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disruption to Ca2+ exchange between the two organelles and 
mitochondrial ATP production. Such disruptions are likely to 
be particularly damaging to neurons that are heavily depend-
ent on correct Ca2+ signaling and ATP.
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Introduction

Parkinson’s disease is the second most common human neu-
rodegenerative disease and is characterised by the prefer-
ential loss of dopaminergic neurons in the substantia nigra. 
The cell and molecular events that give rise to this neuronal 
loss are not properly understood but a number of lines of evi-
dence suggest that abnormalities in α-synuclein are central to 
the disease process. First, mutations within the gene encod-
ing α-synuclein and increased α-synuclein gene dosage 
involving duplication and triplication events cause familial, 
dominantly inherited forms of the disease [1, 12, 41, 45, 49, 
66, 74, 92]. Second, α-synuclein is the major protein constit-
uent of Lewy bodies and Lewy neurites which are hallmark 
pathologies of Parkinson’s disease [76, 80]. Finally, overex-
pression of wild-type and familial mutant α-synuclein can 
induce aspects of disease in transgenic mice [6, 7, 18].

Despite this evidence, the mechanisms by which 
altered α-synuclein metabolism might cause disease are 
not properly understood. α-Synuclein is a 140 amino 
acid protein of unclear function that is enriched in syn-
apses and perinuclear regions of neurons. Within neurons, 
α-synuclein localizes to cytosolic and membrane compart-
ments including synaptic vesicles, mitochondria and the 
endoplasmic reticulum (ER) (see reviews [32, 33, 91]). 
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Recent evidence suggests that its membrane localization 
involves targeting to lipid rafts (also known as detergent 
resistant membranes; DRM) [31].

Overexpression of wild-type or familial mutant 
α-synuclein has been shown to damage a number of physi-
ological processes. These include Ca2+ homeostasis [11, 
38], lipid metabolism [9, 31], mitochondria including mito-
chondrial transport and biogenesis [22, 32, 60, 90, 91], 
the ER [59] and autophagy [88]. Indeed, the difficulty in 
deciphering α-synuclein toxicity is linking these apparently 
diverse pathological changes to a common disease pathway.

One area of cell physiology that impacts upon all of these 
features involves signalling between ER and mitochon-
dria. Approximately 5–20% of the mitochondrial surface is 
closely apposed (10–30  nm distances) to ER membranes; 
these specialized regions of ER are termed mitochondria-
associated ER membranes (MAM). A large body of evi-
dence demonstrates that mitochondria communicate directly 
with ER through MAM to regulate a number of fundamen-
tal cellular processes. These include Ca2+ homeostasis, lipid 
metabolism, mitochondrial ATP production, mitochondrial 
transport and biogenesis, ER stress and the unfolded protein 
response (UPR) and autophagy (see reviews [46, 48, 63, 
70, 82, 83]). Any α-synuclein-induced damage to ER–mito-
chondria associations thus represents a plausible route for 
explaining many features of Parkinson’s disease.

The mechanisms by which regions of ER are recruited 
to mitochondria are not fully known but electron micros-
copy (EM) studies reveal the presence of structures that 
appear to tether the two organelles [16]. Recently, the 
integral ER protein VAPB was shown to bind to the outer 
mitochondrial membrane protein PTPIP51 to form at least 
some of these tethers [20, 26, 40, 78, 79]. Thus, modulat-
ing VAPB and/or PTPIP51 expression induces appropriate 
changes in ER–mitochondria contacts and Ca2+ exchange 
between the two organelles which is a physiological read-
out of ER–mitochondria associations [20, 78]. Here, we 
show that α-synuclein binds to VAPB, disrupts the VAPB-
PTPIP51 interaction and perturbs ER–mitochondria asso-
ciations. We also confirm that a proportion of α-synuclein 
is present in MAM. Moreover, we demonstrate that 
α-synuclein-induced loosening of ER–mitochondria con-
tacts affects Ca2+ exchange between the two organelles. 
As such, our findings reveal a new molecular mechanism 
to link α-synuclein and Parkinson’s disease.

