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Abstract
In 2012, an international consensus paper reported that medulloblastoma comprises four molecular subgroups (WNT, SHH, 
Group 3, and Group 4), each associated with distinct genomic features and clinical behavior. Independently, multiple recent 
reports have defined further intra-subgroup heterogeneity in the form of biologically and clinically relevant subtypes. How-
ever, owing to differences in patient cohorts and analytical methods, estimates of subtype number and definition have been 
inconsistent, especially within Group 3 and Group 4. Herein, we aimed to reconcile the definition of Group 3/Group 4 MB 
subtypes through the analysis of a series of 1501 medulloblastomas with DNA-methylation profiling data, including 852 
with matched transcriptome data. Using multiple complementary bioinformatic approaches, we compared the concordance 
of subtype calls between published cohorts and analytical methods, including assessments of class-definition confidence 
and reproducibility. While the lowest complexity solutions continued to support the original consensus subgroups of Group 
3 and Group 4, our analysis most strongly supported a definition comprising eight robust Group 3/Group 4 subtypes (types 
I–VIII). Subtype II was consistently identified across all component studies, while all others were supported by multiple 
class-definition methods. Regardless of analytical technique, increasing cohort size did not further increase the number of 
identified Group 3/Group 4 subtypes. Summarizing the molecular and clinico-pathological features of these eight subtypes 
indicated enrichment of specific driver gene alterations and cytogenetic events amongst subtypes, and identified highly 
disparate survival outcomes, further supporting their biological and clinical relevance. Collectively, this study provides 
continued support for consensus Groups 3 and 4 while enabling robust derivation of, and categorical accounting for, the 
extensive intertumoral heterogeneity within Groups 3 and 4, revealed by recent high-resolution subclassification approaches. 
Furthermore, these findings provide a basis for application of emerging methods (e.g., proteomics/single-cell approaches) 
which may additionally inform medulloblastoma subclassification. Outputs from this study will help shape definition of the 
next generation of medulloblastoma clinical protocols and facilitate the application of enhanced molecularly guided risk 
stratification to improve outcomes and quality of life for patients and their families.
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Introduction

Medulloblastoma (MB; World Health Organization grade 
IV) is a highly malignant brain tumor mainly occurring in 
childhood [16]. In 2005, it was reported that beta-catenin 
(CTNNB1) mutations defined a group of MBs with activated 
WNT/wingless signaling, which was associated with favora-
ble outcome [5, 8, 24]. Subsequently, multiple independent 
unsupervised gene expression microarray studies conducted 
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on medium-sized MB cohorts (typically n < 200) described 
between 4 and 6 molecular subgroups [4, 14, 15, 30]. In 
2012, an international consensus on MB subgroups was 
reached amongst the pediatric neuro-oncology community, 
reporting four distinct MB subgroups: WNT, SHH, Group 
3 (Grp3), and Group 4 (Grp4) [24, 29]. Since publication of 
this consensus, the biological and clinical relevance of MB 
subgroups has been extensively reported, including methods 
for robustly assigning clinical samples to subgroups based 
on either transcriptomic [22] or methylomic signatures [12, 
25, 27]. Together, these advances recently culminated in the 
recognition of MB subgroups as part of the WHO Classifi-
cation of CNS tumors [17, 24], which currently recognizes 
four molecular variants of the disease (WNT, SHH-TP53wild 

type, SHH-TP53mut, and non-WNT/non-SHH). The non-
WNT/non-SHH subgroup encompasses the Grp3 and Grp4 
consensus molecular variants of medulloblastoma.

WNT MB patients aged under 16 typically have a 
favourable prognosis (> 90% survival); the prognosis for 
adult WNT MB patients is less clear [5, 7, 8, 11]. SHH MB 
patients exhibit heterogeneous outcomes that are associated 
with patient age at diagnosis, histopathology, and specific 
underlying genetics (i.e., TP53 mutation status) [11, 26, 32]. 
The defining biology of Grp3 and Grp4 MB remains less 
clear. MYC amplification is a hallmark feature of Grp3 MB, 
occurring in ~ 15–20% of patients and associated with a poor 
clinical outcome. Chromatin modifier alterations are com-
mon in Grp4 MB, collectively contributing to ~ 30–40% of 
patients. Whole-chromosome abnormalities alongside isoch-
romosome 17q are common in both Grp3 and Grp4 MB 
[21]. Activated expression of GFI1 or GFI1B transcription 
factors through a structural variant-dependent mechanism 
termed ‘enhancer hijacking’ likewise contributes to subsets 
of Grp3 and Grp4 tumors [20].

Grp3 and Grp4 represent ~ 65% of all MB cases and have 
heterogeneous clinical characteristics and survival out-
comes. In part, these are associated with known high-risk 
disease factors (patients < 3 years of age at diagnosis, MYC 
amplification, large cell/anaplastic (LCA) histology, and 
metastatic disease) [23]. However, substantial numbers of 
Grp3/Grp4 patients relapse in the absence of these risk fac-
tors [11, 29]. A more refined understanding of their molecu-
lar heterogeneity is urgently needed for improved disease 
subclassification, stratification of current treatments, and the 
development of novel, subgroup-directed therapies.

In 2017, three independent studies investigated the molec-
ular and clinical features of MB subgroups in larger cohorts 
and at higher genomic resolution than had previously been 
reported [3, 18, 26] (Fig. 1).

