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Abstract
Malformations of cortical development (MCD) comprise a broad spectrum of structural brain lesions frequently associated 
with epilepsy. Disease definition and diagnosis remain challenging and are often prone to arbitrary judgment. Molecular clas-
sification of histopathological entities may help rationalize the diagnostic process. We present a retrospective, multi-center 
analysis of genome-wide DNA methylation from human brain specimens obtained from epilepsy surgery using EPIC 850 K 
BeadChip arrays. A total of 308 samples were included in the study. In the reference cohort, 239 formalin-fixed and paraffin-
embedded (FFPE) tissue samples were histopathologically classified as MCD, including 12 major subtype pathologies. They 
were compared to 15 FFPE samples from surgical non-MCD cortices and 11 FFPE samples from post-mortem non-epilepsy 
controls. We applied three different statistical approaches to decipher the DNA methylation pattern of histopathological 
MCD entities, i.e., pairwise comparison, machine learning, and deep learning algorithms. Our deep learning model, which 
represented a shallow neuronal network, achieved the highest level of accuracy. A test cohort of 43 independent surgical 
samples from different epilepsy centers was used to test the precision of our DNA methylation-based MCD classifier. All 
samples from the test cohort were accurately assigned to their disease classes by the algorithm. These data demonstrate DNA 
methylation-based MCD classification suitability across major histopathological entities amenable to epilepsy surgery and 
age groups and will help establish an integrated diagnostic classification scheme for epilepsy-associated MCD.

Keywords  Brain development · Cortical malformation · Epilepsy · Epigenetic · Deep learning

Introduction

Human brain malformations present with a broad spectrum 
of anatomo-pathological lesions [1], genetic alterations [26], 
and clinical phenotypes [53]. If the neocortical mantle is 
affected, a structural lesion is usually classified as malfor-
mation of cortical development (MCD), with focal epilepsy 
being a frequent clinical symptom [26]. Many patients with 
MCD and focal epilepsy do not respond to anti-seizure 

medication. However, epilepsy surgery can be a curative 
treatment option [11, 42]. Recent studies in surgically 
resected human brain tissue demonstrated that MCD often 
result from prenatally acquired brain somatic mutations with 
or without additional germline mutation in developmental 
signaling pathways governing neuroepithelial proliferation, 
migration, and cell lineage differentiation [3, 43, 58]. The 
anatomo-pathological phenotype is likely dependent on the 
timing of the acquired brain somatic mutation, the targeted 
cell lineage, and the affected gene [22]. Disease definition 
and diagnosis of MCD remain challenging in everyday clini-
cal practice. If surgical treatment is suggested, a definitive 
diagnosis of MCD should be established by histopathology 
review. Diagnostic terms for MCD categories and subtypes 
are often defined imprecisely, and histopathological criteria 
are prone to arbitrary judgment [10, 53]. Previous studies 
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have reported substantial inter- and intra-observer variability 
in the histopathological diagnosis of MCD, for example, in 
Focal Cortical Dysplasia (FCD) [10, 52]. The introduction of 
genetic biomarkers is a growing field but available only for a 
subgroup of MCD entities so far, i.e., FCD type 2 [2–4, 21, 
22, 33, 50, 58] or mild malformations of cortical develop-
ment with oligodendroglial hyperplasia (MOGHE) [14, 61]. 
Diagnostic discordance and uncertainty may confound the 
assignment of genetic variants to disease entities [14] and 
compromise decision-making in clinical practice as well as 
the interpretation and validity of clinical observations and 
trials.

Herein, we address DNA methylation as an objective 
molecular diagnostic biomarker that can be reliably detected 
and analyzed from archival human brain FFPE tissue [16, 
60, 66]. The methylome in surgical brain tissue represents 
a combination of both somatically acquired DNA methyla-
tion changes, characteristics that reflect the cellular com-
position of the tissue as well as molecular memory marks 
in response to environmental or pathogenic cues, including 
seizures [23, 36–40]. DNA methylation profiling is highly 
robust and reproducible even from small samples and archi-
val tissue, and such profiles have been widely used to clas-
sify CNS tumors successfully [16, 60]. Based on our previ-
ous work within single MCD entities [38, 40] (Holthausen 
et al. accepted in Epilepsia), we developed a comprehensive 
approach toward the DNA methylation-based classification 
of major MCD entities across all age groups.

