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Abstract
Multiple sclerosis (MS) is a multifocal and progressive inflammatory disease of the central nervous system (CNS). However, 
the compartmentalized pathology of the disease affecting various anatomical regions including gray and white matter and lack 
of appropriate disease models impede understanding of the disease. Utilizing single-nucleus RNA-sequencing and multiplex 
spatial RNA mapping, we generated an integrated transcriptomic map comprising leukocortical, cerebellar and spinal cord 
areas in normal and MS tissues that captures regional subtype diversity of various cell types with an emphasis on astrocytes 
and oligodendrocytes. While we found strong cross-regional diversity among glial subtypes in control tissue, regional sig-
natures become more obscure in MS. This suggests that patterns of transcriptomic changes in MS are shared across regions 
and converge on specific pathways, especially those regulating cellular stress and immune activation. In addition, we found 
evidence that a subtype of white matter oligodendrocytes appearing across all three CNS regions adopt pro-remyelinating 
gene signatures in MS. In summary, our data suggest that cross-regional transcriptomic glial signatures overlap in MS, with 
different reactive glial cell types capable of either exacerbating or ameliorating pathology.
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Introduction

Multiple sclerosis (MS) is a multifocal progressive inflam-
matory disease of the central nervous system (CNS) char-
acterized by demyelination, astrogliosis and varying lev-
els of cell type vulnerability and reactivity during lesion 

development [18, 43, 46]. Disease presentation strongly 
correlates with the spatial dissemination of lesions through-
out CNS which includes spinal cord, cerebellum and cer-
ebrum among other areas [43]. Hence, a comprehensive 
understanding of the disease demands not only to assess the 
roles of heterogeneous cell populations involved in disease 
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pathology but also to understand the pathological mecha-
nisms underlying lesion formation in different CNS com-
partments. It has been shown that neurons and subtypes of 
glial cells differ between cortical areas and show variable 
cell type-dependent levels of damage in MS [48, 52]. Moreo-
ver, extensive research has been conducted to investigate the 
roles of astrocytes [30], oligodendrocytes [22, 40] and neu-
rons [48] in MS; however, these studies focused primarily 
on individual CNS regions such as the spinal cord or the cer-
ebrum. Hence, it is unclear whether gene expression reflect-
ing cell type damage and reactivity in MS differs between 
CNS regions and subregions, such as gray and white matter.

To assess cell type diversity and reactivity in MS across 
different CNS regions, we performed droplet-based single-
nucleus RNA-sequencing (snRNA-seq) from well-character-
ized tissue samples comprising cerebellar, spinal cord and 
leukocortical samples [48] obtained from MS and matched 
control subjects. Following data integration, we investi-
gated glial cell heterogeneity between CNS regions in an 
anterior–posterior fashion and observed regionally diverse 
patterns of control glial subtypes, including astrocytes and 
oligodendrocytes. Next, we aimed at identifying changes in 
MS lesion pathology on different hierarchical levels. First, 
we identified global MS gene expression changes without 
respect to different CNS regions among various neuroglial 
subtypes, including the 17q.21.31 locus, which has been 
linked to a genetic risk for neurological diseases. Next, we 
assessed distinct glial subtypes and identified upregulation 
of glial reactivity genes with an emphasis on astrocytes and 
oligodendrocytes shared between CNS regions in MS. In 
particular, we identified an endogenous mechanism associ-
ated with remyelination in a subtype of white matter oligo-
dendrocytes, which becomes activated in white matter MS 
lesion tissue areas.

Methods

Origin of postmortem human tissue samples

Postmortem human tissue samples from a total of 41 donors 
(21 female and 20 male) were provided by the UK Mul-
tiple Sclerosis Tissue Bank at Imperial College, London 
via prospective donor scheme following ethical approval 
by the National Research Ethics Committee in the UK (08/
MRE09/31). Samples were obtained from 21 donors without 
evidence for pathological abnormalities within the examined 
tissue areas and from 20 donors who were diagnosed with 
multiple sclerosis (MS). Additional clinical and pathologi-
cal details about control and MS donors as well as quality 
control of the samples are provided (Suppl. Table 1, Online 
Resources).

Sample selection

Integrity of mRNA was used as a sample selection crite-
rion, and only samples with a high quality of tissue RNA 
were included. We prepared 100-µm thick sections on a 
CM3050S cryostat (Leica) to obtain 10 mg tissue to iso-
late RNA, which was done using TRIzol (Thermo Fisher) 
and Qiagen RNAeasy Kit following manufacturer’s recom-
mendations. RNA integrity was measured on an Agilent 
2100 Bioanalyzer using the RNA 6000 Pico Kit (Agilent) 
according to the manufacturer’s instructions. Samples with 
RNA integrity number (RIN) ≥ 6.5 were selected for further 
snRNA-seq analysis.

Histopathological assessment

Histopathological assessment was carried out using immu-
nohistochemistry (IHC) for CD45, IBA1, CD68, CD3 and 
MOG as described previously [48], as well as Luxol fast blue 
and hematoxylin/eosin staining. Following primary antibod-
ies were used: mouse anti-MOG (clone 8-18C5, 1:1,000, 
Millipore Sigma, RRID AB_1587278), mouse anti-CD45 
(clone H130, 1:200, Biolegend, RRID AB_314390), rabbit 
anti-IBA1 (polyclonal, 1:500, Wako, RRID AB_839504), 
mouse anti-CD68 (clone 514H12, 1:100, Bio-Rad, RRID 
AB_2074721) and rat anti-CD3 (clone CD3-12, 1:200, Bio-
rad, RRID AB_321245). Primary antibodies were labeled 
using cross-adsorbed secondary goat IgG antibodies (H + L) 
against different species (mouse, rabbit and rat) tagged to 
various fluorophores (Alexa Fluor Plus 488, 555 and 647, 
Thermo Fisher Scientific). All included MS patient tissue 
samples harbored demyelinated lesions with adjacent lesion 
rim and normal-appearing gray and white matter areas of 
varying inflammatory activity. Lesion areas identified 
according to MOG IHC were then further classified in acute, 
chronic-active and chronic-inactive lesions. Acute lesions 
had an indistinct rim and showed active demyelination with 
presence of myeloid foam cells  (MOG+/CD45+/CD68high) 
in lesion center areas (Suppl. Fig. 1a, Online Resources) 
and perivascular cuffing of T cells  (CD45+/CD3+) and 
macrophages  (CD45+/IBA1low/CD68high) (Suppl. Fig. 1d 
Online Resources). Chronic active lesions were classified 
by a demarcated demyelinated lesion center and a hyper-
cellular lesion rim with increased presence of macrophages 
and activated microglia  (CD45+/IBA1high/CD68low) (Suppl. 
Fig. 1a-d, Online Resources). Inactive lesions demonstrated 
fully demyelinated lesion centers with absence of mac-
rophages; in normal-appearing and periplaque lesion areas 
we observed an abundance of ramified microglia  (CD45+/
IBA1high) (Suppl. Fig. 1d, Online Resources) [28, 47].
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Preparation of cDNA libraries, sequencing 
and expression matrix generation