Materials and methods

Plasmids and siRNAs

Mammalian expression vectors for human myc-tagged 
VAPB and haemagglutinin (HA)-tagged PTPIP51 in 

pCIneo, pCIneo control vector expressing Escherichia 
coli chloramphenicol acetyltransferase (CAT), wild-type 
α-synuclein, α-synucleinA53T and α-synucleinA30P in 
pcDNA3.1(−) and enhanced green fluorescent protein 
(EGFP) tagged versions in pEGFPC1, and AT1.03 cyto-
solic ATeam FRET based ATP reporter was all as described 
and [20, 34, 42, 71]. For the production of stable cell lines, 
wild-type and mutant untagged α-synuclein cDNA were 
cloned as NheI–HindIII fragments in pcDNA6.V5-His with 
a stop codon prior to the His tag. GST-VAPB and pRK172 
α-synuclein E. coli expression vectors were as described 
[43, 78]. Control and human α-synuclein siRNAs were 
from Santa Cruz Biotechnology (sc-37007 and sc-29619, 
respectively).

Antibodies

Rabbit and rat antibodies to VAPB and PTPIP51 were as 
described [20]. Mouse anti-glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), mouse anti-hemagglutinin 
(HA), mouse anti-myc 9B11 and rabbit anti-glycogen 
synthase kinase-3β (GSK3β) phosphorylated on serine-9 
(inactive GSK3β) were from Cell Signalling. Rabbit 
anti-mitofusin-2, rabbit anti-HA, mouse anti-heat shock 
protein-60 (HSP60) and mouse anti-neurofilament heavy-
chain (NFH) (N52) were from Sigma. Rabbit (sc-7011) 
and mouse (211) anti-α-synuclein, rabbit anti-translo-
case of the outer mitochondrial membrane protein-20 
(TOM20), rabbit anti-fatty acid coenzyme A ligase long-
chain 4 (FACL4) and mouse anti-Sigma-1 receptor were 
from Santa Cruz Biotechnology. Mouse anti-α-synuclein 
and mouse anti-calnexin were from BD Biosciences. 
Rabbit anti-EGFP and mouse anti-β-actin were from 
Abcam. Rabbit anti-PTPIP51 and chicken anti-MAP2 
were from Genetex. Mouse anti-protein disulphide 
isomerase (PDI) was from Affinity Bioreagents, rabbit 
anti-myc was from Upstate and rabbit anti-GSK3β was 
from StressGen.

Cell culture and transfection

SH-SY5Y and HEK293 cells were purchased from the 
European Collection of Cell Cultures. Cells and were 
maintained in Dulbecco’s modified Eagle’s medium 
(DMEM) containing 4.5  g/l glucose (HEK293 cells) 
or DMEM/F-12 (1:1) containing 3.15  g/glucose (SH-
SY5Y cells) supplemented with 10% fetal bovine serum 
(Sera Laboratories), 2  mM  l-glutamine, 1  mM sodium 
pyruvate, 100  IU/ml penicillin and 100 μg/ml strepto-
mycin (Invitrogen). Cells were transfected with plas-
mids and siRNAs using Lipofectamine 2000 accord-
ing to the manufacturer’s instructions (Invitrogen). For 
production of stable cell lines, cells were selected with 
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media containing either 15 μg/ml blasticidin (for vec-
tor pcDNA6.V5-His) or 500 μg/ml geneticin sulphate 
(G418) (for vector pEGFPC1) for 4  weeks (Santa Cruz 
Biotechnology). Transiently transfected cells were ana-
lysed 16–24 h post-transfection and siRNA treated cells 
72  h post-transfection. Rat cortical neurons were pre-
pared and transfected with Lipofectamine 2000 as previ-
ously described [81].