Materials and methods

Reference cohort

We reviewed clinical, and MRI data of individuals who 
underwent surgery for the treatment of their focal phar-
maco-resistant epilepsy and were diagnosed with FCD type 
1A (n = 12), FCD type 2A (n = 29), FCD type 2B (n = 29), 
FCD type 3A (n = 14), FCD type 3B (n = 15, all with gan-
glioglioma), FCD type 3C (n = 17, six with Sturge–Weber 
Syndrome, four with arterio-venous malformations, and 
seven with cavernoma), FCD type 3D (n = 15, one with 
traumatic brain injury, five with Rasmussen encephalitis, 
four with perinatal stroke, and five not further specified), 
hemimegalencephaly (HME, n = 6), mild malformation of 
cortical development (mMCD, n = 28), mMCD with oli-
godendroglial hyperplasia in epilepsy (MOGHE, n = 22), 
polymicrogyria (PMG, n = 33), cortical tuber of tuberous 
sclerosis complex (TSC, n = 19), or temporal lobe epilepsy 
(TLE, n = 15). Based on MRI and histology, all 15 TLE 
patients were diagnosed with hippocampal sclerosis, but 
we used only histologically normal temporal neocortex. All 
cases included into this study have been extensively studied 

at the microscopic level with Hematoyxlin–Eosin and Cresyl 
Violet – Luxol Fast Blue stainings available from all FFPE 
surgical tissue blocks. An immunohistochemistry panel of 
antibodies recommended for the neuropathology work-up of 
epilepsy surgery specimens [7, 9], including NeuN, MAP2, 
GFAP, Vimentin, neurofilament SMI32, Ki67, OLIG2, 
CD34, CD68 and CD45 epitopes were also made available 
for each case. Each diagnosis was finally agreed upon con-
sensus by two of our coauthors (IB and RC) applying the 
International League Against Epilepsy (ILAE) classification 
system of 2011 [13] and 2013 [12]. An FFPE block contain-
ing a prototypic area of the lesion was selected for further 
processing. Four non-epilepsy autopsy control cases with 
no known neurological history were also included in the 
study. From some of these autopsy cases, temporal and fron-
tal neocortex with micro-dissected gray and white matter 
were sampled and analyzed independently (CTRL, n = 11; 
Table 1, Supplement Table 1, online resource). We obtained 
written informed consent for molecular genetic investiga-
tions and publication of the results from all participating 
patients or their legal guardians. The Ethics Committee of 
the Medical Faculty of the Friedrich-Alexander-University 
(FAU) Erlangen-Nürnberg, Germany, approved this study 
within the framework of the EU project “DESIRE” (FP7, 
grant agreement #602,531; AZ 92_14B) and European Ref-
erence Network EpiCARE” (grant agreement #769,051; AZ 
193_18B).

Test cohort

The test cohort included 43 independent retrospective sur-
gical samples, including a series of 18 patients provided 
through the epilepsy surgery program of the Cleveland 
Clinic, USA. These cases underwent independent iterative 
evaluation by 20 neuropathologists from 15 different coun-
tries and were previously published in the ILAE FCD agree-
ment trial of histopathology and genetic testing [9]. Another 
25 samples were provided through the European Epilepsy 
Brain Bank (EEBB). A clinical summary of all test samples 
is provided in Table 2, Supplement Table 1, online resource.