Nuclei from the selected samples were isolated using sucrose-
gradient ultracentrifugation according to previous protocols [48, 
55]. Following isolation, nuclei were diluted to a final concen-
tration of 2,000 nuclei per μl and loaded on the 10 × Chromium 
single-cell expression platform (v2 chemistry) for cDNA library 
preparation aiming at a recovery rate of 4,000 nuclei per sam-
ple. Prepared cDNA libraries were sequenced on an Illumina 
HiSeq 2500 sequencing system aiming for a sequencing depth of 
60,000 reads per nucleus. Expression matrices for each sample 
were generated with Cell Ranger Count v3.0.2 by performing 
alignment of sequencing data against a custom-built GRCh38 
pre-mRNA reference transcriptome. The custom-built refer-
ence transcriptome was modified to allow additional capture of 
intronic reads originating from pre-mRNA transcripts. The final 
expression matrix, comprised of all 20 samples, was generated 
by merging single expression matrices using Cell Ranger Aggre-
gate v3.0.2. Merging was performed without sequencing-depth 
normalization.

Quality control and doublet filtration

As a quality control criterion, in downstream analysis we 
included only nuclei containing at least 250 genes and 400 
counts (Suppl. Fig. 2a, b, Online Resources). Nuclei were fur-
ther filtered in a way that 99% of the nuclei included in down-
stream analysis had less than 5% of mitochondrial genes (Suppl. 
Fig. 2c, Online Resources). In addition, doublets were removed 
using scDblFinder v1.4.0 [16] with default parameters except the 
dbr = 0.05 which was adjusted to accommodate higher doublet 
rates for nuclei as compared to cells [55].

Normalization, scaling and variable features 
selection

The filtered expression matrix was processed using Seurat 
(v3.2.3) SCTransformation [51], a regularized negative bino-
mial regression-based model, specifically developed for unique 
molecular identifiers (UMI) based data and including normaliza-
tion, scaling and variable feature selection. SCTransform() was 
first performed with default parameters for the analysis of each 
region separately. For normalization of the integrated data set, 
SCTransform() was performed with variable.features. n = 5000.

Dimensionality reduction and selection of principal 
components

Principal component analysis (PCA) was done using Seurat 
[51] RunPCA() calculating the top 50 principal components 
(PCs). For the selection of significant PCs to include, we 
used unbiased criteria. First, we selected the PC cutoff so 

that the cumulative variance explained of all prior PCs is 
more than 90%. Then, we determined the second PC cutoff 
so that the variance explained of consecutive PCs is less 
than 10%. Finally, number of significant PCs was taken as a 
minimum of above-mentioned metrics. Selecting PCs in this 
way avoids user subjectivity and ensures consistent analysis.

Data integration and batch removal

To ensure clustering based on cell types and mitigate clus-
ters driven by single samples, data were integrated using 
Harmony v1.0.0 [27], where each sample was treated as 
a batch. Built-in function RunHarmony() was run on the 
SCTransform corrected assay, using default parameters 
except setting parameter max.iter.harmony = 30. For select-
ing significant harmony components (corrected PCs), the 
same metrics were used as for selecting significant PCs 
described above, except for the integrated data where 31 
harmony components were chosen.

Clustering and visualization

Visualization and clustering were done in Seurat [51] fol-
lowing official vignette by developers. In brief, we used 
built-in functions RunUMAP(), FindNeighbors() and Find-
Clusters() on harmony [27] corrected PC embeddings using 
default parameters, except setting resolution to 2.5.

Subclustering of cell types

For cell subtype identification, sub-clustering was per-
formed. Briefly, the cluster of interest was subset and PCA 
was rerun on normalized data, followed by selection of sig-
nificant PCs, data integration with Harmony [27], clustering 
and visualization as previously described.

Cluster markers and cell type annotation

Cluster markers were identified using function findMarkers() 
from scran v1.18.5 package [34] with the default param-
eters except setting pval.type = "all" (Suppl. Table 2, Online 
Resources). Clusters were then annotated based on known 
marker genes, which showed significant expression levels in 
the corresponding cluster.

Analysis of cell population subsets

For subclustering of distinct populations like astrocytes or 
oligodendrocytes, we used in each case a subset of nuclei of 
the integrated data set, which was annotated as the cell type 
of interest based on its gene expression. Then, we performed 
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the same analysis workflow as described above only for the 
respective subtype. In general, the resolution parameter was 
here reduced as we analyzed only one cell type.

Cell correlation heatmap

To calculate the correlation between glial cell type expres-
sion profiles, gene expression of glial cell types was aver-
aged for each cell type using the SCTransform corrected 
expression data. Then, Pearson correlation analysis was 
performed on the averaged expression profiles.

Differential gene expression analysis

For the differential gene expression (DGE) analysis, the 
DESeq2 [33] pseudobulk approach was used. Briefly, for 
each sample raw counts were summed up and used as input 
for DESeq2. As gene filtering criterion, we included only 
genes having at least 2 counts in a minimum of 30 cells. 
After summing up gene counts, we introduced another fil-
tering step excluding genes with less than 10 counts in at 
least 2 samples. For further quality control, plotPCA() func-
tion was used verifying that the main source of variance is 
explained by condition. Based on the results, clear outlier 
samples were excluded, which was never more than one. 
Within DESeq2, a standardized workflow including Wald 
test was used while controlling for sex differences. To bet-
ter handle log2 fold changes, we used the apeglm shrinkage 
estimator v1.12.0 [58]. In case of DGE analysis between 
CNS regions, pairwise comparisons were calculated between 
each region. Intersection of these pairwise comparisons were 
taken as region-specific DEGs.

Functional enrichment and semantic similarity 
analysis

Functional enrichment analysis of differentially expressed 
gene sets was performed using ClusterProfiler v3.18.0 
implementation of GO terms [57]. Mitochondrial encoded 
and nuclear encoded ribosomal transcripts were excluded 
prior to analysis. As a background list, all genes which are 
expressed in the investigated cell type were used. Using 
bitr() function, we transferred gene symbols to Entrez gene 
IDs. As a database, we used R package org.Hs.eg.db v3.12.0 
[6]. Genes without corresponding Entrez ID were excluded. 
GO term enrichment was then calculated with enrichGO() 
function using the biological processes database, p and q 
value cutoff of 0.05 and Benjamini–Hochberg procedure for 
adjusted p values. For semantic similarity analysis of gene 
clusters, we used R package GOSemSim v2.16.1 [56]. Cor-
relation was calculated between each gene cluster, whereas 
one cluster consists of genes which were identified as dif-
ferentially expressed and contribute to one of the previous 

identified GO terms. mclusterSim() function was used with 
biological processes of org.Hs.eg.db as database, the Wang 
method for calculation and Best-Match Average strategy 
(BMA) as combination method. After calculation, correla-
tion matrix was visualized using pheatmap (R package ver-
sion 1.0.12., https:// CRAN.R- proje ct. org/ packa ge= pheat 
map) and grouped into clusters by cutting the dendrogram 
at height 3 to retrieve biological meaningful clusters.

