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Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature 
of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous 
structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble 
fractions extracted from patients’ brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemi-
cal features are common within the same disease group. These differences among the pathogenic proteins extracted from 
patients’ brains have important implications for definitive diagnosis of the disease, and also suggest the existence of patho-
genic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental 
evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the 
onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each 
disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic 
proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of 
pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms 
of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based 
on recent experimental insights.
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Introduction

The pathological hallmark of neurodegenerative diseases 
is the accumulation of misfolded proteins in neurons and/
or glial cells. The accumulation of amyloid-β (Aβ) and 
tau in the brains of patients with Alzheimer's disease 
(AD) was reported in the 1980s, and the group of diseases 
characterized by abnormal tau inclusions is referred to 
as tauopathies [46, 106, 315]. In 1997 and 1998, it was 
reported that α-synuclein (α-syn) is a major component 
of Lewy bodies (LBs) observed in the brains of patients 
with Parkinson's disease (PD), dementia with Lewy bodies 
(DLB) and glial cytoplasmic inclusions (GCIs) observed 
in multiple system atrophy (MSA) [26, 276, 302]. The 
group of diseases characterized by abnormal α-syn inclu-
sions is termed synucleinopathies. In 2006, TAR DNA-
binding protein of 43 kDa (TDP-43) was identified as a 
major component of the ubiquitin-positive inclusions that 
accumulate in the brains of patients with amyotrophic lat-
eral sclerosis (ALS) and frontotemporal lobar degenera-
tion (FTLD), and the diseases in which abnormal TDP-43 
accumulates are collectively called TDP-43 proteinopa-
thies [14, 216]. These abnormal proteins share common 
features such as insolubility in detergents, resistance to 
proteases and formation of amyloid-like fibrous structures, 
and exhibit prion-like properties, inducing the conver-
sion of normal proteins into an abnormal form [26, 66, 
128, 168, 217, 262, 274, 294, 304, 311, 312]. In addition, 
various post-translational modifications (PTMs), such as 
phosphorylation and ubiquitination, are detected in deter-
gent-insoluble fractions extracted from patients’ brains 
[28, 156, 157]. Furthermore, histopathological studies of 
serial sections of post-mortem brains have shown that the 
intracerebral accumulation of these abnormal proteins cor-
relates strongly with clinical symptoms and expands in a 
stereotypic manner [39, 40, 45, 145, 252, 253, 308]. Both 
the Braak and Murayama groups have proposed staging 
of the intracerebral expansion of these pathologies, which 
is widely used to evaluate disease progression [39, 40, 
252, 253]. In AD, tau pathology first appears in the locus 
coeruleus and then expands from the hippocampus to the 
cerebral cortex through the cerebral limbic system [39, 
42]. In argyrophilic grain dementia (AGD), tau pathology 
develops along the anterior and posterior medial tempo-
ral lobe from the ambient gyrus and further extends to 
the septum, insular cortex and anterior cingulate gyrus 
[253]. In PD, α-syn pathology spreads from the dorsal 
motor nucleus of the vagus nerve to the cerebral cortex 
along the pathway ascending the brainstem [40]. In DLB, 
the development of α-syn pathology has been reported to 
start at the olfactory bulb [252]. In ALS, TDP-43 pathol-
ogy has been reported to spread from the motor cortex or 

brainstem to the temporal lobe [44, 45]. Furthermore, it 
has been reported that α-syn pathology was observed in 
the graft 10–24 years after transplantation of fetal dopa-
mine neurons into PD patients [167, 183, 185]. These 
reports suggest the possibility that abnormal α-syn was 
released from the host cells and incorporated into the 
grafted cells. These pathological findings indicate that 
abnormal proteins accumulated in the brain self-amplify 
using themselves as a template, like prions, and spread 
from cell to cell along the neuronal circuit. This hypoth-
esis is known as prion-like propagation, and self-templated 
amplification and cell-to-cell transmission of pathogenic 
tau, α-syn and TDP-43 have been demonstrated in in vitro 
and in vivo experimental models [66, 162, 199, 217, 236, 
242, 314]. These experimental transmissions strongly sup-
port the idea that prion-like propagation is involved in 
the onset and progression of various neurodegenerative 
diseases. At present, the treatment of neurodegenerative 
diseases is limited to symptomatic therapy, but the devel-
opment of novel disease-modifying therapies and agents 
targeting prion-like propagation is anticipated.

Implications of ultrastructural 
and biochemical features for the diversity 
of prion strains

The prion hypothesis, which gave rise to the idea of prion-
like propagation, was proposed as a mechanism to explain 
the pathogenesis of prion diseases by Prusiner [238]. Prion 
is a term that describes proteinaceous infectious particles 
that do not contain nucleic acids. Prion protein (PrP), which 
causes prion diseases such as Creutzfeldt–Jakob disease and 
bovine spongiform encephalopathy, is rich in α-helices in 
the normal state (PrPC), whereas when converted to the 
abnormal form (PrPSc), it forms amyloids rich in β-sheet 
structures[171, 196, 222]. Then, PrPSc acts as a template and 
self-amplifies. Amyloid structures known as prion rods are 
observed in the detergent-insoluble fraction extracted from 
the brains of patients with prion diseases [32]. This con-
formational change enables PrPSc to acquire various prop-
erties different from those of PrPC. Biochemical analysis 
of infected animals and post-mortem tissues from patients 
revealed that PrPSc has unique features that are different 
from those of viruses, such as resistance to conventional 
virus inactivation methods including boiling and UV irradia-
tion, insolubility in detergents, and resistance to proteases 
[206, 218, 239]. Immunoblot analysis of protease-treated 
PrPSc detects low-molecular-weight protease-resistant bands, 
and these banding patterns show diversity depending on the 
type of prion disease and the host species expressing PrPC 
[139, 166, 224, 231]. Differences in sensitivity to proteases 
have also been reported [102, 137, 226]. What do these 
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biochemical differences in PrPSc suggest? The diversity in 
the biochemical properties of PrPSc probably reflects dis-
tinct conformations of PrPSc. In PrP “strains" with different 
conformations, the ultrastructural and biochemical features 
characterize the strain, and the structural information of 
PrPSc is crucial for self-amplification. Therefore, the struc-
ture of PrPSc may have significant implications for clinical 
symptoms and pathogenesis. PrP strains have been shown to 
have different infectivity and incubation periods in experi-
mental animal models [248, 289]. It remains unclear what 
factors are involved in the formation of different strains 
from the same protein. However, some cofactors and PTMs 
may be involved [3, 52]. Recently, it has been demonstrated 
that strains are also present in amyloidogenic proteins that 
accumulate in the brains of patients with neurodegenera-
tive diseases other than prion diseases. Among the patho-
genic proteins associated with neurodegenerative diseases, 
tau, α-syn and TDP-43 are intracellularly accumulated and 
show common PTMs. In addition, there is evidence for a 
robust link between their accumulation and neurodegenera-
tion [22, 114, 170, 200, 208, 307]. Therefore, we focus here 
on classification of the ultrastructural and biochemical fea-
tures of neurodegenerative disease-specific strains of these 
three proteins.