DNA extraction

A prototypic area within the center of the MCD lesion (neo-
cortex) was identified on H&E slides as described above and 
macro-dissection performed by punch biopsy (pfm medical, 
Köln, Germany) or by hand (Fig. 1). DNA was extracted 
from formalin-fixed paraffin-embedded (FFPE) tissue using 
the Maxwell 16 FFPE Plus LEV DNA Kit (Promega, Madi-
son, WI, USA), according to the manufacturer’s instructions. 
DNA concentration was quantified using the Qubit dsDNA 
BR Assay kit (Invitrogen, Carlsbad, CA, USA).
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Genome‑wide DNA methylation profiling and data 
pre‑procession

As described previously, samples were analyzed using 
Illumina Infinium MethylationEPIC 850  K BeadChip 
arrays [16, 38]. Briefly, DNA methylation data were gener-
ated at the Department of Neuropathology, Universitätsk-
linikum Heidelberg, Germany. We performed differential 
DNA methylation analysis using a self-customized Python 
wrapped cross R package pipeline described in [38] and 
publicly available at https://​github.​com/​FAU-​DLM/​Methy​

lr2py. Additionally, we stratified quantile normalized data 
using the ‘minfi’ ‘preprocessQuantile’ function [25]. After 
that, probes targeting sex chromosomes, containing single-
nucleotide polymorphisms, not uniquely matching, as well 
as known cross-reactive probes were removed [19]. Conse-
quently, 433,213 CpG probes contained on the EPIC array 
were used for further analysis. Most significantly differen-
tially methylated CpG between disease entities, as high-
lighted above, were identified by fitting a regression model 
with the disease as the target variable using the ‘limma’ R 
package [59]. All pairwise comparisons between disease 
groups were identified as contrasts and included in the 
analysis. Surrogate variable adjustments found one sur-
rogate variable, which we corrected for (‘sva’ R package) 
[44]. We also corrected for the batch number, duration of 
epilepsy, white vs. gray matter, and the region the speci-
men originated from (‘removeBatchEffect’ from ‘limma’). 
These factors were identified by calculating and plotting 
the Pearson’s r coefficient as a correlation matrix for all 
variables of the first six principal components deriving 
from the corresponding M values (data not shown). Then 
unsupervised dimensionality reduction for cluster analysis 
on the data was performed. Uniform Manifold Approxima-
tion and Projection (UMAP) for general non-linear dimen-
sionality reduction was used for visualization [49]. The 
following non-default parameters were used: init = random 
, min_dist = 0.0, spread = 3.0. To confirm the identified 
clusters from the previous step, we applied unsupervised 
learning using HDBSCAN as a clustering algorithm 
[48]. The following non-default parameters were used: 

Table 1   Clinical summary of 
the reference cohort

CTRL control, HME hemimegalencephaly, FCD focal cortical dysplasia, mMCD mild malformation of cor-
tical development, MOGHE mMCD with oligodendroglial hyperplasia in epilepsy, PMG polymicrogyria, 
TLE temporal lobe epilepsy, TSC tuberous sclerosis complex, n.a. not applicable

Diagnosis n ∅ age at surgery ∅ age at onset ∅ duration Sex 
(female/
male)

FCD 1A 12 9.3 (± 4.6) 2.2 (± 3.1) 6.8 (± 4.3) 7/5
FCD 2A 29 14.7 (± 11.5) 3.5 (± 4.1) 11.2 (± 10.2) 13/16
FCD 2B 29 18.5 (± 14.6) 3.6 (± 4.0) 14.5 (± 12.2) 13/16
FCD 3A 14 45.0 (± 19.7) 9.4 (± 11.2) 31.3 (± 21.0) 9/5
FCD 3B 11(15) 34.5 (± 14.7) 26.6 (± 16.7) 7.91 (± 8.8) 6/5
FCD 3C 17 23.5 (± 18.9) 15.1 (± 14.6) 7.6 (± 8.9) 6/11
FCD 3D 15 15.4 (± 11.0) 5.7 (± 8.4) 6.8 (± 5.4) 7/8
PMG 33 8.5 (± 9.1) 1.6 (± 2.7) 5.9 (± 6.4) 10/23
HME 6 1.3 (± 0.5) 0.1 (± 0.2) 1.3 (± 0.6) 2/4
TSC 19 5.5 (± 6.9) 0 (± 0) 5.5 (± 6.9) 8/11
mMCD 28 24.6 (± 17.6) 9.6 (± 12.3) 11.6 (± 13.3) 13/15
MOGHE 22 8.0 (± 7.2) 8 (± 7.3) 6.0 (± 5.8) 8/12
TLE 15 37.0 (± 15.3) 7.4 (± 7.9) 29.6 (± 16.6) 8/7
CTRL 4(11) 31.3 (± 22.3) n.a n.a 3/1