Using non-negative matrix factorization (NMF) to 
define metagenes, composite measures that reflect the 
methylation status of many molecular features to describe 
the major biological effects within a data set, Schwalbe 

et  al. [26] reported seven molecular subtypes of MB 
through unsupervised class discovery based on 428 MBs 
profiled by DNA-methylation array [6]. While WNT 
remained a single entity, SHH split into two age-dependent 
subtypes. Likewise, Grp3 and Grp4 each split into two 
high- and low-risk groups, with clear evidence for shared 
biology between them.

Cavalli et al. performed an integrative analysis of 763 
MBs profiled by both gene expression and DNA-methyla-
tion array using a technique called similarity network fusion 
(SNF). This technique constructs networks for each discrete 
data type (e.g., DNA methylation and gene expression) and 
then fuses them to give an overarching view of a disease. In 
their analysis, they identified 12 molecular subtypes: the four 
consensus subgroups were analyzed independently of each 
other; WNT was split into two age-dependent subtypes, SHH 
into four subtypes, and Grp3 and Grp4 were each split into 
three subtypes (alpha, beta, and gamma) [3].

Northcott et al. applied t-Distributed Stochastic Neighbor 
Embedding (t-SNE), a dimension reduction technique, fol-
lowed by clustering using the DBSCAN (density-based clus-
tering of applications with noise) algorithm. t-SNE reduces 
the variation within a complex data set to typically 2 or 3 
dimensions. While it has similarities to the more familiar 
principal component analysis (PCA), t-SNE is more effec-
tive at maintaining local differences between samples while 
preserving larger scale, global differences between different 
subgroups. DBSCAN is a clustering algorithm that groups 
samples based on their proximity (or density). This com-
bined t-SNE/DBSCAN approach was applied to a series of 
1256 MBs profiled by DNA-methylation array [18]. Class 
discovery was undertaken by analyzing Grp3 and Grp4 
subgroups together (n = 740), identifying eight subtypes 
(I–VIII).

It may be hypothesized that the differing number of 
reported subtypes between studies, particularly within 
Grp3 and Grp4, is a result of different analytical approaches, 
parameter choice and cohort composition. There is now an 
urgent need to reach an agreement, which resolves the appar-
ent inconsistencies in subtype numbers between studies, to 
provide the requisite clarity to provide a consistent basis for 
biological studies and enable subsequent planning of future 
MB clinical trials.

Herein, we aimed to characterize the number and nature 
of Grp3 and Grp4 MB subtypes in an unbiased way, in a 
genomically characterized cohort of 1501 such MBs. We 
applied the same analytical techniques and approaches used 
in each of the previously described studies, in conjunction 
with classification confidence measures, to objectively iden-
tify robust and reproducible concordant subtypes within 
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Grp3 and Grp4. We describe their major clinico-pathologi-
cal and molecular features, their relationship to the original 
consensus Grp3 and Grp4 definitions and proffer a routine 
classification tool to prospectively assign MB samples to 
these eight concordant subtypes.

Materials and methods

Sample classification and pre‑selection

We combined data for all MB samples from the three pub-
lished cohorts [3, 18, 26], and added methylation profiles 
from an additional 153 tumors. All samples were classi-
fied using the MNP2.0 v11b4 Random Forest classifier [2]; 
only samples classified as Grp3 and Grp4 with a calibrated 

Fig. 1  Summary of ‘second-
generation’ medulloblas-
toma subgrouping of Grp3/4 
medulloblastoma. a For each 
component study, the reported 
subtypes of Grp3/4 are shown, 
alongside incidence, age where 
possible, methodology, and 
major study findings. For each 
individual study, the most fre-
quent subtype was scaled to 14 
human figures; less frequently 
occurring subtypes were 
scaled from there. LR low risk, 
HR high risk. The analytical 
approach employed in a unified 
Grp3/4 cohort in this study is 
outlined in b. t-SNE t-stochastic 
neighbor embedding, NMF non-
negative matrix factorization, 
SNF similarity network fusion
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prediction score of 0.90 were selected for further analysis. 
The excluded samples are characterized in Supplemen-
tary Tables 1 and 2 and non-MB predictions are shown in 

supplementary Fig. 2. Grp3 and Grp4 sample profiles were 
considered together; no a priori assumptions about the 



313Acta Neuropathologica (2019) 138:309–326 

1 3

absolute separation or otherwise of Grp3 and Grp4 samples 
were made.

Initial data import, normalization, and quality control of 
the methylation arrays were performed using the R pack-
age ‘minfi’, as previously described [18]. All duplicated 
MB samples (n = 80) were removed [2, 18]. Copy-number 
changes for the resultant unique, non-duplicated cohort 
(n = 1501), were identified using the conumee package (v 
1.9.0), as previously described [18, 26].

Analytical techniques used in the component studies 
of this combined Grp3 and Grp4 cohort (NMF, SNF, and 
t-SNE/DBSCAN) were performed as previously described 
[3, 18, 26], but with the addition of a common consensus 
clustering approach to assess cluster stability and reliability. 
Briefly, we carried out iterative resampling of the data sets, 
randomly selecting 80% of the data set at each iteration. 
At each iteration, the identified clusters were mapped back 
to ‘gold-standard’ clusters identified using the entire data 
set and cluster reproducibility was assessed using Cohen’s 
kappa. Individual samples were classified as ‘not-assignable’ 
if their frequency of assignment to the modal cluster fell 
below 80% [26]. For each technique, our overarching aim 
was to identify a maximal number of robustly assigned sub-
types (supplementary Fig. 4).