Ultrastructural and biochemical 
classification of pathogenic tau derived 
from human tauopathies

Tau is a microtubule-associated protein localized mainly in 
axons and is one of the natively unfolded proteins [33, 47, 
305]. In the adult human brain, tau exists in six isoforms 
consisting of 352–441 amino acids, resulting from alterna-
tive splicing of exon 2, exons 2 and 3, or exon 10 in the 
MAPT gene encoding tau [107]. The isoforms with 0, 1 or 2 
inserts in the N-terminal repeat domains encoded by exons 
2 and 3 are referred to as 0N, 1N and 2N, respectively. Fur-
thermore, these tau isoforms are divided into three-repeat 
tau (3R tau) and four-repeat tau (4R tau), according to the 
number of repeats in the microtubule binding domain. The 
expression ratio of 3R tau to 4R tau is about 1:1 [109]. 
Under physiological conditions, tau functions to stabilize 
microtubules and promote their polymerization [67, 68, 
141]. Tauopathies are classified into three groups: one in 
which 3R tau and 4R tau accumulate, one in which only 3R 
tau accumulates, and one in which only 4R tau accumulates. 
In AD and chronic traumatic encephalopathy (CTE), all six 
isoforms of human tau accumulate as neurofibrillary tangles 
(NFTs) and neuropil threads (Fig. 1a) [27, 113, 244]. In the 
very early stage of AD, tau-positive deposits with no obvi-
ous fibrous structure can be seen with a light microscope, 
and these are known as pre-tangles [27, 295]. However, 

electron microscopic studies have revealed fibrous structures 
in pre-tangles, suggesting that tau filaments in pre-tangles 
are not densely packed and unbundled, unlike NFTs [27, 
288]. The occurrence of pre-tangles probably represents a 
preliminary stage of NFT formation. The Braak group has 
assessed pre-tangle stages with AT8-immunopositive tau, 
in addition to NFT stages with Gallyas silver staining [42]. 
Astrocytic tangles are also a neuropathological feature in 
CTE [203]. Primary age-related tauopathy (PART) is char-
acterized by the absence of Aβ accumulation and by NFTs 
indistinguishable from those of AD [72]. In Pick’s disease 
(PiD), 3R tau accumulates in neurons as Pick's bodies, which 
are frequently located in interneurons in layer 2 of the cer-
ebral cortex and the gyrus dentatus (Fig. 1b) [20, 232, 241]. 
In 4R tauopathies, 4R tau accumulates in neurons and glial 
cells in various pathological forms. Progressive supranuclear 
palsy (PSP) is characterized by tufted astrocytes, while cor-
ticobasal degeneration (CBD) is characterized by astrocytic 
plaques (Fig. 1c, d) [92, 134, 316]. In AGD, 4R tau accu-
mulates as pre-tangles in neurons and argyrophilic grains 
(Fig. 1e) [38, 290]. Globular glial tauopathy (GGT) is patho-
logically characterized by globular tau-positive inclusions in 
glial cells [4, 169]. Although the majority of tauopathies are 
sporadic, more than 50 mutations in the exons and introns of 
the MAPT gene have been reported to be linked to the onset 
of tauopathies, and these cases are referred to as frontotem-
poral dementia and parkinsonism linked to chromosome 17 
(FTDP-17T) [103, 143, 235, 275]. It has been reported that 
missense mutations on the MAPT gene alter the structure 
of normal tau and promote the formation of tau aggregates 
[110, 132]. In addition, mutations in the intron region of the 
MAPT gene affect alternative splicing and alter the expres-
sion ratio of 3R tau and 4R tau [120, 300]. These intronic 
mutations lead to the onset of tauopathies that present clini-
cal symptoms and pathology similar to those of tauopathies 
in which tau isoforms accumulate (Fig. 1f) [65, 74, 143, 
275]. Abnormal tau accumulated in the brain of patients 
with tauopathies is highly phosphorylated at numerous sites 
[121, 212]. These abnormal forms of tau lack the ability 
to bind to microtubules and show various PTMs, such as 
ubiquitination, acetylation, deamidation and oxidation, as 
well as phosphorylation [18, 157, 306]. The profiles of these 
PTMs in AD cases have been shown to change depending 
on the Braak stage [306]. First, in addition to the phospho-
rylation observed in the healthy brain, the number of sites 
and the frequency of phosphorylation in the proline-rich and 
C-terminal domains increase as the Braak stage progresses 
[306]. Furthermore, ubiquitination and acetylation in the 
microtubule-binding domain become more prominent at 
later Braak stages, suggesting that these PTMs may act as a 
degradation signal after NFTs are formed [306]. In addition 
to the PTMs common to tauopathies, disease-specific PTMs 
have been reported [157]. Non-phosphorylation of S356 and 
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deamidation of N279 are distinctive features of insoluble tau 
extracted from AD cases [77, 157]. PiD is the only tauopathy 
in which S262 is not phosphorylated [16]. Multiple disease-
specific ubiquitination (K343, K353, K369 and K375) is 
detected in CBD, whereas PSP is characterized by less ubiq-
uitination [157]. Unlike other tauopathies, tau deposits in 
AGD cases have been reported to lack acetylation of K279 
[119]. The abnormal tau is also known to be increased not 
only in the brain, but also in cerebrospinal fluid (CSF) and 
blood of patients with tauopathies [75, 151, 201, 299]. It 
has been reported that the influx of abnormal tau into CSF 
and blood may be a result of aging-related disruption of 
the blood–brain barrier, and that specific phosphorylation 
sites of tau in CSF and plasma may be useful as biomarkers 
to identify the early stage of tauopathies [149, 210, 278]. 
Neurofilament proteins and heparansulfate proteoglycans 
are known to show co-immunoreactivity in tau pathology, 
and neurofilament light chain is used as a biomarker of 
neurodegeneration [11, 220, 229, 271]. Heparansulfate pro-
teoglycans have been reported to be involved in cell-to-cell 
transmission of pathogenic tau [140, 161].

In the brain of patients with tauopathies, abnormal tau 
accumulates as amyloid-like filaments rich in β-sheets. In 
1963, the fibrous structure in the brain of AD patients was 
first reported on the basis of an electron microscopic study 
[163]. Furthermore, it has been revealed that this twisted 
fibrous structure is tau filaments composed of two proto-
filaments, known as paired helical filaments (PHFs), and 
that PHFs and straight filaments (SFs) are observed in the 
brains of AD patients [73, 112, 180]. Electron microscopy 
of the sarkosyl-insoluble fraction extracted from AD cases 

shows that PHFs are 10–20 nm in diameter and twisted 
with 80 nm periodicity, while SFs are 15 nm in diameter 
(Fig. 1g). In other tauopathies, abnormal tau also forms vari-
ous disease-specific fibrous structures [19, 108, 284]. Tau 
filaments extracted from PiD cases are 13–17 nm in diameter 
and straight or twisted (Fig. 1g). Tau filaments 15 nm in 
diameter from PSP cases are loosely twisted ribbons, while 
those from CBD cases are 10–30 nm in diameter and twisted 
with 140 nm periodicity (Fig. 1g). In FTDP-17T (intron 10 
mutations + 14 and + 16), tau filaments 7–25 nm in diameter 
are twisted with 240 nm periodicity, and these structures are 
different from those of filaments extracted from PSP and 
CBD cases (Fig. 1g). Tau filaments from GGT are ribbon-
like, while those from AGD are twisted with a relatively 
long periodicity (Fig. 1g). In recent years, cryogenic elec-
tron microscopy (cryo-EM) analysis of sarkosyl-insoluble 
fractions extracted from the brains of patients with tauopa-
thies has revealed the core structures of tau filaments that 
characterize each disease [266]. A C-shaped core structure 
consisting of V306-F378 in 3R tau and G304-E380 in 4R 
tau was identified in the brain of one individual with AD 
(Table 1) [98]. Although the protofilaments in PHFs and 
SFs share a common fold, the interfaces of the protofila-
ments are different (Table 1) [98]. The AD fold was also 
identified in insoluble fractions extracted from multiple AD 
cases, and the structures of tau filaments extracted from a 
familial AD case with a V717F mutation in the APP gene, 
which produces Aβ, were identical to those of sporadic AD 
cases [90]. Tau filament structures identical with those in 
sporadic AD cases have also been found in other tauopathies 
including PART, posterior cortical atrophy (PCA), famil-
ial British dementia (FBD) and familial Danish dementia 
(FDD) and in prion diseases including PrP cerebral amy-
loid angiopathy (PrP-CAA) and Gerstmann-Sträussler-
Scheinker disease (GSS) [127, 265, 266]. In CTE cases, a 
fibrous core structure consisting of K274-R379 in 3R tau 
and S305-R379 in 4R tau was identified, and the CTE fold 
was different from the AD fold (Table 1) [91]. A nonpro-
teinaceous molecule was also present within the CTE fold 
(Table 1) [91]. The J-shaped core structure of tau filaments 
extracted from PiD cases involves K254-F378 in 3R tau, 
and although most of the filaments were of single protofila-
ment type, twisted filaments composed of two protofilaments 
were also identified (Table 1) [89]. Tau filaments extracted 
from CBD cases consist of single protofilament and dou-
blet types, and a CBD fold consisting of K274-E380 in 4R 
tau, having a nonproteinaceous molecule within the fold, 
was identified (Table 1) [322]. It has been reported that the 
pre-tangles observed in CBD cases show a different fibrous 
morphology from those of AD cases, which may be due 
to differences in the stability and the interaction between 
the two protofilaments of AD and CBD filaments [21, 282, 
288]. The PSP fold, which is structurally different from the 