Transcription factor activity

For calculating transcription factor (TF) activity, R pack-
age dorothea v1.2.0 [15] was used. As input, normalized 
data derived from SCTransform was used. In addition, for 
technical reasons due to high memory demands with large 
datasets, the dataset was split into 5 random parts with an 
even sampling of cells from each cluster, then TF activity 
was calculated on single cells for each part separately using 
regulons with confidence intervals A, B, C [20]. Finally, sin-
gle-cell TF activities were merged after correcting technical 
batches introduced by splitting the dataset using ComBat() 
function of package sva v3.38.0 [29].

Cell–cell communication analysis

For the cell–cell communication (CCC) analysis, R pack-
age LIANA v0.1.5 [13] was used. Ligand receptor pairs 
were inferred on the normalized expression profiles using 
consensus rank from 5 different methods (CellPhoneDBv2, 
NATMI, Connectome, SingleCellSingleR, iTALK) which 
were run against the Omnipath resource. The Consensus 
rank is generated across all methods using Robust Rank 
Aggregation [25].

Trajectory inference and pseudotime DGE analysis

Pseudotime trajectory analysis was done using R package 
slingshot v1.8.0 [50]. The trajectory was calculated based 
on UMAP embeddings of the corresponding Seurat object 
in unsupervised manner setting neither start- nor endpoint. 
The Seurat objects for subsets of oligodendrocytes con-
sisted of same cells which were used for DGE analysis and 
were processed as described above except skipping Run-
Harmony() function to avoid losing differences of control 
and MS nuclei in UMAP embeddings. Differential gene 
expression analysis was carried out with R package trade-
Seq v1.4.0 [54]. Analysis was done following the official 
tutorial by the developers using the diffEndTest() function. 
Only genes with more than 1 count in at least 100 cells in 
the normalized and scaled assay were included. Based on 
evaluateK() we selected nknots = 7 for calculation. For heat-
map visualization we used a subset of all significantly dif-
ferentially expressed genes, selecting only genes with high 

https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
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expression level (waldStat > 10) which were included in the 
SCTransform corrected assay of the two datasets containing 
SLC5A11 oligodendrocytes from cerebrum and spinal cord, 
respectively.

Fluorescence multiplex in situ RNA hybridization

For single-molecule fluorescence in  situ hybridization 
(smFISH) validation we used frozen human cryosections 
(for slide preparation see section Histopathological assess-
ment). Staining was performed on a representative selec-
tion of samples using ACD RNAscope 2.5 HD Red and 
Multiplex Fluorescent V2 assays. Slides were directly 
transferred from − 80 °C into 4% PFA for fixation; first 
15 min at 4 °C, then 2 h at room temperature. After fixa-
tion, slides were incubated with  H2O2 for 10 min and then 
boiled in Target Retrieval solution (ACD) for 5 min. Fol-
lowing a washing step in  dH2O slides were dehydrated in 
100% EtOH before protease treatment (Protease IV, ACD, 
30 min at room temperature). Target probes (C1–C3) were 
then mixed and incubated on slides for 2 h at 40 °C in a 
specific RNAscope hybridization oven (ACD). The follow-
ing human RNAscope assay probes were used: LINC00685 
(C1), ADGRV1 (C1), CPAMD8 (C1), GRIA1 (C1), SLC5A11 
(C1), CHRM5 (C1), AQP4 (C2), SYT1 (C2), LINC01608 
(C2), MAG (C2), PITPNC1 (C3), PLP1 (C3) and GNA14 
(C3). Slides were then washed and kept in 5X SSC over-
night. Next day, amplification and probe channel detection 
steps were performed following manufacturer’s recommen-
dation. In case of the multiplex smFISH assay, TSA Plus 
Cyanine 3 (Cy3, excitation maximum 554, emission maxi-
mum 568), TSA Plus Cyanine 5 (Cy5, excitation maximum 
649, emission maximum 666) and TSA Plus Fluorescein 
(excitation maximum 490, emission maximum 525) detec-
tion kits (Akoya Biosciences) were used as fluorophores for 
probe labeling. Slides were mounted with ProLong Gold 
antifade reagent (Thermo Fisher Scientific).

Microscopy, image acquisition and statistical 
analysis

Brightfield images were taken using a Leica DMi 8 micro-
scope with a Leica DFC7000 GT camera. Confocal images 
were taken using a Leica TCS SP8, a Nikon AX R micro-
scope with a Nikon Plan Apo λ 40 × NA 0.95 objective and 
a Nikon A1 with a Nikon Plan Fluor 40 × NA 1.3 objec-
tive. All fluorescent pictures are z-stack images consisting 
of 10 to 20 layers with a 0.5–0.7 μm step size. Heights for 
z-stack were identified manually by imaging DAPI on area 
of interest. Each z plane was imaged across 3–4 channels. 
Processing and quantification of images was carried out 
using the open-source software FIJI ImageJ version 2.0.0. 

Nikon images were denoised and deconvolved using the 
Nikon NIS-Elements AR 5.40.01 software. For quantifica-
tion, a minimum of two representative regions of interest of 
at least four samples were selected. We determined p values 
as follows: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001. Analysis and 
visualization were carried out using open-source software 
R version 4.0.3.

Results

Tissue processing and droplet‑based single‑nucleus 
RNA‑sequencing

To investigate transcriptomic changes of heterogeneous cell 
populations involved in MS pathology, as well as suscepti-
bility of different CNS regions, we performed a compre-
hensive single-nucleus and spatial validation analysis of 19 
leukocortical, 10 cerebellar and 12 spinal cord tissue blocks 
obtained from MS and corresponding control subjects. Spe-
cifically, we performed IHC combined with single-molecule 
fluorescence in situ hybridization (smFISH) assays on all 
tissue samples and droplet-based snRNA-seq on 6 cerebellar 
and 6 spinal cord samples and profiled nuclear transcrip-
tomes together with 8 leukocortical samples [48] (Suppl. 
Table 1, Online Resources). We selected MS samples that 
showed demyelination and assessed inflammatory lesion 
activity using MOG, CD45, IBA1, CD68 and CD3 IHC 
(Suppl. Fig. 1, Online Resources). Except three samples, 
which were classified as chronic-inactive, all samples har-
bored chronic-active lesions with partial evidence for ongo-
ing active demyelination at lesion rims and neighboring 
lesion core areas. In addition, for snRNA-seq we selected 
samples based on RNA integrity, including only samples 
with an RNA integrity number (RIN) ≥ 6.5 (Suppl. Table 1, 
Online Resources). Samples were dissociated in lysis buffer 
and nuclei were isolated through ultracentrifugation in 
sucrose solution, followed by 10X genomics barcoding, 
cDNA library construction and sequencing (see “Methods”).