t‑SNE/dbSCAN identification of subtypes

For unsupervised t-SNE analysis of the 1501 MB samples, 
we selected the 15,335 most variably methylated probes 
(weighted standard deviation > 0.25). We defined a distance 
measure (‘1—the weighted Pearson correlation coefficient’) 
and used this to calculate pairwise sample distances, using 
the wtd.cors function of the weights R package (v.0.85), 
which gives more variable probes greater influence. The 
resulting distance matrix was used to perform the t-SNE 
analysis (Rtsne package v.0.13), using previously described 
parameters [18]. The clusters were identified using the 
DBSCAN algorithm as implemented in the dbscan package 

v.0.9-7. Samples not assigned to any cluster were iteratively 
merged to their nearest cluster as previously described [18]. 
For the consensus application of this approach, we per-
formed 2500 resamplings, each selecting 80% of the data 
set, and, at each iteration, calculated t-SNE coordinates for 
a range of dimensions (2–10) and assigned 2–10 clusters 
using k-means, since this allows the specification of a fixed 
number of clusters.

NMF consensus clustering

Consensus clustering of the cohort was performed as previ-
ously described [26]. Briefly, using 250 resamplings of 80% 
of the data set (as in the component study), we performed 
non-negative matrix factorization to identify from 2 to 10 
metagenes within the data set, and projected them back onto 
the entire cohort. These metagenes were then clustered into 
2–10 groups using k-means. Clusters were mapped against 
gold-standard clusters identified using the entire data set; 
cluster and sample stability were assessed as for t-SNE con-
sensus analysis. Optimal combinations of subtype and meta-
gene number were identified as previously reported [26]. 
Five optimal subtypes were identified using this approach. 
We repeated NMF consensus clustering for each of these 
five defined subtypes in isolation, which we termed ‘second-
order’ NMF, to examine whether any additional subtypes 
could be identified.

Similarity network fusion

We applied Similarity Network Fusion (SNF) as employed 
by Cavalli et al. [3], on the entire DNA-methylation array 
cohort, as well as on three subcohorts with paired DNA 
methylation/gene expression data. These cohorts were 
unsuitable to assess in combination due to differing tran-
scriptomic platforms (Affymetrix Exon array data (n = 763) 
[3], Affymetrix 3′IVT expression arrays (n = 250) [18], and 
RNA-seq data (n = 131) [26].

For the methylation array only cohort (n = 1501), we per-
formed consensus SNF clustering using the SNFtool pack-
age v 2.2, different parameters for k (10, 20, 30, and 40) and 
varying numbers of k-means clusters (2–10). Cluster and 
sample stabilities were assessed as per t-SNE analysis. For 
the paired methylome/transcriptome analyses, we custom-
ized parameters specifically for Grp3 and Grp4, as described 
by Cavalli et al. (k = 20, α = 0.5, T = 10, C = 2) [3]. For tran-
scriptome data, the 10% most variably expressed genes were 
preselected; for methylation data, the 10% most variably 
methylated CpG loci were selected for creating patient sim-
ilarity matrices. The fused output similarity matrices with 
display clusters were then visualized.

Fig. 2  Consensus clustering identifies substructure within Grp3/4 
medulloblastoma. Each row shows the results of applying t-SNE (a), 
NMF (b), and SNF (c), respectively, to the Grp3/4 cohort (n = 1501). 
For each row, a common t-SNE visualization is shown in the first 
panel, which depicts study-specific samples with their original study-
specific subtype designation. The samples not included in a study 
were annotated as empty ‘NA’ in the t-SNEs (marked as empty cir-
cles). The samples that could not be assigned to a concordant subtype 
for a corresponding technique were annotated as ‘Low conf’ (marked 
in grey). In the second column, the reproducibility of the identified 
sample subtype is shown. Density plots show the distribution of 
sample reproducibility from consensus clustering by subtype for the 
selected number of clusters for each approach—t-SNE, NMF, and 
SNF. In the third column, Sankey plots demonstrate the relationship 
of the published subtypes to the assigned subtypes when clustered as 
part of a larger cohort. c The SNF results are from analysis of DNA-
methylation data only

◂
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Assignment of concordant subtypes

The technique-dependent subtype assignments were com-
pared by creating Sankey plots (also known as alluvial 
plots) using the googleVis package and through plotting 
study-specific subtype allocations onto a common t-SNE 
visualization of all 1501 samples. Concordance between 
technique-dependent subtypes were identified and retained 
as defined subtypes. Where there was potential ambiguity 
between technique-dependent subtype assignments or intra-
technique subtype number choice, additional analyses were 
performed to test for clinico-pathological and cytogenetic 
differences between subtypes; subtype assignments which 
showed clear clinico-pathological and/or cytogenetic differ-
ences were favored over assignments where subtype-splits 
demonstrated few or no differences.

After identifying final consensus technique-dependent 
subtype assignments, and their mapping between techniques, 
we assigned samples to a specific subtype if there was con-
cordance of assignment in ≥2 out of 3 studies; samples not 
meeting this criterion were classed as ‘low-confidence’. 
These concordant subtypes were once again visualized using 
t-SNE.

CNV heatmaps and oncoplots

After assignment to concordant subtypes, copy-number data 
generated with conumee [13] were hierarchically clustered 
within each subtype by their distance measure. Samples 
with poor-quality copy-number estimates (defined by a noise 
parameter greater than 2.5) were excluded. Chi squared tests 
were used to identify subtypes with significantly enriched 
CNVs, as previously described [18, 26]. An oncoplot show-
ing focal copy-number amplifications for MYC, MYCN, 
OTX2, and CDK6 was generated, as previously described 
[9]; significant enrichments for focal amplifications were 
assessed using Chi squared tests.