Fig. 1   Ultrastructural and biochemical characterization of patho-
genic tau extracted from human tauopathies. Immunohistochemistry 
of brain section from patients with tauopathies, stained with AT8 
antibody. a Neurofibrillary tangles and neuropil threads in AD. b 
Pick bodies in PiD. c Tufted astrocyte in PSP. d Astrocytic plaque in 
CBD. e Neuronal inclusions and glial inclusions in FTDP-17T (+ 16). 
f Argyrophilic grains in AGD. Scale bar, 50 μm. g Immunoelectron 
microscopy of sarkosyl-insoluble fractions extracted from brains 
of tauopathy patients. Electron micrographs show fibrous structures 
positive for anti-tauC, after labeling with secondary antibody conju-
gated to 5 nm gold particles. Paired helical filaments (PHF, 10–20 nm 
in diameter) and straight filaments (SF, 15  nm in diameter) in AD, 
straight filaments (13–17 nm in diameter) in PiD, twisted ribbon-like 
filaments (15  nm in diameter) in PSP, twisted filaments (10–30  nm 
in diameter) in CBD, twisted filaments (7–25  nm in diameter) in 
FTDP-17T (+ 14, + 16), twisted ribbon-like filaments in GGT, and 
twisted filaments in AGD were observed. Scale bar, 50 nm. h Immu-
noblot analyses of sarkosyl-insoluble fractions prepared from brains 
of tauopathy patients. Sarkosyl-insoluble full-length tau (60, 64 and 
68 kDa) and C-terminal fragments were detected with T46 antibody 
(residues 404–441). Disease-specific C-terminal fragments were 
also detected: 19, 22, 25, 30, 36 and 40 kDa bands in AD, 21, 34 and 
39 kDa bands in PiD, 22 and 33 kDa bands in PSP and GGT, 22, 37 
doublet and 43 kDa bands in CBD, FTDP-17T (+ 14, + 16) and AGD. 
All data are original for this review

◂
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CBD fold, consists of G272-N381 in 4R tau and is identical 
in typical and atypical PSP cases (Table 1) [266]. In GGT 
cases, a fibrous core structure consisting of G272-R379 in 
4R tau, akin to the PSP fold, was identified, and while only 
protofilament-type tau filaments were found in PSP cases, 

multiple structures consisting of two protofilaments packed 
at different interfaces were found in type I and type II cases 
in the three types of GGT (Table 1) [266]. In AGD, FTDP-
17T (intron 10 mutations + 3 and + 16) and aging-related tau 
astrogliopathy (ARTAG) cases, a fibrous core structure akin 

Table 1   Summary 
of structural and 
biochemical features 
of patient-derived 
pathogenic tau, α-syn 
and TDP-43
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to the CBD fold, consisting of G273-D387 or N279-N381 
in 4R tau, was identified (Table 1) [266]. Intriguingly, the 
disease-specific PTMs in the tauopathies described above 
are detected in and around these fibrous core structures 
[157]. The non-phosphorylation at K356 in AD cases and 
S262 in PiD cases is explained by the fact that these residues 
are in locations that are not accessible from the outside in 
each fold, suggesting that phosphorylation at these residues 
may be able to occur after the fold formation in tauopathies 
[89, 98]. These disease-specific tau fibrous core structures 
and the correspondence of these structures within the same 
disease group provide a direct demonstration of tau strain 
formation in the patient’s brain. Although the nonproteina-
ceous molecules within the CTE fold and the CBD fold have 
not been identified, these molecules may cause the struc-
tural differences from the AD fold and the AGD/FTDP-17T/
ARTAG fold, respectively. Recombinant tau purified from 
E. coli also forms amyloid-like filaments akin to patient-
derived tau filaments in the presence of polyanions such as 
heparin and dextran sulfate [111, 129]. Structural analysis of 
these synthetic tau filaments by cryo-EM revealed one type 
of fibrous core structure from synthetic 2N3R tau filaments 
and four types of fibrous core structure from synthetic 2N4R 
tau filaments [321]. However, these fibrous core structures 
are not consistent with any of those derived from patients’ 
brains. This difference may be attributed to the effect of pol-
yanions, which are essential for the formation of synthetic 
tau filaments. On the other hand, it has been reported that a 
synthetic peptide consisting of tau I297-E391 forms PHF-
like filaments without polyanions [5, 6]. It has also been 
suggested that some cell-derived factors and cofactors influ-
ence tau filament formation, and that the nonproteinaceous 
molecules in the CTE fold and the CBD fold may originate 
from the glial cell environment [97, 309].

Consistent with the structural diversity of tau filaments, 
the banding patterns of abnormal tau shown by immuno-
blotting of sarkosyl-insoluble fractions extracted from the 
brains of patients biochemically characterize tauopathies 
[15, 284]. Six isoforms of full-length tau are presented as 
60, 64, and 68 kDa bands in AD cases, and three isoforms 
of full-length 3R tau are detected as 60 and 64 kDa bands 
in PiD cases (Fig. 1h). In 4R tauopathies, including PSP, 
CBD, FTDP-17T (+ 14 and + 16), GGT, and AGD cases, 
three isoforms of full-length 4R tau are detected as 64 and 
68 kDa bands (Fig. 1h). Tau C-terminal fragments (CTFs) 
detected by antibodies that recognize the C-terminal of 
tau also characterize tauopathies. CTFs of 19, 22, 25, 30, 
36, and 40 kDa are detected in AD cases, and 21, 34, and 
39 kDa in PiD cases (Fig. 1h). CTFs resembling those in 
AD cases have been reported in CTE cases [219]. In PSP 
and CBD cases, different CTFs of 22, 33 kDa and 22, 37 
doublet, 43 kDa, respectively, are detected (Fig. 1h). These 
CTF banding patterns are common within the same disease 

group. The CTF banding patterns of other 4R tauopathies 
can be divided into PSP-type and CBD-type. CTFs of insolu-
ble tau extracted from GGT cases are PSP-type, whereas 
CTFs of insoluble tau extracted from FTDP-17T (+ 14, + 16) 
and AGD cases are CBD-type (Fig. 1h). These disease-spe-
cific CTF banding patterns may result from differences in 
the processing of full-length tau after filament formation, 
and also reflect the similarity of structural features of tau 
filaments, as demonstrated by the above cryo-EM struc-
tural analyses. The PSP and GGT folds show similar three-
layered structures, whereas the CBD and AGD/FTDP-17T 
folds show similar four-layered structures (Table 1). The 
trypsin-treated insoluble tau derived from patients’ brains 
also displays trypsin-resistant bands specific to each tauopa-
thy [284]. Mass analysis of these trypsin-treated insoluble 
tau revealed disease-specific trypsin-resistant core sequences 
[284]. These sequences match the sequences of the fibrous 
core structure revealed by cryo-EM analysis.