Table 2   Clinical summary of the test cohort

FCD focal cortical dysplasia, mMCD mild malformation of cortical 
development, MOGHE mMCD with oligodendroglial hyperplasia in 
epilepsy, TLE temporal lobe epilepsy, TSC– tuberous sclerosis com-
plex

Diagnosis N ∅ age at 
surgery

∅ age at 
onset

∅ duration Sex 
(female/
male)

FCD 1A 2 10.5 (± 12.0) 4.5 (± 6.4) 6.0 (± 5.7) 1/1
FCD 2A 6 20.9 (± 18.7) 4.4 (± 3.4) 16.2 (± 15.4) 1/5
FCD 2B 6 22.8 (± 12.5) 6.6 (± 6.1) 16.8 (± 13.1) 0/6
FCD 3A 4 20.3 (± 18.9) 3.8 (± 4.3) 16.5 (± 19.7) 2/2
FCD 3C 6 23.3 (± 18.1) 14.2 (± 12.5) 9.9 (± 8.7) 3/3
FCD 3D 2 27.0 (± 14.1) 2.5 (± 3.5) 24.5 (± 17.7) 0/2
mMCD 5 29.0 (± 13.8) 17.0 (± 8.9) 13.0 (± 3.2) 2/3
MOGHE 5 9.7 (± 10.4) 5.0 (± 8.4) 4.7 (± 2.8) 1/4
TLE 3 37.3 (± 9.9) 17.0 (± 11.4) 20.3 (± 2.9) 0/3
TSC 4 3.6 (± 1.9) 0.0 (± 0.0) 3.6 (± 1.9) 2/2
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min_samples = 1, min_cluster_size = 4. We then re-ran 
the HDBSCAN algorithm within a loop while randomly 
down-sampling the data to five samples per disease group 
for a total of 100 times. We performed additional hierar-
chical cluster analysis of the corresponding normalized M 
values using python-based seaborns, clustermap plotting 
method [65]. The following non-default parameters were 
used: standard_scale = 1, method = ’ward’.

Machine and deep learning

‘Scikit-learn’, ‘fastai’, and ‘Pytorch’ were used as python-
based packages to leverage machine and deep learning [30, 
55, 56]. We split the processed methylation data from the 
steps above into an independent training, validation, and 
test set. Care was taken that disease classes were strati-
fied across the sets evenly. The test set contained 43 fully 

Fig. 1   Histopathological findings in representative MCD and control 
cases from the present cohort. a–b FCD1A with neocortex show-
ing abundant radial organization of neurons (micro-columns, black 
arrows, NeuN immunohistochemistry). c In MOGHE the cortical 
ribbon shows no evidence for radial micro-columns or horizontal 
dyslamination. Instead, gray–white matter blurring with heterotopic 
neurons subjacent to white matter and (d) increase in OLIG2‐immu-
noreactive oligodendroglial cells are detected. e In FCD2B, dysmor-
phic neurons accumulating non-phosphorylated neurofilament pro-
tein and lacking regular anatomic orientation (green arrows, SMI32 
immunohistochemistry) as well as balloon cells characterized by 

large cell bodies occasionally presenting with multiple nuclei (aster-
isk) positively staining for Vimentin are present (VIM, dark red 
arrows). g In PMG, NeuN immunohistochemistry identifies abnor-
mally folded sulci without pial opening. The cortical ribbon was 
thinned, mainly four-layered, and the gray to white matter bounda-
ries were blurred with increased numbers of heterotopic neurons in 
the white matter. (h–i) Visualization of sampling method: Overview 
of H&E stained slides depicting selective sampling from regions of 
interest, e.g., neocortex or white matter, in a control sample. Scale 
bars are 1 mm if not shown otherwise
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independent samples that were not used at any model 
training and validation stage.