Survival/clinico‑pathology analysis

We identified the clinico-pathological and survival charac-
teristics of the newly characterized subtypes of Grp3/Grp4. 
We used ANOVA to identify differences in patient age and 
plotted their age distribution as density plots. Chi squared 
tests were used to identify subtype association with sex, 
histopathology, and metastatic stage. Using Kaplan–Meier 
analysis, we characterized progression free and overall sur-
vival for the entire cohort, as well as restricting analyses to 
patients aged ≥ 5 years at diagnosis, to remove potentially 
confounding treatment differences in infant patients [23].

Grp3 and Grp4 classifier (https ://www.molec ularn 
europ athol ogy.org/mnp/class ifier /7)

To predict subtypes of Grp3 and Grp4 samples, a Random 
Forest (RF) [28] classifier with an accompanying score cali-
bration model was trained as previously reported [2]. Briefly, 
batch adjustment for FFPE/fresh-frozen derivatives and 
adjustments for 450 k/EPIC array methylated and unmeth-
ylated signals was performed by a two-factor linear model 
on their  log2 intensities. Feature selection was applied to 
the 50,000 CpG loci with the highest standard deviation and 
10,000 CpG loci with the highest RF permutation variable 
importance. Using a multinomial logistic regression with 
a ridge-penalization term, RF score calibration was imple-
mented to ensure well-calibrated class probability estimates 
(defined by low Brier score). A threefold nested cross valida-
tion was then performed to validate the classifier on the data 
set used in its creation.

Results

Identification of eight molecular subtypes

We undertook an integrative analysis of Grp3 and Grp4 sub-
types using combined cohorts from three published com-
ponent studies (supplementary Fig. 1) [3, 18, 26], whose 
respective major findings are summarized in Fig. 1. Quality 
control checks revealed no biases attributable to sample type 
(i.e., fresh frozen vs formalin-fixed, paraffin embedded), 
array type (450 k vs 850 k), or source study/institution (sup-
plementary Fig. 3). A subset of samples were removed due 
to low methylation classifier prediction scores < 0.9 (n = 69; 
supplementary Table 1) [2] or due to shared genotypes 
between studies (i.e., duplicated samples; n = 80). Addition-
ally, 27 samples were removed due to a ‘non-MB’ prediction 
by the methylation classifier (supplementary Table 2, sup-
plementary Fig. 2). The resultant combined DNA-methyla-
tion array cohort represented 1501 Grp3 and Grp4 MBs and 
their demographics are summarized in Table 1.

Consensus clustering was applied to the entire data set to 
identify the maximal number of robustly defined subtypes 
beyond the two consensus subgroups 3 and 4. We indepen-
dently employed each of the sample clustering techniques 
used in the three component studies. Using t-SNE/k-means 
[18], cluster reproducibility reached a maximum at five clus-
ters, and dropped substantially when moving beyond eight 
clusters (Fig. 2a, supplementary Fig. 4). The eight identi-
fied clusters were highly congruent with the eight subtypes 
previously reported by Northcott et al. and were resolved 
by bifurcations of three of the five clusters which were most 
reproducibly identified [18] (Fig. 2, supplementary Fig. 4).

https://www.molecularneuropathology.org/mnp/classifier/7
https://www.molecularneuropathology.org/mnp/classifier/7
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Using NMF/k-means [26], a first analysis identified an 
optimal solution of five subtypes, defined by six metagenes 
(Fig. 2, supplementary Fig. 4). Second-order NMF consen-
sus clustering within each of these five groups identified 
additional heterogeneity, resulting in a total of nine robust 
subtypes (Fig. 2b, supplementary Fig. 4); these demon-
strated clear associations with the originally published sub-
types [26] (Fig. 2b).

SNF consensus clustering [3] of DNA-methylation data 
supported six clusters, as originally reported, but also offered 
support for the derivation of eight stable clusters (Fig. 2c, 
supplementary Fig. 4). Some clusters contained both Grp3 

and Grp4 constituents, consistent with the subtypes identi-
fied by t-SNE or NMF above.

In their original report, Cavalli et al. reported the appli-
cation of SNF clustering to paired DNA methylation and 
expression data. When applied to the Cavalli et al. data set, 
we retrieved the subtypes as published (data not shown). 
However, we could also stratify this data set into eight 
subtypes when using SNF (supplementary Fig. 5). For the 
subset of the Northcott et al. data set for which both data 
types were available, eight subtypes were revealed when 
using paired DNA methylation/transcriptome data (sup-
plementary Fig. 6). For a subset of the Schwalbe et al. 
data set with paired data, SNF resulted in improved strati-
fication between Grp3 and Grp4 subtypes, recapitulating 

Table 1  Clinico-pathological 
and molecular features of 
component studies

p values are given from ANOVA (age at diagnosis) and from Chi squared tests (all other p values)

Cavalli et al. Northcott et al. Schwalbe et al. p

Cohort size 356 878 267 NA
Age at diagnosis (years)
 Median (min–max) 8.0 (1–49.6) 7.3 (1.5–28) 6.4 (0.5–16) < 0.0001
 Age available 337 366 267
 Age unknown 19 512 0

Sex
 M 239 265 185 0.81
 F 96 106 82
 Sex unknown 21 507 0
 M:F ratio 2.5:1 2.5:1 2.3:1