Experimental prion‑like amplification 
and transmission of patient‑derived tau 
strains

Insoluble tau extracted from a patient’s brain acts as seeds 
in vitro, in cultured cells, in primary cultures, and in ani-
mal brains, and induces seed-dependent tau aggregation. In 
in vitro systems such as protein misfolding cyclic amplifi-
cation (PMCA) and real-time quaking-induced conversion 
(RT-QuIC), recombinant tau purified from E. coli and sam-
ples derived from patients with tauopathies are mixed and 
incubated with thioflavin, a ligand that specifically binds 
to β-sheet structure, with shaking or sonication [24, 59]. 
Seed-dependent tau aggregation is monitored in terms of 
thioflavin fluorescence intensity. It has been reported that 
RT-QuIC using brain homogenates can distinguish AD and 
CTE cases from PiD cases based on the reactivity with thi-
oflavin T [172, 249]. Similarly, brain homogenates and CSFs 
from PSP and CBD cases can be diagnosed with RT-QuIC 
[250]. In addition, introduction of patient-derived tau seeds 
into cultured cells or primary cultures expressing tau induces 
intracellular tau aggregation [213, 287, 313]. Insoluble tau 
extracted from AD cases (AD-tau) recruits both 3R tau and 
4R tau for aggregation, whereas insoluble tau extracted from 
PiD cases (PiD-tau) or 4R tauopathy cases causes aggrega-
tion of only 3R tau or 4R tau, respectively. Furthermore, it 
has been reported that the introduction of patient-derived tau 
seeds into fluorescence resonance energy transfer biosensor 
cells induces the formation of tau aggregates with various 
morphologies, and that these morphological differences are 
inherited during the passaging of cells [162]. Inoculation of 
patient-derived tau seeds into mouse brain also leads to the 
formation of tau pathology associated with the inoculated 
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sample. Brain homogenates derived from AD, PSP, CBD 
and AGD cases induced inoculated-sample-associated 
tau pathology in human tau transgenic (Tg) mouse brain, 
whereas the brain homogenates derived from PiD cases did 
not induce Pick body-like tau pathology [66]. Tau patholo-
gies associated with inoculated samples, including the cell 
type specificity, are also observed after the inoculation of 
wild-type mice with brain homogenates or insoluble frac-
tions extracted from tauopathy cases [125, 213]. Further-
more, it has been reported that disease-associated tau pathol-
ogy is formed in mice expressing all six isoforms of human 
tau [136]. AD-tau induced tau pathology involving all the 
tau isoforms, while PiD-tau and insoluble tau extracted from 
PSP cases (PSP-tau) and CBD cases (CBD-tau) induced tau 
pathology composed only of 3R tau or 4R tau, respectively 
[136]. These results suggest that the conformation of tau 

filaments accumulated in the brains of patients with tauopa-
thies is involved in the formation of the tau pathologies that 
characterize each disease.

Ultrastructural and biochemical 
classification of pathogenic α‑synuclein 
derived from human synucleinopathies

α-Synuclein is a synaptic protein that is abundant in the 
brain and localizes to presynaptic terminals [148, 198]. It 
consists of 140 amino acids in three domains, the N-ter-
minal domain, the hydrophobic region known as the NAC 
(non-amyloid core), and the C-terminal proline-rich hydro-
phobic region [296, 318]. Under physiological conditions, 
α-syn is a water-soluble, natively unfolded protein, and its 

Fig. 2   Ultrastructural and biochemical characterization of pathogenic 
α-syn extracted from human synucleinopathies. Immunohistochemis-
try of brain section from patients with synucleinopathies, stained with 
pS129 antibody. a Lewy bodies and Lewy neurites in DLB. b Glial 
cytoplasmic inclusions in MSA. Scale bar, 50 μm. c Immunoelectron 
microscopy of sarkosyl-insoluble fractions extracted from brains of 
synucleinopathy patients. Electron micrographs show fibrous struc-
tures with 5–10  nm in diameter positive for pS129, after labeling 
with secondary antibody conjugated to 5 nm gold particles. Straight 

filaments in LBD (PDD and DLB), and twisted filaments with 
80–100 nm periodicity in MSA were observed. Scale bar, 50 nm. d 
Immunoblot analyses of sarkosyl-insoluble fractions prepared from 
brains of synucleinopathy patients. Sarkosyl-insoluble phosphoryl-
ated α-syn (17 kDa) was detected with pS129 antibody. Disease-spe-
cific high-molecular-weight α-syn species were also observed: 22, 29, 
and 37 kDa bands in LBD (PDD and DLB), and 22 and 32 kDa bands 
in MSA. All data are original for this review
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function remains unclear [194]. However, the phenotype of 
α-syn-knockout mice has led to the suggestion that α-syn 
may be involved in the release of dopamine [1, 61]. It 
has also been shown that α-syn is involved in the regula-
tion of SNARE complex formation, suggesting that it may 
act as a molecular chaperone [53, 62]. Synucleinopathies 
are classified into two major groups, Lewy body disease 
(LBD), which is characterized by α-syn inclusions in neu-
rons, and MSA, which is characterized by α-syn inclu-
sions mainly in oligodendrocytes. In LBD including PD, 
Parkinson's disease with dementia (PDD), and DLB, α-syn 
accumulates in neuronal cell bodies and neurites as LBs 
and Lewy neurites (LNs) (Fig. 2a) [276]. Diffuse α-syn-
immunopositive deposits and pale bodies with fibrous 
structures are observed in neuronal cells of LBD cases, 
suggesting that they are formed in the preliminary stages 
of LB formation [76, 115, 301]. In addition to the Braak 
staging, the McKeith type is also widely used as a neuro-
pathological staging system of LBD [40, 205]. Braak stag-
ing assesses the expansion of Lewy pathology, whereas the 
McKeith type classifies LBD into five neuropathological 
subtypes according to the severity of LB pathology in the 
anatomical regions [40, 204]. MSA is categorized into 
MSA with predominant parkinsonian features (MSA-P) 
and MSA with predominant cerebellar ataxia (MSA-C), 
and in both cases, α-syn accumulates in oligodendrocytes 
as GCIs (Fig. 2b) [105, 223, 302]. Abnormal α-syn accu-
mulated in the brain of patients with synucleinopathies is 
phosphorylated at S129 and also partially ubiquitinated 
[9, 101, 130]. More than 90% of α-syn is phosphorylated 
in DLB patients’ brains, whereas only 4% is phosphoryl-
ated in healthy brains [101]. In LBD patients, phosphoryl-
ated α-syn pathology is detected not only in the brain, but 
also in peripheral tissues such as esophagus, heart, skin, 
adrenal gland, gut, and sympathetic ganglion [30, 283]. 
α-Syn is expressed in various peripheral tissues, and the 
spreading of α-syn pathology from peripheral tissues to 
the central nervous system has also been proposed [41, 
135, 296]. In addition, it has been reported that the con-
centration of α-syn is increased in CSF and blood derived 
from patients with synucleinopathies, and this finding is 
expected to lead to a practical method for early diagnosis 
[34, 85, 257]. However, since α-syn is abundantly present 
in platelets, diagnosis using blood samples would need to 
be performed carefully [133]. Nine missense mutations 
(A30P, A30G, E46K, H50Q, G51D, A53T, A53E, A53V 
and E83Q) in the SNCA gene encoding α-syn have been 
reported to cause familial synucleinopathies [13, 159, 173, 
182, 225, 233, 237, 319, 320]. These mutations have been 
experimentally found to exhibit differences in cytotoxicity, 
association with cell membranes and lipids, and filament 
formation as compared with wild-type [64, 84, 104, 153, 
209, 247, 255]. Duplication and triplication of the SNCA 

gene also cause early-onset LBD [63, 94, 144, 268]. It has 
been suggested that PrPC and lymphocyte-activation gene 
3 (LAG3) bind to α-syn filaments and participate in cell-
to-cell transmission of pathogenic α-syn as a receptor, but 
this remains controversial, with several reports suggesting 
non-binding of PrPC to α-syn and lack of LAG3 expression 
in human neurons [71, 87, 175, 197, 297].