Data integration and unsupervised clustering

After quality control of each region (Suppl. Figs. 2 and 3), we 
obtained transcriptomic profiles of 45,183 nuclei, which were 
then integrated for comparative analysis using the harmony algo-
rithm [27]. Following integration, clustering analysis and cell 
type classification was performed, identifying 38 distinct cel-
lular subtypes based on marker gene expression (Fig. 1a–c and 
Suppl. Fig. 3, Suppl. Table 2, Online Resources, interactive web 
browser: https:// ms- cross- regio nal. cells. ucsc. edu). While most 
clusters representing glial cell types showed a uniform regional 
distribution, we also identified several region-specific cell 
type clusters. For example, cerebellar Bergmann glia, granular 

https://ms-cross-regional.cells.ucsc.edu
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and Purkinje cells, as well as spinal cord-derived ependymal 
cells formed distinct populations (Fig. 1a, b). In addition, we 
found a small cluster of nuclear profiles showing a Schwann 
cell gene expression signature, most likely derived from spi-
nal roots attached to the spinal cord tissues sequenced (Suppl. 
Fig. 3 k, l, Online Resources). In fact, we could even distin-
guish myelinating from non-myelinating Schwann cells based on 

gene expression. Further, we found that a subtype of excitatory 
neurons from spinal cord and leukocortical tissues formed one 
cluster, which we annotated ‘motor neurons’ and was character-
ized by specific expression of UCHL1 but not CALB1, a specific 
marker gene for Purkinje cells (Fig. 1c). Unsupervised hierarchi-
cal clustering revealed that related cell types grouped together 
highlighting conserved transcriptomic traits, e.g., between 

Fig. 1  Transcriptomic integration and cell type-specific characteriza-
tion of cross-regional snRNA-seq profiles from MS and control CNS 
tissues. a UMAP plot depicting 45,183 nuclei (Control, n = 19,718; 
MS, n = 25,465) partitioned into 38 cell type-specific clusters. Nuclei 
were obtained from cerebrum (leukocortical tissue: MS, n = 4; Con-
trol, n = 4), cerebellum (MS, n = 3; Control, n = 3) and spinal cord 
(MS, n = 3; Control = 3). EN excitatory neuron, L layer, GRAN-EN 
granular cell, IN inhibitory neuron, PC Purkinje cell, PER pericyte, 
STR stromal cell, EPD ependymal cell, VSM Vascular smooth mus-
cle cell, END endothelial cells, MG microglia, BG Bergmann glia, 

AS astrocytes, GM gray matter, WM white matter, OPC oligodendro-
cyte precursor cell, OL oligodendrocyte. b Nuclei distribution based 
on regional origin. CR, cerebrum; CB, cerebellum; SC, spinal cord. 
c Expression and specificity of marker genes used for cell type iden-
tification. Phylogenetic tree of cell types is constructed based on the 
average gene expression of normalized and scaled data. d Median 
number of genes detected in each cluster. Of note, the color code of 
the displayed bars refers to the color code of cell type clusters in (a). 
e Total number of cells per cluster. f Proportion of control and MS 
cells per cluster
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inhibitory vs. excitatory neurons and stromal/endothelial vs. 
glial cell types (Fig. 1c). Of note, through inter-cluster analysis 
of the integrated data set (Fig. 1d–f), we confirmed our previous 
finding that upper cortical layer excitatory neurons showed the 
strongest drop-out in MS relative to deep layer excitatory and 
other inhibitory neurons (Fig. 1f) [48]. In addition, we found dis-
tinct cell type-specific patterns of transcription factor (TF) activ-
ity between major cell types integrating transcriptomic profiles 
from MS and control samples across all regions (Suppl. Fig. 4, 
Online Resources). For example, NR2F2, a nuclear receptor 
activated by retinoic acid and playing a role in remyelination 
pathways [21], and SOX10 were specific for the oligodendrocyte 
lineage (Suppl. Fig. 4d, Online Resources).

Overlapping transcriptomic features 
across neuroglial cell types in MS pathology

To investigate global effects of MS across CNS regions, 
we performed differential gene expression analysis for dis-
tinct cell types and ranked the resulting genes based on the 
frequency of their occurrence across different cell types. 
Despite a strong level of diversity within neuron subtypes 

(Fig. 1a, b), we observed a highly overlapping transcrip-
tomic response pattern in MS when investigating overlaps 
in dysregulated gene patterns (Fig. 2a, Suppl. Table 3). 
ARL17B was the top downregulated transcript among neu-
roglial subtypes followed by KANSL1, which is associated 
with Koolen–De Vries syndrome and severe oxidative stress 
[26, 31]. Interestingly, both of these genes localize to the 
17q.21.31 locus, a genomic region of high linkage disequi-
librium known to contribute to other neurological diseases 
such as Parkinson’s disease and supranuclear palsy [5, 42]. 
Among other downregulated neuroglial transcripts were 
several long non-coding RNAs such as LINC00685, which 
is expressed in various cell types [10] with yet unknown 
function. We validated the spatial expression of LINC00685 
and found a strong reduction in MS deep cortical layers rela-
tive to controls (Fig. 2b, c). Transcripts strongly upregulated 
across all cell types, such as GAPDH, CLU and PKM, were 
associated with cell stress and metabolic exhaustion in MS, 
which is in line with previous findings [48] (Fig. 2a).

By integrating snRNA-seq data sets from three major 
CNS lesion sites, we observed a strong level of transcrip-
tomic diversity among neuronal cell types in the normal 

Fig. 2  Neuroglial subtypes show shared dysregulated transcriptomic 
patterns in MS. a Violin plots showing top differentially expressed 
genes in MS across neuroglial subtypes. Genes are ordered based 
on the frequency in how many cell types they are dysregulated. Cell 
type populations, in which a gene is dysregulated, are marked with 
an asterisk (p < 0.05). b RNA in  situ validation of LINC00685 and 
SYT1. White arrowheads mark LINC00685-expressing cells. Scale 

bar indicates 20 µm. c RNA in situ validation of LINC00685 between 
controls and MS in deep gray matter layers. Boxplots show total 
number of LINC00685 signals per  mm2. Scale bar indicates 20 µm. 
Data were tested for normality distribution with Shapiro–Wilk test. 
Then, Wilcoxon–Mann–Whitney test was used for statistical analysis, 
**p < 0.01
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CNS. Differential gene expression analysis, however, 
revealed a substantial overlap in dysregulated genes, 
resulting in shared transcriptomic response patterns in MS 
across various neuroglial cell types.

Cross‑regional diversity of control and MS 
astrocytes

We next focused on glial cell types and their subtype-spe-
cific response patterns in MS. First, to exclude disease-
specific effects on AP regional heterogeneity, we only 
analyzed nuclei from control tissue samples and observed 



995Acta Neuropathologica (2022) 144:987–1003 

1 3

the strongest level of cross-regional heterogeneity among 
astrocytes (Fig. 3a) [3], consistent with the idea that astro-
cyte-driven CNS patterning may confer long term region-
restricted diversity [44].