Molecular subgroup
 Group 3 94 336 108 < 0.0001
 Group 4 262 542 159
 Group 3:Group 4 ratio 0.36:1 0.62:1 0.68:1

Histology
 CLA 200 117 204 0.0002
 DN 30 6 9
 LCA 27 5 33
 Unknown 99 750 21

Survival information
 PFS 0 291 259 0.00031
 No PFS available 356 587 8
 Median PFS (years) NA 6.5 5.3
 OS 283 291 263 0.89
 No OS available 73 587 4
 Median OS (years) 5.0 5.0 5.2

MYC amplification
 Amplified 10 57 18 0.020
 Not amplified 342 815 249
 Unknown 4 6 0

MYCN amplification
 Amplified 9 41 8 0.18
 Not amplified 343 831 259
 Unknown 4 6 0
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the originally published subdivisions with fewer samples 
(supplementary Fig. 6). Collectively, these results indicate 
that one of the analytical strengths of SNF is its ability to 
identify MB subtypes with fewer samples [18].

Definition of subtypes

After defining subtypes by NMF, t-SNE, and SNF, we 
assessed subtype concordance between techniques. Subtype 
Grp3.HR.1/II/SNF.5 showed near 1:1 mapping across all 
three techniques (Fig. 3b, supplementary Table 3). Other 
subtypes showed agreement across 2/3 techniques. For 
example, Grp3.HR.2 (NMF) mapped to I (t-SNE); however, 
this subtype was not identified by SNF. Subtype Grp4.LR2.2 
(NMF) mapped to subtype V (t-SNE), which mapped to SNF 
subtypes 3 and 8. G4.HR (NMF) and VIII (t-SNE) mapped 
to SNF subtypes 1 and 3. Similarly, subtype 3 (SNF) mapped 
to Grp4.LR2.1 (NMF) and subtype VI (t-SNE), which them-
selves showed close concordance.

Subtypes III and IV (t-SNE) were concordant with SNF 
subtypes 2 and 6, respectively; however, NMF subtypes 
Grp3.LR1 and Grp3.LR2 mapped evenly between them. 
Of note, t-SNE subtype VII could be further split into two 
subtypes by NMF and SNF; however, these splits were not 
congruent (supplementary Figs. 7, 8). Taken together, we 
identified five subtypes supported by ≥ 2 techniques (supple-
mentary Table 3), with three additional subtypes requiring 
further investigation.

To resolve the discrepancy between subtypes III, IV 
(t-SNE)/2,6 (SNF) and their associated NMF assignments, 
as well as the split of t-SNE subtype VII into two further 
subtypes by SNF or NMF, we investigated their clinico-
pathological, molecular, and cytogenetic correlates. For 
subtypes III and IV (t-SNE)/2,6 (SNF), there was notable 
clinico-biological support for their distinction by virtue of 
distinct survival and cytogenetic differences between III and 
IV that were not apparent when comparing Grp3.LR1 and 
Grp3.LR2 (supplementary Fig. 9). Thus, we adopted the III/

IV, 2,6 subtype distinction as true concordant subtypes. For 
the putative split of t-SNE subtype VII, there was clinico-
biological support for the adoption of the NMF-derived 
subtypes (supplementary Fig. 7) in preference to the SNF 
subtypes 7 and 4; Grp4.LR1.1 had an older age of incidence, 
a worse survival and was hypomethylated compared to Grp4.
LR1.2; moreover, Grp4LR1.2 was enriched for gains of 
chr7p and chr18 and loss of chr8p, among others. The split 
identified by SNF did not have such striking correlations 
with clinico-pathological features (supplementary Fig. 8); 
thus, we did not opt for this additional split. Due to the dif-
fering constitution of the split of t-SNE subtype VII by NMF 
or SNF clustering, we elected not to adopt this additional 
subdivision of VII into two formal subtypes.

After defining the eight subtypes, we designated them 
I–VIII, in accordance with the eight subtypes described by 
Northcott et al., and recognized that there was some evi-
dence for two variants of VII (VII-A, VII-B; Fig. 3, sup-
plementary Fig. 7). Using the final subtype mappings across 
techniques, we assessed inter-technique sample assignments 
to define final calls for all samples. Overall, subtype calls 
from NMF and t-SNE-based approaches showed the high-
est concordance [1228/1501 (82%) tumors]. SNF subtypes 
demonstrated somewhat less concordance with their t-SNE-
derived counterparts [1034/1501 (69%) concordant calls], 
and NMF-derived counterparts [1028/1501 (68%) concord-
ant calls] using methylation data only. Their relationship to 
the consensus Grp3/4 subtypes is shown in Fig. 3b.

Grp 3/4 subtypes have distinct cytogenetics

Investigating copy-number variants (CNVs) derived from 
the DNA-methylation array data set [13] revealed cytoge-
netic events highly enriched in specific subtypes that lend 
further support to their definition (Fig. 4a). Subtype I was 
notable for its generally balanced genome.

Subtype II was distinguished by significant (for arm-
level/whole chromosomal alterations, all p < 0.0001, unless 
otherwise stated) enrichment of chr8 gain [78/173(45%)], 
chr13q gain [34/173 (20%)], and chr1q gain [63/173 (36%)]. 
Subtype III was significantly enriched for chr8p loss [30/115 
(26%)] and chr10q loss [68/115 (59%)]. Subtype IV was 
characterized by significant losses of chr8 [69/139 (50%)], 
chr10 [78/139 (56%)], chr11 [89/139 (64%)], and chr13 
[45/139 (32%)]. Chr13 loss has previously been previously 
reported as a marker of good prognosis in Grp3 and Grp4 
[26].