In the brains of patients with synucleinopathies, abnor-
mal α-syn accumulates in the form of amyloid-like fibrous 
structures [273, 274, 286]. Fibrous structures in LBD brains 
were first reported in the 1960s [83, 246]. Electron micros-
copy of the sarkosyl-insoluble fraction extracted from the 
brains of patients with synucleinopathies shows α-syn fila-
ments 5–10 nm in diameter, and there is a structural differ-
ence between α-syn filaments derived from LBD and MSA 
cases (Fig. 2c). α-Syn filaments extracted from LBD cases 
are straight, whereas those extracted from MSA cases are 
twisted with 80–100 nm periodicity (Fig. 2c). In addition, 
α-syn filaments derived from LBD cases are thinner than 
α-syn filaments derived from MSA cases (Fig. 2c). The core 
structures of α-syn filaments from MSA cases, including 
both MSA-C and MSA-P, have been identified by cryo-EM 
analysis [258]. Two types of α-syn filaments, type I and type 
II, have been identified [258]. Type I filaments comprise 
two protofilaments, PF-IA consisting of G14-F94 and PF-IB 
consisting of K21-Q99, while type II filaments comprise two 
protofilaments, PF-IIA consisting of G14-F94 and PF-IIB 
consisting of G36-Q99 (Table 1) [258]. Furthermore, addi-
tional densities between the two protofilaments, not due to 
α-syn, was seen in both type I and type II (Table 1) [258]. 
Although the details of these putative nonproteinaceous mol-
ecules remains unclear, it is suggested that they are involved 
in the assembly of the two protofilaments. Two-dimensional 
analysis showed that α-syn filaments extracted from DLB 
cases are not twisted, unlike those extracted from MSA cases 
[258]. The core structures of wild-type and familial synucle-
inopathy-related mutant-type synthetic α-syn filaments have 
also been reported [36, 37, 122, 186, 279, 280, 323]. As in 
the case of synthetic tau filaments, none of the structures of 
synthetic α-syn filaments are consistent with the structures 
of type I and type II filaments identified from MSA cases.

Abnormal α-syn accumulated in the brains of patients 
with synucleinopathies is detected by immunoblotting as 
a 17 kDa band (Fig. 2d) [286]. The high-molecular-weight 
bands detected by α-syn antibodies are different between 
LBD and MSA: 22, 29, and 37 kDa bands are detected in 
LBD, while 22 and 32 kDa bands are detected in MSA 
(Fig. 2d) [286]. It has been reported that each of the three 
high-molecular-weight bands observed in DLB is ubiquit-
inated α-syn, suggesting that the PTM patterns of abnormal 
α-syn are different in LBD and MSA [9]. The sensitivity 
to protease and the protease-resistant banding patterns of 
insoluble α-syn extracted from LBD and MSA cases are also 
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different [228]. Insoluble α-syn extracted from MSA cases 
(MSA-syn) is more resistant to protease K and pronase than 
insoluble α-syn from LBD cases (LBD-syn) [228]. Further-
more, MSA-syn has high SDS solubility, while LBD-syn 
shows low SDS solubility [55].

Experimental prion‑like amplification 
and transmission of patient‑derived 
α‑synuclein strains

Like tau, insoluble α-syn extracted from the brain of 
patients with synucleinopathies exhibits prion-like proper-
ties and causes seed-dependent α-syn aggregation in vitro 
and in vivo. Heterogeneity of the prion-like seeding activ-
ity has also been reported, depending on the α-syn strain 
[228, 286, 314]. Similar to the case of tauopathy, abnormal 
α-syn in brain, CSF and skin samples derived from patients 
with synucleinopathies have been shown to be specifically 
detected by PMCA and RT-QuIC methods and to be useful 
biomarkers in the early stages of synucleinopathies [88, 174, 
245, 256, 264]. PMCA analysis using brain samples and 
CSF derived from synucleinopathy cases has revealed differ-
ences in the seeding activity of α-syn derived from PD cases 
(PD-syn) and MSA-syn [263]. MSA-syn induced a rapid 
increase in thioflavin fluorescence intensity compared to PD-
syn, while the fluorescence value at the plateau when PD-syn 
was added was much higher than when MSA-syn was added 
[263]. The variation in fluorescence values at the plateau 
may reflect the structural difference between PD-syn and 
MSA-syn in terms of the binding mode of α-syn filaments to 
thioflavin. The α-syn aggregates amplified by PMCA from 
PD cases showed four bands of 4–10 kDa after protease K 
treatment, whereas only two bands of 4 and 6 kDa were 
detected in the case of α-syn aggregates derived from MSA 
cases [263]. These two types of protease K-resistant banding 
patterns suggest that distinct PMCA products are formed 
depending on the template. The difference in seeding activ-
ity between LBD-syn and MSA-syn (i.e., MSA-syn induces 
greater intracellular α-syn aggregation than LBD-syn) is 
also observed in cultured cells and primary cultures [228, 
286, 314, 317]. Furthermore, the potent prion-like character 
of MSA-syn is manifested in the brains of α-syn A53T Tg 
mice and wild-type mice [228, 240, 286, 304]. However, in 
mouse brains inoculated with MSA-syn, α-syn pathology is 
observed in neurons, but not in oligodendrocytes [178, 286, 
304]. This may be explained by the level of α-syn expression 
in oligodendrocytes. In situ hybridization analyses of healthy 
brains and MSA brains indicate that α-syn expression is very 
low in oligodendrocytes [152, 207, 272]. It is possible that 
normal or oligomeric α-syn before the formation of β-sheet 
structure is secreted from neurons and incorporated into 
oligodendrocytes. α-Syn pathology in oligodendrocytes has 

been shown to form in Tg mice that express α-syn in oligo-
dendrocytes [228]. Further studies are required to clarify the 
involvement of neuron-derived α-syn in the GCI formation 
in MSA. In addition, the cellular environment of oligoden-
drocytes, which is different from that of neurons, may affect 
the formation of α-syn filaments, resulting in the generation 
of α-syn strains. The possibility that different cellular envi-
ronments may be involved in the formation of distinct α-syn 
strains has been suggested based on studies using recom-
binant α-syn. The synthetic α-syn filaments formed under 
various physiological conditions exhibit distinct morpho-
logical and physical properties, and exhibit different seeding 
activity, cytotoxicity and proteosome activity in vitro, in cul-
tured cells and in primary cultures [35, 118, 281]. Synthetic 
α-syn filaments formed in the presence of physiological salt 
concentration showed significant cytotoxicity, while those 
formed in the absence of salt showed high seeding activity 
in rat brain [227]. Intracerebral inoculation of these synthetic 
α-syn strains also causes various α-syn pathological mor-
phologies and propagation patterns in the brains of α-syn 
A53T Tg mice and wild-type mice [177, 281].

