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Long Interspersed Element-1 (LINE-1 or L1) is the only 
autonomously active human retrotransposable element 
shown to mobilize in cancers, which can disrupt normal 
gene function or regulation [6]. However, L1 regulatory 
elements have not been implicated in human tumorigenesis.

We identified an infant high-grade glioma (HGG, Fig. 1a) 
showing DNA methylation profiles (Fig. 1b) and FOXR2 
overexpression (Fig. 1c) characteristic of FOXR2-activated 
CNS neuroblastoma (NBL) [1]. However, histology review 
confirmed typical HGG findings—infiltrating astrocytic 
tumor cells demonstrated strong and diffuse GFAP expres-
sion and were negative for synaptophysin. This suggests that 
aberrant FOXR2 activation may have driven tumorigenesis 
and the observed methylome profile.

The tumor’s whole genome sequencing (WGS) data 
revealed a cluster of soft-clipped (SC) reads containing sub-
regions unmapped to the reference genome located within 
intron 1 of FOXR2. The reads contained a poly-A or L1 
5’UTR sequence, indicating an L1 insertion event (Sup-
plementary Fig. 1a, online resource). PCR amplification of 
the genomic sequence revealed a ~ 3 kb somatic insertion 
(Supplementary Fig. 1b, online resource). Targeted PacBio 
sequencing identified a 5’ inverted L1 insertion with a nearly 
intact L1 5’UTR, which contains an RNA pol-II promoter 

in the same orientation as FOXR2 but inverted with respect 
to the remaining truncated L1 sequence, where a partial L1 
open reading frame (ORF2) was present, followed by the L1 
3’UTR, a 31 bp poly-A tail, a 29 bp transduction sequence, 
and a 96 bp poly-A tail (Fig. 1d). The insertion site was 
flanked by a target-site duplication (TSD; 5’-GTT​GAT​ATC​
TTT​). The transduction sequence enabled us to trace the 
full-length 6p24.1 L1 as the source element responsible 
for the somatic insertion (Supplementary Fig. 1c, online 
resource) [2, 4], which was also confirmed by shared L1 
sequence variants between the 6p24.1 L1 and the FOXR2 
L1 (Supplementary Table 1, online resource).

RNA-seq data indicated “donation” of the L1 promoter 
initiated FOXR2 transcription as we identified a chimeric L1/
FOXR2 transcript spanning the first 97 bp of L1 5’UTR from 
a known L1 splice donor site to the acceptor site of exon 2 
of a non-canonical FOXR2 isoform (Fig. 1d and Supple-
mentary Fig. 2b, online resource) [3]. There was no expres-
sion of FOXR2 exon 1 nor splice junction reads upstream 
the L1 insertion (Supplementary Fig. 2a, online resource). 
To further confirm promoter activity of the FOXR2 L1, we 
performed bisulfite sequencing on its 5’UTR. We observed 
hypomethylation of all CpG sites profiled, while the source 
6p24.1 L1 5’UTR remained hypermethylated (i.e., inactive) 
(Fig. 1e). These results support an active L1 promoter driv-
ing aberrant FOXR2 transcription in the tumor.

Molecular profiling of serial tumor samples projected the 
temporal order of mutation acquisition as follows (Fig. 1f): 
a somatic L1 insertion at the FOXR2 locus led to aberrant 
oncogenic FOXR2 expression and chimeric L1/FOXR2 tran-
scripts. The insertion was an early tumor-initiating event, as 
it was the only driver present at diagnosis and, as a founder 
mutation, persisted through tumor recurrence. While wild-
type p53 expression was confirmed in the primary tumor, a 
clonal TP53 R175H mutation with loss of heterozygosity 
was acquired in recurrent tumors (Supplementary Fig. 3, 
online resource).
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Our study presents the first example of L1 promoter 
“donation” as a novel cancer-initiating mechanism, as 
compared to previously reported L1-mediated disrup-
tion of tumor suppressors or oncogene repressors [6]. We 
screened an additional 183 pediatric HGG samples and 22 
CNS tumors [7] and did not observe another L1/FOXR2 
fusion, likely due to low L1 activity in CNS tumors [6]. 
Nevertheless, the findings made in the index HGG broaden 
oncogenic L1 retrotransposition mechanisms, providing 
a new direction for investigating genomic drivers in non-
coding regions. Optimal treatment strategies for this hybrid 
histological HGG and molecular CNS NBL FOXR2 tumor 
demand further investigation which may involve assessing 
the functional impact of FOXR2 activation, known to sta-
bilize cMYC [5], on global methylome changes in neural 
progenitor cells.
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Fig. 1   Somatic L1 promoter donation drives oncogenic FOXR2 
overexpression. a Histology of serial tumor samples. b t-SNE plot 
comparing genomic DNA methylation profiles of the primary and 
recurrent tumors to 249 pediatric CNS tumors of 17 types (see Sup-
plementary text, online resource for additional abbreviations). c 
FOXR2 expression of CNS NBL FOXR2 overlayed by the primary 
and 2nd recurrent tumors as compared to non-diseased multiple brain 
regions profiled by GTeX. d Top, schematic of PacBio sequenced 
L1 insertion with a chr6 transduction sequence (yellow arrow) and 
flanked by target-site duplication sequence (TSD). Gray numbers 
match nucleotides of L1.3 consensus sequence. Below, observed 
tumor transcripts involve L1 splice donor to canonical FOXR2 splice 
acceptor. e Methylation status of CpG sites (nucleotide numbers) in 
the L1 5’UTR at the retrotransposed FOXR2 locus (Xp11.21) and the 
source element (6p24.1) observed in over 90% of bisulfite sequencing 
reads. f Model of oncogenic activation with chr6 L1 source element 
(gray ‘L1’ box) insertion in chrX upstream of FOXR2, inducing onco-
genic overexpression of FOXR2 (gray and blue squiggles), driving the 
primary tumor. Recurrent tumor formed, acquiring a TP53 R175H 
variant (red star)
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