Subtype V had mixed patterns of aberrations: 58/105 
(55%) exhibited i17q, while 52/105 (50%) had chr16q loss. 
Subtypes VI and VII demonstrated significant gain of chr7 
[97/115 (84%) and 161/297 (54%), respectively] and loss 
of chr8 [39/115 (34%) and 166/297 (56%), respectively]. 
Subtype VIII exhibited a relatively balanced genome with a 

Fig. 3  Inter-technique comparisons identify eight subtypes within 
Grp3/4 medulloblastoma. a Sankey plots show the relationship of 
subtype calls from each technique to those from other techniques. 
The same information is repeated three times for the Sankey plot; 
each plot shows a different technique in the center, to enable inter-
technique relationships to be identified. b Sankey plot shows relation-
ship between subtype calls and Grp 3 and 4 subgroup membership. c 
t-SNE visualizing subtype calls of 1501 Grp3/4 samples at weighted 
standard deviation > 0.25 with 15,335 most variable probes. Samples 
assigned to the same subtype from ≥ 2 techniques were assigned to 
that subtype. Unassignable samples were annotated as ‘Low conf’. 
DBSCAN density-based spatial clustering algorithm, used to identify 
subtypes after t-SNE dimension reduction. Two-step NMF refers to 
the two stages of NMF analysis; five robust subtypes were identified 
in the first stage. In the second stage, NMF consensus clustering was 
applied to each of the five subtypes in isolation

◂
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majority harboring i17q [279/343 (81%)]. Loss of chrX was 
frequently observed in subtypes IV, V, VI, VII, and VIII; 
however, the most predominant chrX loss was seen in sub-
type VIII, where 35% (21/60) of assessable females showed 
chrX loss (p = 0.11).

The oncoplot shown in Fig.  4b summarizes the type 
and incidence of focal CNVs affecting commonly altered 
MB driver genes. Subtype I was significantly enriched for 
OTX2 amplification (p < 0.0001), observed in 12% (6/50) 
of patients (Fig. 4b). Subtype II was significantly enriched 
[23% (42/179)] for MYC amplification (p < 0.0001), which 
was also common in subtype III [8% (10/120)]. Subtype V 
was significantly enriched for both MYC [11/108 (10%), 
p < 0.0001] and MYCN [23/108 (21%), p < 0.0001] ampli-
fications. Other mutational correlates were as described by 
Northcott et al. (data not shown).

In summary, subtype-specific enrichments of specific 
cytogenetic and focal CNVs outlined above further supports 
the subdivision of Grp3 and Grp4 MB into eight distinct 
molecular subtypes.

Clinico‑pathological and molecular correlates

The clinico-pathological and molecular correlates of the 
concordant Grp3 and Grp4 subtypes are shown in Fig. 5. 
The multi-modal age-of-incidence profiles of Grp3 and 
Grp4 are now resolved by their classification into eight 
distinct subtypes (Fig. 5a). Subtype VII is bimodal and is 
resolved into two distinct age distributions by its distinc-
tion into VII-A/VII-B (supplementary Fig. 7). Subtype V 
also has a bimodal age distribution which cannot currently 
be resolved by further subdivision of this subtype. Subtype 
IV is predominantly infant, whereas subtype VIII peaks at 
10 years of age. We observed no differences in biological 
sex between subtypes (Fig. 5b); however, LCA histopatho-
logical variants were significantly enriched in subtype II 
[24/54 (44%), p < 0.0001]. Interestingly, we also observed 
infrequent tumors with DN/MBEN histology [45/631 (7%) 
with available data] across all variants except subtype III. 
This is unlikely to be due entirely to miscalling by local 
pathologists—of the 9 cases arising from the Schwalbe 
et al. cohort with available histology, 8 of them had been 
centrally reviewed, thus confirming that DN/MBEN his-
tology does not automatically confer an SHH molecular 

Fig. 4  Subtypes have distinct copy-number profiles and significant 
enrichments of oncogene amplification. a CNV heatmap generated 
from raw conumee calls on methylation data for each subtype across 
all chromosomes revealed subtype-specific cytogenetic aberrations. 

Gains are shown in green, losses in red. b oncoplot shown summa-
rizes the type and incidence of aberrations for MYC, MYCN, OTX2, 
and CDK6. Focal amplifications are shown in burgundy, focal gains 
are shown green
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subgroup (Fig. 5c). Subtype V was most commonly meta-
static [34/54 (61%)], although this was not significantly 
enriched compared to other subtypes (Fig. 5d).

Subtype‑specific survival

PFS (n = 550) and OS (n = 837) were analyzed from all 
assessable patients (Fig. 6); PFS was unavailable for the 
Cavalli et al. data set. The eight Grp3 and Grp4 molecular 
subtypes can be classified into three distinct risk groups 