Ultrastructural and biochemical 
classification of pathogenic TDP‑43 derived 
from human TDP‑43 proteinopathies

TDP-43 is an RNA-binding nuclear protein localized mainly 
in the nucleus [25]. It consists of 411 amino acids with a 
nuclear translocation signal (NLS) sequence, and is com-
posed of the N-terminal domain, two RNA recognition motif 
domains, and the C-terminal glycine-rich domain [48, 221]. 
The physiological functions of TDP-43 include the regula-
tion of processing functions such as pre-mRNA splicing, and 
it is involved in the transport of mRNA from the nucleus to 
the cytoplasm [7, 48, 49, 69, 291]. TDP-43 was reported to 
be a major component of the ubiquitin-positive inclusion 
bodies observed in the brains of patients with FTLD and 
ALS [14, 216]. The abnormal TDP-43 inclusions mostly 
accumulate in the cytoplasm, and the nuclear localization 
of TDP-43 and its physiological functions are lost [50, 
310]. FTLD-TDP, in which phosphorylated and ubiquit-
inated TDP-43 accumulates, is classified into five subtypes 
(type A-E) based on differences in pathology and distribu-
tion [179, 193]. Type A is defined by neuronal cytoplas-
mic inclusions (NCIs) and short dystrophic neurites (DNs) 
(Fig. 3a) [193]. Type B, which includes ALS and FTLD with 
motor neuron disease, presents predominantly NCI pathol-
ogy (Fig. 3b) [193]. Type C is characterized by long DNs 
(Fig. 3c) [193]. Type D presents predominantly intranuclear 
inclusion pathology [192, 193]. Type E is characterized by 
granulofilamentous neuronal inclusions and very fine, dot-
like neuropil inclusions [179]. TDP-43-immunopositive 
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diffuse or granular or dash-like cytoplasmic inclusions are 
observed in the brains of FTLD-TDP patients, and the for-
mation of these pre-inclusions may represent the early stage 
of pathogenesis in TDP-43 proteinopathy [43, 78, 211]. 
Limbic-predominant age-related TDP-43 encephalopathy 
(LATE) is neuropathologically characterized by the accu-
mulation of phosphorylated TDP-43 in the limbic system 
and leads to AD-like symptoms in elderly individuals [214]. 
Missense mutations on the TARDBP gene encoding TDP-
43 are associated with the onset of ALS and FTLD-TDP 
[160]. More than 30 mutations have been reported, and 
most of them are located in the C-terminal low-complexity 
domain [155, 277]. Mutations in other RNA-binding pro-
teins, including hnRNPA1, hnPA2B1 and MATR3, and a 
hexanucleotide repeat expansion in the C9ORF72 gene also 
cause TDP-43 proteinopathy, suggesting that the interaction 
of these RNA-binding proteins with TDP-43 and disruption 

of RNA metabolic homeostasis are involved in the intra-
cytoplasmic accumulation of TDP-43 [80, 154, 164, 243]. 
Recently, the association between the formation of stress 
granules and the accumulation of TDP-43 in the cytoplasm 
has been investigated [10, 81]. Under various stress condi-
tions, such as oxidative stress and heat shock, stress gran-
ules, which are membrane-less organelles composed of RNA 
and RNA-binding proteins, are formed via liquid–liquid 
phase separation, and it has been reported that they take up 
endogenous TDP-43 [70, 95, 187]. However, it is not clear 
whether stress granule formation directly leads to TDP-43 
pathogenesis, and further studies are required.

Immuno-electron microscopic studies of brain sections 
from cases of ALS and FTLD-with ubiquitin-positive inclu-
sions have shown the presence of TDP-43 and ubiquitin-pos-
itive bundles of straight filaments 10–20 nm in diameter in 
neurons [147, 165, 188]. Amyloid-like filaments 10–15 nm in 

Fig. 3   Ultrastructural and biochemical characterization of pathogenic 
TDP-43 extracted from human TDP-43 proteinopathies. Immunohis-
tochemistry of brain section from patients with TDP-43 proteinopa-
thies, stained with pS409/pS410 antibody. a Neuronal cytoplasmic 
inclusions (NCIs) and short degenerative neurites (DNs) in FTLD-
TDP Type A. b NCIs in FTLD-TDP Type B. c Long DNs in FTLD-
TDP Type C. Scale bar, 50  μm. d Immunoelectron microscopy of 
sarkosyl-insoluble fractions extracted from FTLD-TDP (type A, type 
B, type C) patients. Electron micrographs show fibrous structures 

with 10–15 nm in diameter positive for pS409/pS410, after labeling 
with secondary antibody conjugated to 5  nm gold particles. Scale 
bar, 50  nm. e Immunoblot analyses of sarkosyl-insoluble fractions 
prepared from brains of patients withTDP-43 proteinopathies. Sarko-
syl-insoluble phosphorylated TDP-43 (45  kDa) was detected with 
pS409/410 antibody. Subtype-specific C-terminal fragments were 
also observed: 18, 19, 23, 24 and 26 kDa bands in type A, 18, 19, 23, 
24 and 26 kDa bands in type B, 18, 19, 23 and 24 kDa bands in type 
C. All data are original for this review
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diameter are also observed by electron microscopy of insoluble 
fractions extracted from the brains of patients with TDP-43 
proteinopathy (Fig. 3d) [128, 217]. The ultrastructural features 
of TDP-43 filaments derived from types A-C are distinct for 
each subtype, and TDP-43 filaments derived from type B are 
thinner than those derived from other subtypes (Fig. 3d). Syn-
thetic peptides G274-F313 and G314-N353 of TDP-43 were 
reported to form filaments in vitro, and these filaments possess 
seeding activity that recruits wild-type TDP-43 or TDP-43 
lacking NLS expressed in cultured cells for aggregation, sug-
gesting that residues 274–353 are important for TDP-43 fila-
ment formation [267]. Furthermore, cryo-EM analysis of TDP-
43 filaments formed from SegA (residues 311–360) and SegB 
(residues 286–331 including the ALS hereditary mutation 
A315E) peptides has revealed three different dagger-shaped 
core structures from SegA filaments and one core structure 
composed of four R-shaped folds from SegB filaments [56]. In 
addition, a fibrous core structure consisting of F276-M414 has 
been identified from TDP-43 filaments composed of the low-
complexity domain (residues 267–414) formed under a mildly 
acidic condition (pH 4) [184]. Cryo-EM analysis of TDP-43 
filaments extracted from two individuals diagnosed as ALS 
with FTLD identified a double-spiral-shaped fold consisting 
of G282-Q360, which is different from the fibrous core struc-
tures of the three synthetic TDP-43 filaments described above 
(Table 1) [23]. The structure of TDP-43 filaments extracted 
from brains of patients with other subtypes of FTLD-TDP 
should also be amenable to cryo-EM analysis. Immunoblot-
ting with phosphorylated S409/S410 antibody of sarkosyl-
insoluble fractions extracted from the brains of patients with 
TDP-43 proteinopathy shows a 45 kDa band of phosphorylated 
full-length TDP-43 and subtype-specific CTFs bands (Fig. 3e) 
[128, 131]. In type A, major bands of 23, 24, and 26 kDa and 
minor bands of 18 and 19 kDa are present and the 23 kDa band 
is the most intense (Fig. 3e). Similarly, CTFs of 18, 19, 23, 24, 
and 26 kDa, with the most intense band at 24 kDa, are seen in 
type B (Fig. 3e). In type C, major bands of 23 and 24 kDa, of 
which the 23 kDa band is more intense, and minor bands of 18 
and 19 kDa are seen (Fig. 3e). These banding patterns of CTFs 
are common within the same subtype group and may reflect 
differences in the N-terminal truncation of full-length TDP-43 
among the subtypes [294]. A single CTF banding pattern was 
detected even in the insoluble fractions extracted from differ-
ent brain regions and spinal cord of one individual [294].It has 
been reported that the protease-resistant banding patterns of 
patient-derived insoluble TDP-43 are also common within the 
same subtype group, but are different between subtypes [294]. 
In addition, the major PTMs detected in insoluble fractions 
extracted from ALS cases are phosphorylation, oxidation and 
deamidation, and partial ubiquitination is also detected [156]. 
These PTMs are mainly located in the C-terminal domain 
[156]. While phosphorylation at S403/S404 and at S409/S410 
is a definitive pathological marker for all subtypes, differences 

in immunoreactivity to phosphorylation at S369 have been 
reported: TDP-43 pathology in type B and type C is pS369-
positive, whereas type A is pS369-negative [128, 215]. As 
with tau and α-syn, these ultrastructural and biochemical vari-
ations may reflect differences in the conformation of abnormal 
TDP-43 accumulated in the brain, suggesting the formation of 
TDP-43 strains in TDP-43 proteinopathies. The ultrastructural 
and biochemical features of pathogenic TDP-43 that accumu-
late in other subtypes and LATE require further investigation.