Within astrocytes, we identified PITPNC1, encoding a 
cytoplasmic phosphatidylinositol transfer protein, showing 
robust expression in astrocytes across all three CNS regions 
(Fig. 3b and d, Suppl. Fig. 5a). Next, we searched for region-
specific astrocyte marker genes based on differential gene 
expression (DGE) analysis and identified ADGRV1 in leu-
kocortical, GRIA1 in cerebellar and CPAMD8 in spinal cord 
astrocytes as the top region-specific astrocyte marker genes 
(Fig. 3b and c, Suppl. Table 4). By smFISH, we found that 
GRIA1 expression was specific to Bergmann glia in the cer-
ebellum, and CPAMD8, encoding a protease inhibitor, was 
specific to white matter spinal cord astrocytes. ADGRV1, 
however, showed high expression levels both in gray and 
white matter leukocortical astrocytes (Fig.  3d, Suppl. 
Fig. 5a).

To gain more functional insights into astrocyte subtype 
diversity, we performed gene ontology (GO) term enrich-
ment analysis and identified astrocyte region-specific biolog-
ical processes that matched well their AP region-dependent 
tasks in support of neuron subtype function, highlighting 
a strong degree of functional diversity among astrocyte 
subtypes (Fig. 3e, Suppl. Table 5) [4, 19]. In general, path-
ways related to synapse organization were among the top 
astrocyte GO terms in all three regions. Cerebral astrocytes 
were enriched for pathways related to the regulation of trans-
synaptic signaling and neurotransmission. Conversely, cer-
ebellar astrocytes, which mainly comprise Bergmann glia, 

were enriched for neuron projection development and ion, 
specifically cation, transport. In spinal cord astrocytes, we 
identified several genes contributing to metabolic processes 
such as anaerobic glycolysis and catabolic processes indicat-
ing specific processes that support spinal neurons (Fig. 3e).

To further elucidate functional features of astrocyte sub-
types, we focused on cell–cell interaction between Bergmann 
glia and Purkinje cell, as a close spatial relationship between 
both cell types is known. Ligand–receptor analysis identi-
fied 97 ligand–receptor interactions (Suppl. Fig. 5b, Suppl. 
Table 6, Online Resources) [13]. Specifically, we found 
genes, which are known to play critical roles in Purkinje cell 
development and axonal growth. For example, we identified 
PTCH1, encoding an important receptor involved in sonic 
hedgehog signaling in Bergmann glia, and genes encoding 
important cell adhesion proteins like L1CAM and CHL1, 
which play roles in axonogenesis in the cerebellum, based on 
ligand–receptor analysis (Suppl. Fig. 5b, Online Resources) 
[1, 23].

Since we observed high levels of cross-regional diver-
sity between control astrocyte subtypes, we next calculated 
inter-regional differences in MS astrocytes. Notably, we 
observed a sharp decline in the number of region-specific 
astrocyte genes in MS (Fig. 3f, g, Suppl. Table 7, 8, Online 
Resources), with a small set of homeostatic core genes 
shared between control and MS samples and remaining in 
each region (Fig. 3g). Also, when performing ligand–recep-
tor analysis for Bergmann glia and Purkinje cells from MS 
samples only we observed a decrease in ligand–receptor 
pairs relative to controls (97 vs. 73). Specifically, L1CAM 
(encoding the cell adhesion protein L1) signaling from 
Purkinje cells became absent in MS with potentially impor-
tant implications for axon repair and neuronal self-defense 
in the context of neuroinflammation (Suppl. Fig. 5b, Online 
Resources) [38]. Further, consistent with the decreased num-
ber of region-specific astrocyte genes in MS, we observed 
a decrease in region-specific TF activity in MS astrocytes 
(Suppl. Fig. 6a, b, Online Resources).

In summary, we noted that control astrocytes represent 
a highly heterogeneous glial cell type across the CNS with 
regional heterogeneity becoming more obscure when focus-
ing on MS astrocytes.

Subregional white and gray matter diversity 
of homeostatic and reactive astrocytes

Next, we focused on subregional astrocyte responses in 
MS between gray and white matter areas. First, we pooled 
snRNA-seq profiles from control and MS astrocytes, which 
enabled us to analyze homeostatic cells that are derived from 
control and NAWM MS tissue areas as well as reactive sub-
types that mainly derived from MS lesion areas [46]. This 
approach allowed the identification of 5 distinct astrocyte 

Fig. 3  Regional diversity of homeostatic and reactive astrocytes. a 
Pearson correlation of averaged expression profiles of control glial 
cells from cerebrum (CR), cerebellum (CB) and spinal cord (SC). b, c 
Expression and specificity of region-specific marker genes in control 
astrocytes visualized by UMAP (b) and violin plots (c). Scale bars 
in b represent average expression. d RNA in  situ validation of pan-
regional astrocyte marker gene PITPNC1 as well as region-specific 
astrocyte marker genes GRIA1, ADGRV1, CPAMD8 in cerebrum, 
cerebellum and spinal cord, respectively. Scale bars indicate 20  µm 
(full size image) and 10  µm (zoom in). Mol. L. molecular layer, 
Gran. L. granular layer. e Normalized and scaled expression of DEGs 
(adjusted p < 0.05) in control astrocytes across regions and corre-
sponding GO terms. DEGs differentially expressed genes, GO gene 
ontology. f Normalized and scaled expression of DEGs (adjusted 
p < 0.05) in MS astrocytes across regions and corresponding GO 
terms. g Venn diagram showing overlap of region-specific astrocyte 
genes between control and MS tissues. Bottom numbers indicate sum 
of genes associated with either control, MS or both. h Astrocyte (AS) 
subtypes present in cerebrum (CR), cerebellum (CB) and spinal cord 
(SC) tissues of control and MS tissues. i AS subtypes colored by 
their origin from control or MS samples. j AS subtype fractions by 
CNS regions. k Volcano plot showing differentially expressed genes 
between control and MS samples. DEGs are shown for CD44+ AS 
subtypes originating from spinal cord. Significantly differentially 
expressed genes are colored in red (adjusted p < 0.05)

◂
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populations (Fig. 3h–j, Suppl. Fig. 6c, Suppl. Table 9, Online 
Resources). One subtype (AS-GPC5) was characterized by 
high expression of known cortical gray matter astrocytes 
marker genes, such as GPC5 and SLC1A2 [48]. A second 
cluster (AS-GRIA1) was enriched for PAX3, ADAMTSL1 
and GRIA1, the latter one a known marker associated with 
cerebellar Bergmann glia function [45]. A third cluster 
(AS-CD44) showed high expression levels of CPAMD8 
and CD44, the latter one a known marker for subcortical 
white matter astrocytes [7, 48]. Further, we identified two 
additional populations with high expression of SLC17A7/
DPP10 (AS-DPP10) and CCDC219/PLK5 (AS-CCDC219) 
(Fig. 3h and j). The AS-CD44 population mainly comprised 
astrocyte profiles from cerebral (subcortical) and spinal 
cord (white matter tracts) origin; conversely, AS-GPC5/
AS-DPP10 profiles were mainly derived from cerebral (cor-
tex) and AS-GRIA1/AS-CCDC219 from cerebellar tissues 
(Fig. 3j). In addition, using differential TF activity analysis, 
we found evidence for an enhanced TF activity of SOX11 
in AS-GPC5 and ATF2 in AS-CD44 astrocytes suggesting 
differential TF activity between gray and white matter astro-
cytes (Suppl. Fig. 6d, Online Resources).