Fig. 5  Clinico-pathological associations of Grp3/4 subtypes. a Sub-
types show distinct age distributions. Density plot shows age distri-
bution for each subtype. b–d Barplots show incidence of major clin-
ico-pathological features (sex, histopathology, and metastatic stage, 
respectively) across subtypes. b No difference in distribution of bio-

logical sex is evident. c Subtype II is significantly enriched for large-
cell anaplastic histology. d No difference in metastatic disease (i.e., 
M0 vs M1+ disease) between subgroups. p values shown are derived 
from Chi squared tests of enrichment performed across all subtypes
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Fig. 6  Grp3/4 subtypes have distinct survival outcomes. Kaplan–
Meier plots are shown for PFS/OS for all samples with available sur-
vival data (a, b), and to avoid confounding by patients treated with 
infant protocols, a filtered cohort comprised of patients aged ≥ 5 years 

at diagnosis (c, d). The at-risk table below the Kaplan–Meier plots 
(I–VIII) shows the number of patients at risk at specific times after 
diagnosis (0–10 years in 2 year intervals)
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based on their overall survival. The first, a very high-risk 
group (5-year OS 50%, 95% CI 43–58), contains subtypes 
II, III, and V. Groups II and III, enriched for MYC ampli-
fication, showed equivalent poor survival [5-year OS 50% 
(95% CI 40–62) and 43% (95% CI 32–59), respectively]. 
Subtype V, enriched for MYC/MYCN amplification, also 
showed a poor survival (5-year OS 59%, 95% CI 46–75).

The second group is associated with late/relapse death and 
comprises solely of subtype VIII, this feature is unique to this 
subtype within MB and consistent with the previous reports 
[26, 32]; of 206 assessable subtype VIII patients, 17/49 (35%) 
deaths occurred ≥5 years after diagnosis.

The final group is standard risk (5-year OS 82%, 95% CI 
78–87) and comprises subtypes I (5-year OS 77%, 95% CI 
62–97), IV (80%, 95% CI 70–91), VI (81%, 95% CI 72–91), 
and VII (85%, 95% CI 79–91). Considering PFS, subtype I 
had a high-risk 5-year PFS (51%, 95% CI 32–81); however, 
this was the smallest group (n = 20), and this difference may 
be due to sampling; all the other subtypes had similar PFS and 
OS patterns.

Significant cohort-specific survival differences were 
observed. For OS, patients from the Schwalbe et al. cohort 
had significantly lower survival (5-year OS 64%, 95% CI 
58–71) than the Cavalli et al. (5-year OS 74%, 95% CI 68–80) 
and extended Northcott et al. (5-year OS 79%, 95% CI 74–84) 
collections (supplementary Fig. 10). Stratification by subtype 
revealed that this difference was subtype-specific and that only 
in subtype VIII were poorer outcomes significantly associated 
with membership of the Schwalbe et al. cohort (HR 3.87 rela-
tive to Northcott et al. cohort, 95% CI 1.85–8.10, p = 0.00033) 
(data not shown). To avoid confounding by patients treated 
with infant protocols, we excluded patients aged ≤ 5 years and 
observed similar survival patterns to those described above.

Refinement of Grp3/Grp4 molecular classification

To prospectively assign cases to Grp3/Grp4 concordant sub-
types, we developed an extension of the Heidelberg brain 
tumor classifier [2]. This classifier was evaluated by threefold 
nested cross validation, and performance measures revealed a 
misclassification error of 4.6%, a corresponding Area under 
the curve (AUC) of 0.9969 and Brier Score of 0.069 (for more 
details, refer to the supplementary methods). More than 85% 
of correctly classified samples (1166/1370) achieved a high 
calibrated score > 90% (class probability estimates), indicating 
that this might represent a rational cutoff to define high confi-
dence predictions in diagnostic applications (Fig. 7). Subtypes 
III (91.1% concordant) and VI (90.8% concordant) were the 
most difficult to resolve. This classifier is publicly available at 
[https ://www.molec ularn europ athol ogy.org/mnp/class ifier /7].

Discussion

Following the recommendations of the 2012 consensus 
paper [19, 29], we worked together in a multi-center, col-
laborative analysis that should become standard practice in 
the future. We assembled the largest cohort (n = 1501) of 
Grp3 and Grp4 medulloblastoma analyzed to date. Instead of 
advocating one single approach or method, we applied mul-
tiple class-definition approaches and resampling measures to 
assess subtype stability, robustness, and reproducibility. We 
also gave equal weight to each analytical technique to ensure 
that the identified subtypes were a true accord (Fig. 1).

The lowest complexity solutions continued to identify 
Grp3 and Grp4, as described in the original consensus. How-
ever, objective subclassification most strongly supported fur-
ther robust and reproducible subtypes within them. We iden-
tified these subtypes by mapping subtype assignments across 
studies (Fig. 2). Five out of eight subtypes were concordant 
between ≥ 2/3 studies. The other three subtypes were ini-
tially discrepant and additionally required the assessment of 
associated clinico-biological features to specify optimal sub-
type definitions. We identified eight subtypes [I–VIII, with 
additional evidence that VII is comprised of two variants, 
VII-A and VII-B (supplementary Fig. 7)]. No evidence was 
found to support additional subtypes beyond eight, using 
a cohort totaling > 1500 tumors and currently available 
genomic readouts.

Subtypes I, V, and VII were mixed Grp3 and Grp4 in 
composition, indicating shared Grp3 and Grp4 biology. 
Of note, absolute separation between Grp3 and Grp4 was 
observed when using SNF on paired methylation and tran-
scriptomic data, but was not observed when applying SNF 
to DNA-methylation data alone. Data and platform limita-
tions precluded equivalently comprehensive assessment of 
the contribution of transcriptomics to the separation of Grp3 
and Grp4. Transcriptomic and DNA methylomic patterns 
may interact to further define subclasses and investigations 
to account for these differences are now required.