Experimental prion‑like amplification 
and transmission of patient‑derived TDP‑43 
strains

Patient-derived insoluble TDP-43 exhibits prion-like 
properties in vitro and in vivo. An RT-QuIC study found 
that abnormal TDP-43 in brain homogenates and CSF 
derived from ALS and FTLD cases were amplified 
using full-length TDP-43 and truncated TDP-43 (resi-
dues 263–414) purified from E. coli as substrates [259]. 
Abnormal TDP-43 could be used as a biomarker for early 
diagnosis. Introduction of insoluble TDP-43 extracted 
from the brains of patients with FTLD-TDP types A-C 
into cultured cells expressing wild-type TDP-43 or TDP-
43 lacking NLS causes seed-dependent accumulation of 
phosphorylated TDP-43 [217]. Furthermore, the insolu-
ble fractions extracted from the cells into which patient-
derived TDP-43 seeds had been introduced showed CTF 
banding patterns similar to those of the patient-derived 
original seeds [217]. Insoluble TDP-43 extracted from 
FTLD-TDP type A-C cases by Sarkospin also shows dif-
ferences of cytotoxicity and seeding activity in cultured 
cells depending on the subtype [79, 176]. In addition, it 
has been reported that insoluble TDP-43 extracted from 
ALS cases induces the formation of phosphorylated TDP-
43 inclusions with various morphologies, as observed in 
the brain of ALS patients in cultured cells expressing 
wild-type TDP-43, and that the prion-like property of 
insoluble TDP-43 accumulated in cultured cells is inher-
ited after passaging of the cells [269]. In vivo, intracer-
ebral inoculation of the insoluble fractions extracted from 
the brains of patients with sporadic FTLD-TDP and famil-
ial FTLD-TDP with the GRN or C9ORF72 gene mutations 
into Tg mice expressing human TDP-43 in the cytoplasm 
reproduced TDP-43 pathology associated with the inocu-
lated samples in a time-dependent manner [236]. Inocula-
tion of these patient-derived samples into wild-type mice 
also induced TDP-43 pathology, although the pathology 
was not as abundant as in the case of inoculation into Tg 
mice [236].
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How are the characteristic structural 
and biochemical properties of each disease 
maintained in the patient's brain?

As we have described, abnormal proteins that accumu-
late in the brains of patients exhibit ultrastructural and 
biochemical properties that are characteristic of each 
disease. It is worth emphasizing that these properties are 
common in the same disease group, and even in different 
brain regions of one individual. These results suggest that 
pathogenic tau, α-syn and TDP-43 spread throughout the 
brain, retaining their disease-specific structural and bio-
chemical properties.

To further explore this possibility, we examined whether 
disease-specific tau aggregation and filament formation were 
reproduced in cultured cells [287]. Insoluble tau extracted 
from the brains of patients with tauopathies was introduced 
into SH-SY5Y cells expressing full-length 3R tau or 4R tau. 
PiD-tau induced only 3R tau aggregation, while PSP-tau and 
CBD-tau induced only 4R tau aggregation. AD-tau recruited 
both 3R tau and 4R tau for aggregation. This strain-specific 
tau aggregation was also observed in cells expressing both 
3R tau and 4R tau. In addition, immunoelectron micros-
copy of insoluble tau accumulated in SH-SY5Y cells showed 
abundant tau filaments labeled by antibody to the tag pro-
tein expressed in the cells, and their structures resembled 
those of filaments derived from the patients’ brains. This 
template-dependent amplification of tau filaments observed 
in cultured cells can be explained in terms of the core struc-
ture of tau filaments extracted from the brain. Since the AD 
fold is composed of the common part of 3R tau and 4R tau, 
AD-tau can recruit both 3R tau and 4R tau for seed-depend-
ent aggregation (Fig. 4). On the other hand, the PiD fold, 
the PSP fold and the CBD fold contain 3R tau- or 4R tau-
specific sequences and therefore, polymerization of β-sheet 
structure is not promoted when there is a mismatch between 
template and substrate (Fig. 4). In other words, the struc-
ture of the tau filaments determines which tau isoform is 
recruited for seed-dependent aggregation, and is the determi-
nant of the formation and spreading of tau pathology in the 
brain. Trypsin-treated patient-derived tau seeds, which were 
digested outside the tau fibrous core region (fuzzy coat), 
caused the same seed-dependent aggregation as untreated 
tau seeds, supporting the idea that the fibrous core region 
plays a cardinal role in the amplification of tau filaments. 
Thus, our results suggest that the template-dependent ampli-
fication of pathognomonic proteins in the brain leads to the 
pathological diversity in the same proteinopathy.

The requirement of amino acid sequence identity between 
template and substrate for template-dependent amplification 
is also clearly demonstrated by the in vitro and in vivo obser-
vation of low seeding and propagation efficiency caused by 

species barriers [191, 251]. Seven residues in 140 amino 
acids differ between the amino acid sequences of human and 
mouse α-syn, and it has been reported that the seeding activ-
ity is significantly decreased when the substrate and template 
are from different species [191]. This is probably due to 
structural instability resulting from the mismatch between 
template and substrate. Although the mechanism by which 
distinct strains are generated remains unclear, distinct folds 
(templates) are formed from normal proteins, depending on 
genetic and/or environmental factors (Fig. 5a). Then, in the 
presence of a substrate matching the template (and cofac-
tor), filaments composed of the same fold are formed and 
amplified (Fig. 5a). Disease-associated missense mutations 
directly affect the fibrous core structure and generate dif-
ferent strains. Structural analysis of mutant synthetic α-syn 
filaments associated with familial synucleinopathies has 
demonstrated that these mutations affect not only the core 
structure, but also the interface between the two protofila-
ments [36, 37, 122, 186, 279, 280, 323]. As environmental 
factors, the brain region and cell types (neurons, astrocytes 
and oligodendrocytes) in which aggregation initially occurs 
may contribute substantially to strain formation. Patient-
derived pathogenic proteins have been shown experimen-
tally to retain their properties even during amplification in 
different cellular environments [228]. The formation of 3R 
or 4R tau-specific strains in tauopathies may be caused by 
the heterogeneous expression of tau isoforms depending on 
the brain region and the cell type [54, 96, 195]. Oligoden-
drocyte-specific tubulin polymerization-promoting protein, 
p25α, is mislocalized to the cell body prior to α-syn accu-
mulation in MSA cases, and it has been suggested that p25α 
may contribute to the formation of MSA-specific strains 
[96]. Differences in the aging process in each cell type may 
also be a factor. In addition, cell type-specific or non-specific 
cofactors could be directly responsible for the formation of 
disease-specific folds. Potential cofactors within the CTE 
and CBD folds include lipids and polyanions, which have 
been experimentally found to affect filament formation [86, 
91, 97, 116, 322]. The involvement of PTMs in strain for-
mation is supported by the combination of structural and 
mass analysis, which suggests that the ubiquitination at 
K340 that is characteristic of singlet-type CBD filaments 
prevents doublet formation [18]. As experimentally demon-
strated, other proteins, lipids and nucleic acids interacting 
with prion-like proteins, salt concentration, pH and metals 
are also environment factors causing various forms of mis-
folding [12, 35, 57, 58, 117, 142, 150, 158, 270]. Once the 
filaments accumulate in the cell, the fragmented pathogenic 
seeds are released into the extracellular space and taken up 
by neighboring healthy cells. Although the mechanism of 
cell-to-cell transmission is not fully understood, the patho-
genic seeds may be released through exocytosis or transport 
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mediated by membrane vesicles, including synaptic vesicles 
and exosomes (Fig. 5b) [8, 60, 189, 217, 234, 254]. The 
leakage of pathogenic seeds from dead cells is also feasible. 
Extracellular pathogenic seeds may then be taken up into 
the cell directly, or by macropinocytosis, receptor-mediated 

