may be a potential 
target for the CX3CL1-CX3CR1 axis in future SZ therapy. 

However, clinical trials of cannabidiol at varying doses in 
patients with SZ have so far yielded conflicting results, with 
some groups demonstrating clinical improvements with can-
nabidiol on assessments [100, 114], while others reporting a 
lack of statistically significant improvement [14, 63].

In addition to CX3CR1, mouse studies also highlight 
the critical role the classical complement cascade plays in 
regulating microglial elimination of synapses during CNS 
development [44, 167], as abnormal synaptic pruning due 
to the dysregulation of specific complement system com-
ponents can perturb neurodevelopment [98, 124]. The com-
plement system is a complex network of soluble plasma 
components that play critical roles in innate immunity, the 
host’s defence, and developmental synaptic pruning [167, 
183]. The complement system is triggered through the 
classical, lectin, and alternative pathways. These pathways 
ultimately lead to the activation of complement C3 and its 
downstream components (C5–C8) [138]. Initiation of the 
classical pathway is triggered by the binding of comple-
ment C1q to immune complexes that consist of antigens 
bound to immunoglobulin antibodies. C1q binds to and 
opsonises synapses, pathogens, or cellular debris, trigger-
ing the cleavage and activation of C4 and C2, which fuse 
and drive the amplification and cleavage of C3 [138]. In 
the developing CNS, receptors for complement proteins 
are primarily expressed by microglia at varying low lev-
els depending on the stage of maturation. C3-opsonized 
synapses activate receptors on microglia, which targets 
these synapses for elimination by phagocytosis [171, 
183]. GWAS have identified genetic variants associated 
with complement component coding genes C1q, C3, and 
C4 that increase the risk for SZ [56]. In addition to genetic 
findings, studies have reported that individuals with acute 
SZ or schizoaffective disorder have increased levels of 
peripheral complement components C3, C3b, and C4 [81, 
185]. Two different studies observed a high level of com-
plement C4 and C5 in the plasma and cerebrospinal fluid 
of adult patients treated with either benzodiazepines, mood 
stabilisers or antidepressants for SZ [48, 73]. In contrast, 
a study of antipsychotic-naïve patients with first episode 
psychosis (FEP) found increased complement components 
C1q, C3b/iC3b, C4, factors B and H which were signifi-
cantly increased in patient serum but not CSF [29]. In a 
population-based study, SNPs in complement C3 were also 
observed to be strongly associated with SZ [219]. These 
observations suggest that complement system dysfunction 
may contribute to the development of SZ, and hence could 
serve as a therapeutic target. While preclinical studies have 
suggested that targeting components of the complement 
system, such as C3 [25, 26] or C1q, may be relevant for the 
treatment of neurodevelopmental disorders, there are pres-
ently no registered clinical trials examining the efficacy of 
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drugs that target the complement system for any identified 
neurodevelopmental disorder.

Modulation of the gut microbiome. Synaptic prun-
ing in the human prefrontal cortex during adolescence 
was shown to coincide with the maturation of the gut 
microbiota [2]. The microbiota plays a key role in shap-
ing the development and function of the immune sys-
tem while mounting evidence suggests that it may also 
impact onto the maturation and function of microglia and 
neural circuits. For example, alterations of microglial 
homeostasis and transcriptomic profiles were observed in 
6–10-week-old germ-free mice devoid of gut microbiota 
[40, 194]. Microglia in E18.5 embryos from germ-free 
dams also displayed an increased density among various 
brain regions, with increased numbers of cells exhibit-
ing a ramified morphology [193]. Studies have revealed 
that the brain communicates with the gut microbiome 
through the gut–brain axis. This bi-directional commu-
nication involves neuroendocrine, immune and neural 
pathways and microbiota-derived neuroactive compounds 
(neurotransmitters, metabolites and soluble by-products) 
(reviewed in [42, 50, 104]). Disruptions in the homeo-
static gut microbiota composition (known as dysbiosis) 
were found to contribute to the pathogenesis of neurode-
velopmental disorders (reviewed in [27, 104, 142]), mak-
ing the gut microbiome-microglia axis a promising target 
in neurodevelopmental disorders. For instance, ASCs are 
associated with a decrease in the diversity and abundance 
of specific Bacteroidetes, Bifidobacterium, Sutterella, and 
Prevotella species, with subsequent reductions in micro-
bial short-chain fatty acids (SCFAs), which can cross the 
blood–brain barrier to regulate microglial activity includ-
ing their release of pro-inflammatory cytokines [30, 39]. 
Likewise, a review and meta-analysis of previously pub-
lished studies indicated that patients with SZ display low 
levels of the bacteria genera Roseburia and Faecalibacte-
rium, which are crucial for maintaining intestinal barrier 
integrity, and high levels of the LPS-producing Fusobac-
terium, Lactobacillus, Megasphaera and Prevotella gen-
era [102, 137]. Microbiome-modulating therapies such as 
prebiotics [55, 87], probiotics [33, 166], synbiotics [210], 
and fecal microbiome transplantation [86] have been 
shown to improve behavioural outcomes in patients with 
ASCs and SZ (reviewed in [189] by modulating micro-
glial maturation and reactivity via various mechanisms, 
including microbiota-derived SCFAs production [210], 
via the vagus nerve [173], and through peripheral immune 
signals [40]. Overall, the precise mechanisms underly-
ing the impact of microbiome supplements on microglial 
development and maturation remain unclear, but it is con-
ceivable that they may work by modulating the various 
gut–brain microglia communication pathways [59].

Conclusion

In NDDs like ASCs and SZ, we have reviewed here whether 
and how microglia contribute to the emergence of these condi-
tions. Our current mechanistic understanding is largely lack-
ing in humans as the body of evidence is largely descriptive 
including post-mortem, transcriptomic and neuroimaging stud-
ies. This is why emerging model systems like hiPSC-derived 
microglia and ex vivo models based on human primary tissues 
will allow us to investigate how microglia contribute to proper- 
and mis-wiring of cognitive circuits during development in 
humans. Such human-led models would further allow to delin-
eate the contributions of genetic background and some of the 
environmental risk factors in NDDs and test the proposed 
pathological pathways from animal work. Combined with the 
power of single cell, spatial transcriptomics, multi-omics and 
machine learning, these will help to pinpoint the cellular and 
molecular mechanisms dysregulated in NDDs more precisely. 
There is also a need to develop better PET tracers to investigate 
human microglia in vivo, given the caveats associated with 
limited cellular specificity of currently used TSPO targeting 
ligands. Improving such approaches would allow to better 
translate the mechanistic insights from cellular studies into 
clinical applications. Equipped with novel mechanistic insights 
into microglial contributions to NDDs, targeting microglia and 
their dysregulated pathways holds therapeutic potential. This 
may be particularly important in subsets of patients with ASCs 
or SZ with a marked immune system involvement. Promising 
avenues for further research and treatment advancements are 
likely to focus on anti-inflammatory therapies, the modulation 
of microglial synaptic pruning, and interventions that target 
the gut microbiome. Altogether, therapeutic strategies will be 
a balance between harnessing the beneficial roles of microglia 
while curbing excessive inflammation in NDDs.
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