Overall, the distinction into eight subtypes (Fig. 8) was 
further supported by their significant cytogenetic differ-
ences–each subtype is associated with specific cytogenetic 
signatures. However, cytogenetic signatures in isolation are 
insufficient to identify the eight subtypes, and the subtype-
specific methylation changes we observed are not enriched 
in chromosomes with frequent subtype-specific chromo-
somal copy-number aberrations (supplementary Fig. 11).

The CNV correlates in most subtypes were as expected 
[18], e.g., enrichment for MYC amplification in subtype 
II and MYC/MYCN amplification in III/V, respectively. 
Unlike CTNNB1 mutation in  MBWNT tumors, which is 
near universal within that subgroup, the alteration of no 
one gene, or set of genes, is able to fully describe a single 

https://www.molecularneuropathology.org/mnp/classifier/7
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Fig. 7  Molecular classifier for Grp3/4 subtype identification. a Con-
fusion matrix shows relationship between predicted and actual sub-
type calls for the Grp3/4 cohort. The minimum reproducibility across 
subtypes was > 90%. b Density plots show raw and calibrated scores 

from classifier (refer to supplementary methods for detailed informa-
tion). After calibration, the prediction accuracy increased, with an 
overall error rate of 4.6%
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methylation-dependent subtype. Rather, specific methyla-
tion subtypes are associated with significant enrichment for 
particular mutational/amplification events.

The subtypes (Fig. 8) show distinct ages of incidence. 
Although most are unimodal, subtypes V and VII are 
bimodal. Subtype VII can be resolved into VII-A and VII-B 
(supplementary Fig. 7), each with distinct ages of incidence. 
The age distribution for V may, therefore, indicate overlap-
ping distributions of two further, as yet undefined, distinct 
groups. The survival analyses demonstrated that there is sub-
stantial divergence in outcomes between subtypes and that 
the association of Grp3 with a universally poor prognosis 
reported in the original consensus study in 2012 requires 
further clinical definition and revision, since Grp3 encom-
passes the MYC-enriched subtypes II and III, with a poor 
survival in this cohort (5-year OS 49 and 41%, respectively), 
in addition to subtype IV, which is standard risk (5-year OS 
80%), consistent with Schwalbe et al. [26].

In future studies, it will be essential to assess the relative 
contributions and interactions between the original consen-
sus subgroups, their novel subtypes, clinical factors, and 

other concerted molecular features (e.g., whole chromosome 
and focal cytogenetic aberrations), including established dis-
ease risk factors, in driving disease development and clini-
cal behavior. For example, recently described non-random 
whole-chromosome aberration signatures encompassing 
loss of chromosomes 8 and 11 and gain of chromosome 7, 
which confer a favorable prognosis in standard-risk Grp3/4 
medulloblastomas [11], show clear associations with sub-
types IV, VI, and VII and implicate common biology in their 
development.

The survival analysis also identified the phenomenon of 
subtype VIII-associated late relapse in medulloblastoma. 
The reasons for this need to be urgently explored; careful 
monitoring of subtype VIII survivors should be considered 
to identify relapse as quickly as possible and distinguish 
this from the occurrence of secondary malignancies. Since 
this is the largest subtype, the acquisition of large cohorts 
suitable for the investigation of this question is feasible in 
the short term.

Nevertheless, these survival investigations are not with-
out their limitations. These data are collected from diverse 

Fig. 8  Summary of molecular subtypes of Grp3/4 medulloblastoma. 
The major demographic, clinico-pathological, and molecular fea-
tures of the concordant subtypes are summarized. Mutation data were 
derived solely from Northcott et al. [18]. For histology, CLAS classic, 

DN desmoplastic nodular, LCA large-cell anaplastic. M+ (%) = meta-
static (i.e., M1+) frequency. Overall survival shows subtype-specific 
survival in years. Cytogenetic gains are shown in red, losses in green
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treatment centers, and patients have received heterogene-
ous therapy which may confound the relationships described 
here, although based on our current data, we have the first 
indications that these subtypes show differential survival.

The new Grp3 and Grp4 classifier that we developed 
indicates that these subtypes are readily distinguishable and 
demonstrates how these subtypes could be identified and 
their clinical utility assessed in future studies. These could 
include the prospective investigation of the clinical impact of 
current and newly described disease risk biomarkers in this 
context, identification of their underpinning biology and the 
potential for novel therapeutic interventions. For now, recog-
nition of the low-risk Grp3 subtype (IV), and late relapses in 
subtype VIII patients represents strong candidates for future 
clinical investigation and advancement.

Novel subtypes resolved in our analysis are primarily 
based on DNA-methylation profiles with support from tran-
scriptomic data sets. It has been suggested that the differing 
methylation signatures observed in medulloblastoma are a 
reflection of the developmental state of the cell of origin at 
time of tumorigenesis [31]. It would be interesting to inves-
tigate whether the subtypes with contributions from Grp3 
and Grp4 (i.e., I, V, and VII) share a common cell of origin, 
and, if so, how this might relate to any transcriptional differ-
ences between Grp3 and Grp4 variants of the same subtype. 
There is also potential to integrate our current results with 
new approaches and explore further resolution of disease 
subclassification (e.g., the proteomic and transcriptomic 
signatures of these novel subtypes and their constitution at 
the single-cell level); the first descriptions of the medullo-
blastoma proteome [1, 10] describe additional heterogeneity 
within Grp3 and Grp4 and seem to identify subtype II as a 
distinct Grp3 high-risk subtype.

This study lays the groundwork to robustly assess addi-
tional heterogeneity within Grp3 and Grp4 medulloblas-
toma, to define its biological and clinical relevance, and to 
exploit these in improved therapeutic approaches.
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