endocytosis, or membrane fusion of exosomes (Fig. 5b) 
[31, 93, 100, 303]. Recently, it has also been demonstrated 
that pathogenic seeds can pass between neuronal cells via 
tunneling nanotubes (Fig. 5b) [2, 82, 285]. The continuous 
cell-to-cell transmission of these pathogenic proteins along 
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the neuronal circuits leads to the intracerebral expansion of 
the pathology. A disease-specific fold is maintained during 
the amplification and spreading of pathogenic protein in the 
brain, resulting in the clinical and pathological diversity. 
Although the structures of α-syn filaments amplified by 
in vitro assays using brain and CSF samples derived from 
patients with synucleinopathies have been revealed by cryo-
EM analysis, these structures are not identical to those of 
α-syn filaments extracted from patients’ brains [51, 190]. 
Therefore, the cellular environment and cofactors may play 
critical roles in strain formation.

Directions for future research

The heterogeneity of abnormal proteins accumulated in 
patients’ brains is a key factor in the onset and progression 
of neurodegenerative diseases. Structural and biochemical 
analyses of post-mortem brains have revealed structural 
polymorphisms (strains) and prion-like properties of path-
ogenic proteins. Notably, recent cryo-EM studies of tau 
and α-syn filaments extracted from patients’ brains have 
provided direct evidence of strain formation in the brain 
(Table 1). Detailed structural information about these 
pathogenic proteins will contribute to the development 
of disease-modifying agents targeting protein aggrega-
tion and cell-to-cell transmission [261]. We believe there 
will be an increasing focus on the fibrous core structure 
in the design of aggregation inhibitors and antibodies for 
antibody therapy. The differences in the disease-specific 
fibrous core structures may also indicate that different 
approaches will be required for each disease. The same 
can be expected to apply to PET ligands used for early 
diagnosis, and this may lead to the development of PET 
ligands that can distinguish each disease within the same 

proteinopathy. Cryo-EM analysis has revealed the binding 
sites of EGCG, a natural compound that inhibits amyloid 
formation, and APN-1607, a PET ligand known as PM-
PBB3, to tau filaments extracted from AD cases [260, 
265]. Elucidation of the mechanisms underlying strain for-
mation, as well as related factors, is crucial to reach a bet-
ter understanding of the pathogenic protein strains in neu-
rodegenerative diseases. The matured filaments that define 
each disease are supposed to pass through several different 
morphological forms during the maturation process. It will 
be important to clarify whether the disease-specific fold is 
established at the point of initial fibrillar species formation 
or at some other point during the maturation process, both 
in order to elucidate the mechanism of the strain forma-
tion and to characterize the pathological transition from 
pre-tangles/pre-inclusions to fibrillar inclusions. Recently, 
comprehensive proteomic analysis has identified a num-
ber of proteins that interact with tau, α-syn and TDP-43 
[99, 123, 181, 292]. A similar approach would be useful 
to identify cell type-specific proteins that interact with 
pathogenic proteins and are involved in strain formation. 
In addition, the co-occurrence of multiple pathogenic pro-
teins in the same patient is common in neurodegenerative 
diseases, but it is not fully understood how the interactions 
of these proteins contribute to the pathogenesis [146, 202]. 
Phosphorylated TDP-43 has been shown to co-localize in 
NFTs in AD and LBs in LBD, which may indicate a direct 
contribution of TDP-43 to AD and LBD pathogenesis [17, 
138]. It has been also reported that distinct α-syn strains 
exhibit different abilities to induce tau aggregation and 
that the frequency of TDP-43 co-occurrence in tauopathies 
varies among diseases [124, 298]. The ways in which the 
interactions of multiple pathogenic proteins contribute 
to pathogenesis and the strain-specific characteristics of 
the interactions require further investigation. Structural 
analysis using cryo-EM will continue to be indispensa-
ble for the study of neurodegenerative diseases. It will be 
intriguing to see whether the abnormal proteins ampli-
fied in cellular and animal models inherit the structure of 
the patient-derived filaments used as the original seeds. 
In situ visualization of cultured cells and primary cultures 
with aggregates using cryo-EM tomography has also been 
reported, and analysis of brain samples from animals and 
patients using this approach may be fruitful [29, 126, 293]. 
Now that the importance of the cellular environment in 
strain formation has been suggested, understanding the 
changes in the cellular dynamics of cells with aggregates 
would be helpful to elucidate not only the mechanisms of 
aggregation, cell-to-cell transmission and neurodegenera-
tion, but also the mechanism of strain formation.

Fig. 4   Full matching of amino acid sequence between template and 
substrate is essential for template-dependent amplification of tau fila-
ments. Fibrous core regions of tau filaments extracted from brains 
of AD, PiD, PSP and CBD patients identified by cryogenic electron 
microscopic studies explain the templated tau amplification and tau 
filament formation observed in our cellular model. The core region 
of AD-tau (G273-E380 in 3R tau and G304-E380 in 4R tau), which 
recruits both 3R tau and 4R tau for seeded aggregation, consists of 
amino acid sequences common to 3R tau and 4R tau. On the other 
hand, PiD-tau, PSP-tau and CBD-tau consist of 3R tau or 4R tau spe-
cific amino acid sequences: K254-F378 in 3R tau, G272-N381 in 4R 
tau and K274-E380 in 4R tau. Therefore, PiD-tau, PSP-tau and CBD-
tau recruit only tau substrates that match the template for seeded 
aggregation, and do not induce aggregation when the template and 
substrate are mismatched. The amplification and intracerebral expan-
sion of tau filaments with the same structure by this mechanism leads 
to the pathological diversity of tauopathies

◂
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Fig. 5   Strain formation and cell-to-cell transmission in neurodegen-
erative diseases. a Prion-like proteins, including tau, α-syn and TDP-
43, can adopt various misfolded forms. The variety of misfolding is 
caused by genetic and/or environmental factors, resulting in the for-
mation of strains with distinct conformations. Disease-associated 
mutations alter the core structure of filaments and the interaction 
between two protofilaments. Differences in the cellular environment 
between neuronal and glial cells may also contribute to the various 
types of misfolding. The interaction of prion-like proteins with cell 
type-specific co-factors during misfolding would lead to the forma-
tion of disease-specific filaments. Post-translational modifications, 
interactions with other proteins, lipids and nucleic acids, as well as 

differences in salt concentration, pH and metals, may also be involved 
in the formation of distinct strains. b Pathogenic proteins amplified 
and accumulated in cells have proposed to transmit as seeds from cell 
to cell and then spread throughout the brain. Possible mechanisms of 
cell-to-cell transmission include extracellular release of pathogenic 
seeds via exocytosis or in synaptic vesicles or exosomes, followed 
by incorporation into neighboring cells either directly or via macro-
pinocytosis or receptor-mediated endocytosis. Alternatively patho-
genic seeds may be taken up into cells by cell membrane fusion of 
exosomes containing seeds. Cell-to-cell transmission of pathogenic 
seeds via tunneling nanotubes has also been suggested
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