Machine learning

Using ‘Scikit-learn’, various types of, classic machine 
learning algorithms were spot-checked on their perfor-
mance on the dataset via stratified fivefold cross-valida-
tion. We separately trained an, extra trees classifier, a, 
nearest neighbor classifier, a, support vector classifier’ and 
a, ‘random forest classifier. We then modeled via strati-
fied fivefold cross-validation an ensemble stacking model 
using, vecstack [32]. Stacked Generalization or “Stack-
ing” is a two-step approach. The first step is to train base 
machine learning models on the dataset. Therefore, we 
used the same models as described above. The second 
step consists of training, a so-called meta-model on the 
predictions of the base models. This meta-model thereby 
tries to combine the base models predictions more robustly 
and accurately. We used the, XGBClassifier from, xgboost 
as our meta-model [18]. XGBoost stands for “Extreme 
Gradient Boosting” and is an implementation of gradient 
boosted decision trees. Boosting is an ensemble technique 
where new models are added to correct the errors made by 
existing models. Models are added sequentially until no 
further improvements can be made. Gradient boosting is 
an approach where new models are created that predict the 
residuals or errors of prior models and then added together 
to make the final prediction. It is called gradient boosting 
because it uses a gradient descent algorithm to minimize 
the loss when adding new models [47].

Deep learning

Utilizing, fastais tabular-learner, we modeled a deep linear 
neuronal network consisting of three subsequent layers. 
The first layer contained 500, the second layer 250, and 
the last layer only one neuron. In a stratified fivefold cross-
validation manner, we then trained neuronal networks with 
a batch size of 32 by cycling the learning rate between 
0.0001 and 0.08 for a total of four epochs which was iden-
tified by early stopping. Conventionally, the learning rate 
is decreased as the learning starts converging with time. 
It is helpful to oscillate the learning rate toward a higher 
learning rate as it may help get out of saddle points. This 
method was found to be most efficient in training neuronal 
networks [5, 63]. To be consistent with plots of the disease 
clusters, we transformed the predictions of the machine 
learning and neuronal network models into a two-dimen-
sional space via UMAP dimensionality reduction.

Classifier performance measures

The performance of the resulting classifier predictions gen-
erated by the cross-validation for machine and deep learning 
models was evaluated by the balanced accuracy, precision, 
recall, F1 score, and the multiclass area under the receiver 
operating characteristic (ROC) curve (AUC). Results were 
plotted into a normalized confusion matrix. The balanced 
accuracy takes class imbalances into account. Precision and 
recall were chosen as additional metrics to measure how 
good samples were classified concerning the fraction of cor-
rectly and incorrectly classified samples. Precision is also 
known as the positive predictive value, and recall is also 
known as sensitivity. To easier assess these metrics during 
the training process, we additionally captured the harmonic 
mean between these scores: the F1 score.

Results

Methylation clusters define MCD and non‑MCD

To establish a comprehensive MCD reference cohort, we 
generated genome-wide DNA methylation profiles using 
Infinium HumanMethylation850K BeadChip arrays (average 
group size 19; range 6–33 samples) from 239 surgical cases 
representing the majority of MCD disease entities (FCD 
1A, 2A, 2B, 3A, 3B, 3C, 3D, PMG, HME, TSC, mMCD, 
MOGHE). We also included the intact temporal neocortex 
of 15 non-MCD TLE patients. Furthermore, we selected 11 
samples from 4 autopsy cases representing non-neoplastic, 
non-MCD, non-epilepsy controls (CTRL; micro-dissected 
white matter and neocortex were studied individually, 
Fig. 1). Altogether, this resulted in a combined reference 
cohort of 265 samples (Table 1).