To gain more insight into subregional gene alterations in 
MS astrocytes, we performed differential gene expression 
analysis and focused on white matter AS-CD44 astrocytes. 
We identified 16 differentially expressed genes (DEGs) in 
subcortical (cerebral) versus 21 DEGs in spinal cord MS-
specific white matter astrocytes (Fig. 3k, Suppl. Fig. 6e, 
Suppl. Table 10, Online Resources). Specifically, we found 
that ARL17B (see above), HES1 (encoding a basic helix-
loop-helix transcription factor) and SRPX2 (encoding a 
protein relevant for glutamatergic synapse formation) were 
selectively downregulated in spinal AS-CD44 cells in MS; 
conversely, known stress marker genes such as HSP90AA1, 
HSPB1 and FTL appeared to be upregulated in spinal MS 
astrocytes (Fig. 3k).

Combining control with MS astrocytes allowed identi-
fication of subregional transcriptomic signatures pointing 
towards distinct gray and white matter subtypes across the 
CNS. In particular, we found that white matter astrocyte 
signatures overlap between cerebral and spinal regions with 
specific patterns of reactivity in MS.

Regional and subregional diversity of homeostatic 
and reactive oligodendrocytes

Next, we focused on oligodendrocytes—the natural cellular 
target in MS with a high level of stress response including 
iron dysregulation and antigen presentation in MS lesions 
[22, 24, 48]. In comparison to astrocytes, we found only 
small differences between oligodendrocytes obtained from 
control samples across all three CNS regions (Fig. 4a). 
Specifically, we identified LRRC7 as a cerebrum-specific 

oligodendrocyte marker gene, OLIG1 to be enriched in cer-
ebellar oligodendrocytes and GNA14, encoding for a mem-
ber of the Gq alpha subunit family, as a specific marker for 
spinal cord oligodendrocytes (Fig. 4b, Suppl. Table 11, 
Online Resources). Using smFISH, we confirmed the spe-
cific expression of GNA14 in spinal white matter oligoden-
drocytes (Fig. 4c). Although we found a certain degree of 
GNA14 expression in other regions, GNA14 expression was 
highest in MAG-expressing oligodendrocytes of spinal white 
matter tracts. Further, we found only little cross-regional 
AP diversity between control microglia and oligodendrocyte 
progenitor cells (Suppl. Fig. 7, Suppl. Table 12, 13, Online 
Resources).

To gain insight into subregional diversification of oli-
godendrocytes and their changes in MS, we then pooled 
nuclear profiles from control and MS samples and identified 
two homeostatic oligodendrocyte subtypes (mix of nuclei 
from control and MS samples) characterized by specific 
expression of LINC01608 and SLC5A11, as well as two 
reactive subtypes enriched for nuclei from MS samples and 
characterized by expression of HSPA1A and SGCZ (Fig. 4d, 
e, Suppl. Fig. 8d, Suppl. Table 14, Online Resources). The 
SLC5A11-enriched homeostatic subtype was composed of a 
mix of nuclei from cerebral and spinal cord samples (Fig. 4f, 
g), suggesting white matter origin like AS-CD44 astrocytes 
(Fig. 3j). TF activity analysis identified TFs such as SOX10 
and NR2F2 [32] specific for SLC5A11-expressing and PAX6 
[12] for LINC01608-expressing oligodendrocytes (Suppl. 
Fig. 8a, Online Resources). As the two reactive subtypes 
were characterized by high expression of genes associated 
with cell stress and metabolic exhaustion, we focused on the 
two homeostatic clusters that comprised oligodendrocytes 
from both control and MS tissues to specifically examine 
changes in MS cells “at risk”, which could still benefit from 
MS therapies. Of note, the OL-SLC5A11 subtype was char-
acterized by a specific expression of ACSBG1 and LINGO1, 
the latter one encoding a protein known to inhibit OPC dif-
ferentiation and therefore might inhibit remyelination in MS 
lesions [39] (Fig. 4h, Suppl. Fig. 8b, c, Online Resources). 
To investigate the spatial distribution of OL-SLC5A11 cells, 
we applied smFISH, and found that SLC5A11 expression 
was strongly associated with white matter tract oligodendro-
cytes across all three CNS regions (Fig. 4i, Suppl. Fig. 8e, 
Online Resources). Conversely, we confirmed that OL-
LINC01608 cells were found in both gray and white mat-
ter compartments across the regions (Suppl. Fig. 8f, Online 
Resources). To validate specificity of our approach, we com-
pared subregional oligodendrocyte marker gene expression 
with data from a previously published data set obtained 
from human subcortical tissues (controls and MS) [22]. In 
comparison with the Jäkel et al. study and when focusing 
on SLC5A11 and LINC01608 expression, we could con-
firm subtype diversification with gene expression enriched 
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in distinct oligodendrocyte clusters as suggested (Suppl. 
Fig. 8 g, Online Resources). Conversely, we showed that 
expression of OPALIN, a known oligodendrocyte marker 
gene, was associated with OL-LINC01608 and OL-SGCZ 
clusters but not white matter oligodendrocytes (Fig. 4f, 
Suppl. Fig. 8 h, Online Resources) [22]. Further, in our data 
set we found only weak expression of CD74, a marker gene 
linked to antigen presentation in reactive oligodendrocytes, 

in the MS-specific OL-HSPA1A population (Suppl. Fig. 8 h, 
Online Resources) [22, 48].

In summary, these results demonstrate cross-regional 
and, more specifically, subregional diversification of 
homeostatic oligodendrocytes in control and MS tissues 
highlighting gray and white matter areas distinguished by 
specific marker genes.

