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Non-human primates appeared as the closest model to study 
human iatrogenic prion diseases [14]: we report here the 
consequences of variant Creutzfeldt–Jakob disease/bovine 
spongiform encephalopathy (vCJD/BSE) inoculation in a 
cynomolgus macaque finger, with the demonstration of an 
original mode of propagation and the practical risk for pro-
fessional exposure.

The distal right middle finger handpad of a 4-year-old 
macaque was incised on both lateral sides to induce local 
inflammation, and then injected with the equivalent of 10 mg 
of a BSE, orally challenged macaque brain [18]. After an 
18 months period of finger clumsiness, the clinical disease 
(behaviour abnormalities, fear, hyperesthesia, gait distur-
bances, shaking) began 7.5 years after inoculation and eutha-
nasia took place 2 months later for welfare reasons. Motor 
conduction velocity of the right median nerve was reduced 
to one-third of the left counterpart and sensory potential 
was not detected.

Histological and biochemical studies were performed 
as previously described. All the elements of the triad were 
present [7–9]: spongiform change was moderate in neocor-
tex, striatum, brain stem, mild in spinal cord but severe in 
thalamus and cerebellum; neuronal loss was globally moder-
ate, but severe in cerebellum and sacral spinal cord (vacu-
olated neurons); gliosis was severe in thalamus, cerebellum 
and brain stem and moderate elsewhere (Supplementary 
Fig. 1). ELISA and western blot (WB) showed the expected 

accumulation of  PrPres with BSE glycophoretic pattern at 
all levels of brain and spinal cord (Supplementary Fig. 2).

In the brain,  PrPd deposits were laminar into the cortical 
deep layers, massive into thalamus, basal ganglia, cerebel-
lum, and brain stem. In spinal cord,  PrPd was symmetrically 
distributed, intense in the Substantia gelatinosa and nucleus 
dorsal of Clarke while decreased at sacral level. Deposits 
were diverse into the whole CNS: synaptic, perineuronal, 
reticular aggregates, mini-plaques, plaques, and incomplete 
florid plaques. The retinal plexiform layers were labelled 
(Supplementary Fig. 1i). There were no amyloid or tau 
deposits.

Unusual  PrPd deposits were observed along dendrites, 
short and long axons, neuritic threads tracing fine networks 
of straight lines or like strings of pearls (Supplementary 
Fig. 3). They were present into deep neocortex, basal gan-
glia, and motoneurons. Such long processes are not frequent 
but have been reported in human [13] and experimental stud-
ies [10, 22].  PrPd deposits were also noted as very mild into 
striato-pallidal projections, both limbs of internal capsule 
and fornix (Supplementary Fig. 3). The presence of  PrPd 
in white matter has been reported (Supplementary text 4).

Peripherally, the expected  PrPd was undetectable in 
lymphoid organs, including spleen, through biochemical 
or immunohistochemical analyses, while prion replication 
was detected in the peripheral nervous system (PNS):  PrPd 
staining was visualized in many dorsal root ganglia (DRG) 
but only in nerves innervating the forelimb site of injection 
(median and ulnar nerves). At the cellular level,  PrPd was 
limited to ganglia and satellite cells in DRG and Schwann 
cells (Scs) all along nerves whereas axons were never 
labelled (Fig. 1). Previously, using postmortem immuno-
histochemical studies (listed in Supplementary text 5),  PrPd 
has been shown in peripheral nervous system in all forms 
of human neuropathies, albeit more frequently in vCJD, 
mostly in posterior root nerve fibres at adaxonal location 
and/or in ganglion and satellite cells. The restricted amount 
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of  PrPd was repeatedly underlined but, recently, prion RT-
QuiC was positive in all nerves examined [2].  PrPd has also 
been described, first in scrapie [17] then in BSE, as limited 
“adaxonal deposits” or/and Sc deposits, with or without 
DRG cell involvement (review in [4] and Supplementary 
text 6). Previous studies of the mode of propagation of  PrPd 
have reported variable observations and analyses depending 
on strains, host species and genotype (Supplementary text 
6); the authors discussed the role of the sensory route of 
trafficking of prions, the modifications of axonal transport, 
the centrifugal versus centripetal spread of  PrPd.

After peripheral infection, accumulation of infectious 
agent is reputed to occur in lymphoid tissues before direct 
neuroinvasion [18, 19], even with very little apparent 
peripheral lymphoreticular deposition [6, 20]. Here, there 
is no apparent replication/amplification of vCJD/BSE 
agent in the lymphoid tissues of the exposed macaque. In 
this model, the neural contamination occurred directly in 
the highly innervated finger while neuroinvasion appears 

to occur in Scs along the median nerve to the DRG, with 
the appearance of the classical labelling of ganglion 
cells which indicates the onset of the first level of neu-
ronal infection. This model provides direct evidence of 
the hypothesis of a sequential infection of Scs from the 
periphery to the CNS, followed by a secondary diffusion 
into the spinal cord, as already considered by our group 
[15] and others [1, 3, 11, 12, 21]. It is to note that studies 
based on intra-sciatic nerve injections in hamsters [16] and 
transgenic mice [12] had established a rate of transport of 
infectivity of, respectively, 0.5–2 mm and 0.7 mm per day. 
This key role of Scs could explain both the low speed of 
propagation and the discrepancy between the paucity of 
 PrPd into the distal part of the sensory nerves followed by 
the positivity of DRG, satellite cells and proximal roots.

In conclusion, we have observed that the exposure 
of a primate to vCJD/BSE through a distal finger lesion 
induces, after more than 7.5 years of silent incubation, a 

Fig. 1  PrPd immunostaining (SHA31) of lumbar root ganglia (a) 
(cytoplasmic dots in ganglia cells and larger aggregates in satellite 
cells) and lumbar proximal root (b) (adaxonal, but not axonal label-

ling).  PrPd immunostaining (3F4) of right proximal median nerve 
showing a few labelled Schwann cells (c). Isotype control (d)
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massive deposit of  PrPd, strictly restricted to the nervous 
system and the eye.

Our data suggest a new type of pure unique peripheral 
nervous contamination in which the Scs would have a major 
role in the mode of centripetal progression of  PrPd in the 
peripheral nervous system. Moreover, considering the fact 
that, recently, “a variant CJD diagnosed 7.5 years after occu-
pational exposure” (cryomicrotomy) in a technician was 
observed [5], this experimental case report supports the risk 
linked to professional exposure and reinforces the necessity 
of adequate measures of prevention.
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