We performed unsupervised dimensionality reduction and 
hierarchical cluster analysis using 433,213 CpG probes. All 
disease groups in our analysis formed separate clusters in the 
UMAP dimensionality reduction characterized by distinct 
DNA methylation profiles (Fig. 2a). No confounding corre-
lation with any other variable of our data was detected (e.g., 
sex, age at onset, age at surgery, lobe, neuronal proportion; 
Supplement Fig. 1, online resource). Unsupervised learning 
using HDBSCAN as a clustering algorithm (Fig. 2b) and 
hierarchical cluster analysis confirmed the separation of all 
samples at the disease level (Fig. 2c). To test the stability 
of identified clusters, we re-ran the HDBSCAN algorithm 
within a loop while randomly down-sampling the data to five 
samples per disease group for a total of 100 times. Thereby 
we demonstrated that the proximity of cases of the same 
class was preserved across iterations, indicative of high sta-
bility of methylation classes independent of the exact com-
position of the reference cohort (Fig. 2d).
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Machine and deep learning can distinguish 
between histopathological entities

Future application in routine diagnostics requires fast, repro-
ducible, and unbiased classification of samples. It also needs 
a measure of confidence for the specific call. We trained 
a, stacking machine learning algorithm (ML), a so-called 
ensemble method that combines the predictions of several 
‘weak’ classifiers to improve prediction accuracy, and com-
pared it to a three-layer shallow neuronal network (i.e., deep 
learning model, DL). Both ML and DL classifiers raw pre-
dictions were UMAP reduced to two dimensions, plotted, 
and showed excellent methylation class separation (Fig. 3a, 
b). When running fivefold cross-validation, the machine 
learning approach reached a balanced classification accuracy 
of 0.80, positive predictive value (i.e., precision) of 0.73, and 
sensitivity (i.e., recall) of 0.71, indicating already a good 

discriminating power (Fig. 3c). However, the neuronal net-
work approach outperformed the ML classifier on all metrics 
(balanced accuracy 0.94, positive predictive value of 0.98, 
and sensitivity of 0.98; Fig. 3d). Looking at the confidence 
of the classification decision for each sample, misclassi-
fied samples showed reduced confidence percentage scores 
for the machine learning and neuronal network approach 
(Fig. 3e, f), indicating that thresholding the classification 
confidence might be an appropriate method to minimize the 
method’ error rate. Using Receiver Operating Characteris-
tic (ROC) curve analysis, we devised an optimal threshold 
of ≥ 0.9 (Supplement Fig. 2, online resource).

Taken together, our findings provide evidence that meth-
ylation profiles are distinct for different epilepsy-associated 
disease entities and can be discriminated by machine and 
deep learning methods, which may help to rationalize dis-
ease classification and patient stratification.

Fig. 2   Major MCD subtypes can be distinguished by their DNA 
methylation profiles. a UMAP plot for dimensionality reduction sum-
marizing 12 MCD together with the TLE and control methylation 
classes of the reference cohort. Methylation classes reflect disease 
groups based on histology and are color-coded. b Confirmatory unsu-
pervised identification of 14 clusters using HDBScan clustering algo-
rithm (independent colors). This approach identified WM and NCx 
controls as a single uniform cluster. c Hierarchical cluster analysis 
summarizing DNA methylation profiles of 265 samples of the refer-

ence cohort. d X and Y coordinates of the first 10 of a total of 100 
iterations of UMAP dimensionality reduction generated by random 
down-sampling to assess clustering stability. A line connects axis 
positions of individual cases. The depiction illustrates the proximity 
of cases of the same class across iterations, indicative of the high sta-
bility of methylation classes independent of the exact composition of 
the reference cohort. The color scheme for histopathological entities 
applies to 1–3, except 1b)
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Disease classification in an independent test cohort