Fig. 4  Regional diversity of homeostatic and reactive oligodendro-
cytes. a, b Expression and specificity of region-specific marker genes 
in control oligodendrocytes visualized by UMAP (a) and violin plots 
(b). Scale bar in (a) represents average expression. c RNA in situ val-
idation of spinal white matter-specific oligodendrocyte marker gene 
GNA14 across all three CNS regions. Yellow arrowheads mark MAG-
expressing (MAG+) OLs, whereas red arrowheads mark GNA14/
MAG-expressing (GNA14+/MAG+) OLs. Scale bars indicate 10  µm 
(full size image) and 10 µm (zoom in). Boxplots show GNA14+ OLs 
(GNA14+/MAG+) in percentage of all OLs (MAG-expressing cells, 
MAG+). Data were tested for normality distribution with Shapiro–
Wilk test. Then, Kruskal–Wallis Test was used for statistical analysis. 
For comparison of each group, pairwise Wilcoxon test with Bonfer-
roni correction was performed, *p < 0.05, **p < 0.01, ***p < 0.001. 
d Oligodendrocyte (OL) subtypes present in cerebrum (CR), cerebel-
lum (CB) and spinal cord (SC) tissues of control and MS tissues. e 
OL subtypes colored by their origin from control or MS samples. Of 

note, OL clustering showed a separation into homeostatic and reac-
tive subtypes. f OL subtype fractions by CNS regions. g UMAP plot 
showing specific expression of the OL white matter subtype marker 
gene SLC5A11. h Heatmap showing expression of subtype-specific 
gene clusters. For each subtype, three representative genes are listed 
in the heatmap. Grouping color bar matches colors for subtypes in 
(d). i RNA in situ validation of white matter subregional OL marker 
gene SLC5A11. Yellow arrowheads mark MAG-expressing (MAG+) 
OLs, whereas red arrowheads mark SLC5A11/MAG-expressing 
(SLC5A11+/MAG+) OLs. Staining was carried out for all three 
CNS regions; cerebellar gray matter image was taken in molecu-
lar layer; gray matter quantification was carried out in both granu-
lar and molecular layers. Scale bar indicates 10 µm. Boxplots show 
SLC5A11+ OLs (SLC5A11+/MAG+) in percentage of all OLs (MAG-
expressing cells, MAG+). Data were tested for normality distribution 
with Shapiro–Wilk test. Then, Welch's t test was used for statistical 
analysis, *p < 0.05, **p < 0.01, ***p < 0.001
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MS‑associated white matter oligodendrocytes show 
a pro‑myelinating signature

To gain additional insight into SLC5A11-expressing 
white matter subcortical and spinal  oligodendrocytes 
in response to chronic inflammatory demyelination, we 
performed DGE analysis and identified 52 dysregulated 
genes for each population (Fig. 5a, b). To test if these 
genes were specifically enriched in MS, we next focused 
on the DEGs from subcortical tissues (WM-CR) and com-
pared these genes with the DEGs derived from subcorti-
cal oligodendrocyte populations enriched for SLC5A11 

expression based on a previous study on MS snRNA-seq 
by Jäkel et al. (Suppl. Fig. 8g, Online Resources) [22]. 
Of note, we observed a strong overlap in OL-SLC5A11 
DEGs between both studies, whereas the overlap was not 
significant when comparing to another cerebral snRNA-
seq dataset obtained from control and Alzheimer’s disease 
tissues (Fig. 5c) [36]. Furthermore, we found that shared 
DEGs between both MS snRNA-seq studies (Jäkel et al. 
and ours) were dysregulated in the same direction with 
MAG/KCNMB4 upregulated and SH3TC2/HSPA1A down-
regulated in MS OL-SLC5A11 cells (Fig. 5d). The latter 
findings point towards a potential repair function of these 
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cells in MS as myelin (MAG) and potassium channel genes 
(KCNMB4) appeared to be upregulated.

To further explore the overlap of stress responses 
induced by MS in the OL-SLC5A11 white matter sub-
type, we performed GO term enrichment with consecu-
tive semantic similarity analysis and found a substan-
tial level of overlap resulting in 6 convergent functional 
modules between both white matter subtypes. While the 
first three modules were enriched for pathways associated 
with cell stress (“protein assembly and cytoskeleton”, 
“unfolded protein response and catabolism”, “immune 
activation and cell growth”), others were related to mye-
lination, neuron differentiation and plasticity (Fig.  5e, 
Suppl. Table 15, Online Resources). As myelination and 
remyelination are key pathways in MS pathobiology, we 
then focused on genes which contributed to the “myeli-
nation and axon ensheathment” module. Based on DGE 
and GO term enrichment analysis, we then identified 
CHRM5, encoding the muscarinic acetylcholine recep-
tor  M5, to be substantially downregulated in spinal cord 
white matter MS oligodendrocytes (Fig. 5a, e–g), whereas 
myelin-associated transcripts like MAG and MBP appeared 

to be upregulated in MS. To study subregion-specificity 
of CHRM5, we used smFISH of control and MS tissues 
comparing white matter areas of all three CNS regions. 
Notably, as compared to control tissue, we found a strong 
downregulation of CHRM5 in MAG-expressing oligoden-
drocytes in both normal-appearing and lesion rim areas 
in a gradual pattern across all three regional white matter 
tracts (Fig. 5h). Other OL-SLC5A11 white matter genes 
included in the “myelination and axon ensheathment” 
module were SH3TC2 and ACSBG1, both genes known 
to encode proteins involved in myelination (Fig. 5f). For 
example, SH3TC2 has been described to be expressed in 
Schwann cells and plays a critical role in the formation 
of the node of Ranvier [2]. Mutations in this gene cause 
Charcot–Marie–Tooth disease type 4C, a hereditary motor 
sensory neuropathy [35]. ACSBG1 encodes for a protein 
with acyl-CoA synthetase activity and is involved in long-
chain fatty acid metabolism and, therefore, linked to the 
formation of myelin [49].

Collectively, these findings point towards a cross-
regional white matter tract signature attributed to oligo-
dendrocytes, which become activated under inflamma-
tory-demyelinating conditions and might be linked to 
myelination and repair pathways.

Overlapping oligodendrocyte transcriptomic 
response during MS lesion progression

As for the astrocytes, we found a disease-driven conver-
gence of TF activity in oligodendrocytes when compar-
ing subcortical with spinal white matter tracts (Suppl. 
Fig. 9a–c, Online Resources). Further, when considering 
the inflammatory stage of subcortical MS lesions [48] 
(Suppl. Fig. 1, Suppl. Table 1, Online Resources), we 
were able to subcluster SLC5A11-expressing subcortical 
oligodendrocytes. By performing trajectory analysis, we 
observed two distinct endpoints representing early (acute/
chronic-active) and late (chronic-inactive) lesion stages 
(Suppl. Fig. 9d, Online Resources). By computing DEGs 
between the endpoints of the two trajectories, we identified 
distinct gene patterns for each lesion stage. Testing for an 
overlap of these patterns between subcortical and spinal 
white matter oligodendrocytes obtained from MS samples, 
we observed overlapping expression in genes associated 
with early-stage inflammatory lesions in line with the 
enhanced inflammatory activity in the spinal cord lesions 
used for snRNA-seq (Suppl. Fig. 9d, Suppl. Tables 1 and 
16, Online Resources).

In summary, these results suggest a convergence of cross-
regional transcriptomic reactivity in MS oligodendrocytes 
pointing towards shared response patterns during lesion 
progression.

Fig. 5  Cross-regional white matter oligodendrocytes have pro-myeli-
nating signatures. a, b Volcano plots showing differentially expressed 
genes between control and MS samples. a DEGs are shown for 
SLC5A11+ OL subtypes originating from cerebrum (leukocortical). 
b DEGs are shown for SLC5A11+ OL subtypes originating from spi-
nal cord. Significantly differentially expressed genes are colored in 
red (adjusted p < 0.05). c Venn diagrams showing overlap between 
DEGs of leukocortical (CR) SLC5A11+ OL subtype with DEGs from 
OL subtypes from Jäkel et  al. [22] (upper panel) and from Mathys 
et al. [36] (lower panel). Of note, OL subtypes showing high expres-
sion levels of SLC5A11 were used for comparison with Jäkel et  al. 
For comparison with Mathys et al., only one OL subtype was avail-
able, which was used for comparison. d Pearson correlation analysis 
of log2 fold changes of overlapping DEGs between CR SLC5A11+ 
OL and Jäkel et  al. e Semantic similarity analysis of enriched path-
ways. Gene clusters corresponding to GO terms identified for genes 
in a and b were used as input for semantic similarity correlation 
analysis. The heatmap shows calculated correlations between each 
identified GO term gene cluster. Hierarchical clustering of GO terms 
revealed functional modules indicated by the upper color bar between 
both subcortical and spinal OLs as indicated by lower color bar (cer-
ebrum = green, spinal cord = blue). Note six clusters showed overlap 
between the two CNS regions. GO terms identified with adjusted 
p < 0.1 were included. f Violin plots showing dysregulated genes in 
MS which contributed to the pink module in (c). g UMAP plot show-
ing the expression of CHRM5 in white matter OL-SLC5A11 sub-
type. h RNA in situ validation of MS lesion-associated downregula-
tion of CHRM5. Yellow arrowheads mark MAG-expressing (MAG+) 
OLs, whereas red arrowheads mark CHRM5/MAG-expressing 
(CHRM5+/MAG+) OLs. Staining was carried out for all three CNS 
regions. Scale bar indicates 10  µm. Boxplots show CHRM5+ OLs 
(CHRM5+/MAG+) in percentage of all OLs (MAG-expressing cells, 
MAG+). Data were tested for normality distribution with Shapiro–
Wilk test. Then, Kruskal–Wallis Test was used for statistical analysis. 
For comparison of each group, pairwise Wilcoxon test with Bonfer-
roni correction was performed, *p < 0.05, **p < 0.01, ***p < 0.001

◂
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Discussion

Despite a good control of the peripheral immune response 
in relapsing–remitting MS, patients still experience ongo-
ing atrophy and worsening of symptoms related to different 
functional systems and anatomical areas [9, 53]. Hence, a 
better understanding of regionally restricted neuronal and 
glial subtype diversity and how these subtypes differ in 
their transcriptomic response to inflammatory demyelina-
tion, would help decode compartmentalized pathology in 
MS [46]. Further, identifying those spatial subtypes would 
catalyze the development of region- and cell type-specific 
biomarkers and help design targeted treatments to tackle 
specific cell types involved in progressive MS.

In this study, we generated an integrated cell type-
specific transcriptomic atlas of MS pathology spanning 
three major CNS sites that are regularly affected by MS, 
including leukocortical, cerebellar and spinal cord areas. 
Investigating the similarity among cell types between 
these regions, we observed a strong level of molecular 
diversity between control cell types highlighting astro-
cyte and oligodendrocyte subtypes. We identified spe-
cific homeostatic signatures for regional astrocytes and 
demonstrated that their functional properties are paired 
with the needs of neighboring neurons in the respective 
regions. Specifically, we could identify functionally rel-
evant core genes in Bergmann glia that encode for proteins 
relevant in ligand–receptor interaction with Purkinje cells. 

For example, we observed that genes encoding proteins 
with important functions in sonic hedgehog signaling and 
axonal development were linked to cerebellar astrocytes 
[8, 14].

Under disease conditions, however, neuron and mac-
roglial subtypes showed a strong overlap in their tran-
scriptomic response towards chronic inflammatory demy-
elination across distinct anatomical regions and specific 
subregions, including gray and white matter. Furthermore, 
we found that a core of downregulated transcripts across 
several neuroglial cell types was associated with a previ-
ously described highly vulnerable genomic area on chro-
mosome 17 linked to neurological dysfunction.

Within the oligodendrocyte lineage, we identified two 
homeostatic and two reactive subtypes. By smFISH anal-
ysis, we could show that one homeostatic subtype was 
indeed specific to white matter tracts across all three CNS 
regions and enriched for the marker genes SLC5A11 and 
LINGO1. For this oligodendrocyte subtype, we observed 
downregulation of CHRM5 and, additionally, found an 
upregulation of myelin-associated transcripts. These find-
ings might indicate an endogenous oligodendrocyte repair 
mechanism to promote remyelination, which becomes 
activated in MS white matter tracts including both lesion 
rim and normal-appearing areas. Of note, anti-LINGO1 
antibodies and muscarinic receptor antagonists have been 
used in pre-clinical and clinical trials in MS patients show-
ing partial efficacy [39, 41]. Beside other antimuscarinic 
therapies like benztropine [11], the first-generation H1 

Fig. 6  Graphical abstract highlighting key findings of the study. Illus-
tration shows the composition of the dataset (left panel), the meth-
odological and bioinformatic workflow (middle panel) and the results 
highlighting astrocyte diversity, subregional white matter oligoden-

drocyte diversification and overlapping transcriptomic reactivity of 
white matter oligodendrocytes including upregulation of the myelin-
encoding gene MAG and downregulation of the muscarinic receptor-
encoding gene CHRM5 (right panel). Ctrl control, WM white matter
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antagonist clemastine was proposed to have beneficial 
potentially pro-myelinating effects in MS patients [11, 37]. 
A follow-up clinical trial showed indeed improved visual 
function in clemastine-treated patients with optic neuritis 
[17]. These studies mainly focused on muscarine recep-
tor M1 [37], and so far, did not discuss potential effects 
of receptor M5. However, comparing expression levels of 
muscarinic receptor subtypes throughout the human CNS, 
we found CHRM5 to be the most abundant receptor sub-
type in the CNS. Although this suggests an important role 
of CHRM5 in human CNS MS pathology, ultimately, more 
functional loss-of-function studies are needed to link the 
downregulation of CHRM5 to the upregulation of myelin 
transcripts to provide a mechanistic link.

In summary, our analysis uncovered overlapping molecu-
lar patterns of cell type-specific reactivity in compartmental-
ized MS lesion areas with a focus on homeostatic and reac-
tive astrocyte and oligodendrocyte subtypes. Our unbiased in 
silico approach was able to identify a white matter-specific 
oligodendrocyte subtype that was associated with previously 
discovered pro-myelinating therapeutic target gene expres-
sion. Further, we could demonstrate that independent of 
a pharmacological treatment approach, oligodendrocytes 
transform into a reactive state, in which pro-myelinating 
pathways are turned on in the context of chronic inflamma-
tory demyelination (Fig. 6). Hence, our findings demonstrate 
that integrated computational workflows are highly suitable 
to identify common cell type-specific signatures across 
different CNS regions and help identify novel therapeutic 
targets with a broad, however, subtype-specific expression 
pattern.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00401- 022- 02497-2.
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