Next, we tested both models against an independent test cohort 
(n = 43), including 18 samples obtained from the most recent 
ILAE FCD agreement trial [9]. These difficult-to-classify sur-
gical brain samples obtained from pediatric and adult focal 
epilepsy patients had undergone multiple rounds of histopatho-
logical evaluations by 13 international expert neuropatholo-
gists to achieve an agreement on the diagnosis and were now 
analyzed for DNA methylation. Clinical data for the entire 
reference cohort are summarized in Table 2 and Supplement 
table 1, online resource. Methylation profiling and data analy-
sis were performed as for the reference cohort, and test cohort 

cases were assigned as either ‘matching to a defined DNA 
methylation class’ (score ≥ 0.9) or as ‘no match’ cases (highest 
score < 0.9). All profiled samples of the test cohort matched 
to an established DNA methylation class in both ML (Fig. 4a) 
and DL models with a classifier score ≥ 0.9 (Fig. 4b). However, 
only in the DL model were the results obtained by pathology 
and DNA methylation profiling concordant.

Fig. 3   Machine and deep 
learning models can be trained 
to distinguish disease entities 
based on DNA methylation. a, b 
UMAP plots showing methyla-
tion classes based on ML and 
DL models. c, d Precision-recall 
curve to quantify the efficiency 
of our multiclass prediction 
task by ML and DL models. e, 
f Performance of the ML and 
DL models to discriminate 
14 classes from the validation 
and test datasets presented as 
normalized confusion matrices. 
The vertical axis indicates the 
true (annotated) disease class 
of a sample, and the horizontal 
axis represents the predicted 
class. Precision of the DL 
model is almost 100% in all 
classes except controls, where, 
after correction for neuronal 
proportion, CTRL NCx (dark 
blue) and CTRL—Wm (light 
blue) form a single methyla-
tion class. Color scheme as in 
Fig. 1. DL deep learning; ML 
– machine learning; UMAP 
uniform manifold approxima-
tion and projection
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Discussion

Array-based DNA methylation profiling of formalin-fixed 
and paraffin-embedded human tissue samples has become 
a valuable tool to inform histopathology diagnosis in brain 
tumors [15, 16, 35, 60, 67]. Our data now suggest a practical 
application also in the diagnostic arena of epilepsy surgery 
and difficult-to-diagnose brain malformations. We studied 
a series of 308 cases with pharmaco-resistant epilepsy that 
underwent surgical treatment and were diagnosed with his-
topathologically confirmed MCD. This cohort covered the 
12 most common MCD subtypes [11] and also our control 
categories of non-MCD epilepsy and non-epilepsy post-
mortems. We demonstrated that DNA methylation profiling 
distinguished epilepsy tissues from controls and specifically 
separated all 12 MCD subtypes. These pathology-associ-
ated methylation classes could be further discriminated by 
machine and deep learning algorithms.

Histopathology diagnosis of epilepsy surgery brain tis-
sue poses a particular challenge to everyday clinical prac-
tice, especially in FCD [13]. This has been demonstrated 
several times in international agreement trials with kappa 
values of 0.4968 for mMCD and FCD 1 in one study [17] 
and 0.7824 in another study testing the ILAE classification 
scheme of 2011 [20]. The inter-observer agreement may 
vary from poor (k = 0.16) to good (k = 0.68) depending on 
the additional amount of information being available for 
the neuropathologist, i.e., immunohistochemistry or gene 
panel analysis [9]. In fact, the FCD classification scheme 
has been continuously modified and adapted to address this 
issue [13, 54]. Difficult-to-anticipate anatomical landmarks 
in not well preserved or presented surgical specimens and 
loosely described histopathology features remain the major 
obstacles to date [52]. While immuno-histochemical mark-
ers were introduced and recommended in 2016 by an ad 
hoc Task Force of the ILAE on diagnostic methods [7], it 
was not yet included in the FCD consensus classification 
scheme. Moreover, the small number of epilepsy surgery 
cases in an individual center requires continuous training of 
the neuropathologist, but only a few opportunities exist to 

attend specialized training programs [57]. Hence, develop-
ing an easy-to-use and FFPE-compatible diagnostic tool is 
of great importance to enhance the diagnostic yield in MCD, 
overcome inter-observer variability and standardize MCD 
diagnostics across centers and clinical trials [9].

DNA methylation analysis already fosters detection and 
molecular characterization of more specific and new dis-
ease entities in the broad group of brain tumors, particu-
larly those characterized by specific pathogenic variants or 
treatable by targeted therapies [28, 34, 41, 51, 64, 68]. We 
assume that the disease classification of MCD will also show 
such a dynamic adaptation, with more molecular genetic 
data becoming available over time. An integrated pheno-
type–genotype classification scheme has already been pro-
posed for FCD, mainly Type 2, where brain somatic muta-
tions in MTOR and GATOR signaling have been repeatedly 
identified [3, 8, 22]. Another practical example is MOGHE, 
which was first described histopathologically in 2017, speci-
fied further by a characteristic MRI signature, and finally 
revealed brain somatic mutations in the UDP-galactose 
transporter gene SLC35A2 [8, 14, 27, 61]. In the present 
study, MOGHE cases showed a specific DNA methylation 
cluster, distinct from the clinically most challenging differ-
ential diagnosis of FCD 1A (Holthausen et al. accepted in 
Epilepsia) or other mMCD and non-lesional focal epilepsy 
[14].

Further, we recently identified polymicrogyria (PMG) 
with mosaic trisomy of the long arm of chromosome 1 as a 
molecularly defined MCD subgroup [38]. Its specific DNA 
methylation signature and copy number profile clinically 
associated with a unilateral frontal or hemispheric PMG 
without hemimegalencephaly, a severe form of intractable 
epilepsy with seizure onset in the first months of life, and 
severe developmental delay. Thus, it was to represent a dis-
tinct subtype within the spectrum of PMG disorders.

Yet another ongoing interest and research area has been 
low-grade developmental brain tumors associated with 
early-onset epilepsy, with many new categories imple-
mented in each novel WHO classification scheme [6]. 
DNA methylation revealed distinct molecular signatures 

Fig. 4   Model testing with inde-
pendent samples. Mapping of 
independent test cohort (black 
circle) to methylation classes 
identified by our (a) ML and 
(b) DL models. Only in the DL 
model were fully concordant 
results by pathology and DNA 
methylation profiling obtained
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for many of these new brain tumor entities [24, 31, 62], 
including papillary glioneuronal tumors [29] and, more 
recently also isomorphic diffuse glioma [66]. However, 
epilepsy surgery tissue is distinct from CNS tumor sam-
ples and imposes specific challenges to be addressed (see 
Supplement Fig. 3, online resource, for details). First, cor-
tical malformations obtained from epilepsy surgery usu-
ally contain low-level mosaicism of affected cells mixed 
with normally developed neurons and glial cells. MCD 
also result from pathogenic variants at variable sites of the 
affected genes compared to more frequent hot-spot muta-
tions in brain tumors. Many MCD pathologies completely 
lack any known driver mutation. While tumors are con-
sidered to develop from single cells of origin by clonal 
evolution so that all cells within the tumor harbor the 
same mutation, epileptic tissue fails to show that pattern. 
Even neighboring neurons in the normal brain may carry 
a genetic profile much different from each other [45, 46].

In contrast, the genomic DNA methylation in bulk epi-
leptic brain tissue has been highly specific to the seizure 
phenotype across species and model systems irrespective of 
cellular composition and appeared further specific for etiol-
ogy and histopathology [23, 38–40]. While previous stud-
ies analyzed only small sample cohorts focusing on specific 
pathologies, e.g., FCD or PMG, the present study is the first 
comprehensive description of diagnostically valuable DNA 
methylation signatures across the broad spectrum of MCD 
and all age groups. Continuing efforts for molecular charac-
terization of epilepsy surgery tissue may in future enhance 
our understanding of, e.g., hemimegalencephaly, which 
remains a solely macroscopic diagnosis based on MRI so 
far, or other heterogeneous and not yet well-defined diag-
nostic entities, e.g., FCD Type 1, and non-lesional tissue. 
The inclusion of new diagnostic MCD entities based on such 
an advanced molecular diagnostic workup will, however, 
require a careful review to advance clinical patient manage-
ment and precision medicine in the arena of epileptology.
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