Induced pluripotent stem (iPS) cells from a familial Par-
kinson’s disease patient carrying gene triplication of SNCA 
encoding α-synuclein (α-synuclein triplication; AST cells) 
and an unaffected first-degree relative control (normal 
α-synuclein; NAS cells) were maintained and differenti-
ated into dopaminergic cells as described [21, 89]. 54–60% 
of the cells were neuronal based upon immunostaining for 
markers. Two different disease AST clones and two dif-
ferent control NAS clones were used in the studies and 
pooled data shown. For analyses, iPS cell-derived neurons 
were grown on 35 mm IBIDI dishes (BD Biosciences) as 
described [21].

SDS‑PAGE and immunoblotting

Cells were harvested for SDS-PAGE and immunoblotting 
by scraping into SDS-PAGE sample buffer containing 2% 
SDS, 100  mM dithiothreitol, 10% glycerol, 0.1% bromo-
phenol blue and protease inhibitors (Complete Roche) in 
50 mM Tris–HCl pH 6.8 and heating to 100 °C for 5 min. 
Other samples were prepared by addition of SDS-PAGE 
sample buffer and heating to 100  °C for 5  min. Samples 
were separated on 8–15% (w/v) acrylamide gels and trans-
ferred to Protran nitrocellulose membranes (Schleicher 
and Schuell) using a Mini-PROTEAN 3 gel electrophore-
sis system and Transblot system (BioRad). The immuno-
blots were then blocked by incubation in 5% (w/v) dried 
milk/0.1% (w/v) Tween-20 in Tris buffered saline (TBS) 
pH 7.5 for 1  h and then probed with primary antibod-
ies diluted in blocking solution for 16 h at 4  °C. Follow-
ing washing in blocking solution, they were then incubated 
with horseradish peroxidase-conjugated goat anti-mouse, 
anti-rabbit or anti-rat Igs (GE Healthcare). Immunoblots 
were developed using an enhanced chemiluminescence 
Luminata Forte Western HRP substrate system according 
to the manufacturer’s instructions (Millipore). Signals on 
immunoblots were quantified using ImageJ after scanning 
with an Epson Precision V700 Photo scanner essentially as 
described by us in previous studies [78].

Immunoprecipitation and glutathione S‑transferase 
(GST) pull‑down assays

For immunoprecipitations, cells were harvested in ice-cold 
lysis buffer containing 1% Triton X-100 and Complete 

protease and PhosStop inhibitor cocktail tablets (Roche) in 
phosphate-buffered saline (PBS) and then lysed for 30 min 
on ice. The lysates were then cleared by centrifugation at 
100,000×g for 30  min at 4  °C and 500 μg protein incu-
bated with primary antibodies for 16 h at 4 °C. Antibodies 
were captured with protein A or protein G Sepharose beads 
(Sigma) for 2  h at 4  °C depending upon Ig type and the 
beads washed in ice cold lysis buffer. Samples were then 
heated to 100 °C in SDS-PAGE sample buffer and analysed 
by SDS-PAGE and immunoblotting. For brain samples, 
rat brains were homogenized in ice-cold lysis buffer and 
treated as above.

Recombinant GST, GST-VAPB fragments and 
α-synuclein were produced in E. coli BL21 (DE3). GST 
tagged proteins were purified on glutathione-Sepha-
rose beads according to the manufacturer’s instructions 
(GE Healthcare) and as described by us previously [78]. 
α-Synuclein was purified as described [73]. For pull-down 
assays, GST or GST-VAPB proteins were incubated over-
night with 50 μg purified recombinant α-synuclein in ice-
cold lysis buffer containing PBS with 1% Triton X-100 and 
Complete protease and PhosStop inhibitor cocktail tablets 
(Roche). GST-fusion protein complexes were pulled down 
via the glutathione-Sepharose beads and washed three 
times with ice-cold lysis buffer prior to analyses by SDS-
PAGE and immunoblotting. For cellular GST pull-down 
assays, baits were incubated with cell lysates and captured 
essentially as described above. HEK293 cells were used 
for immunoprecipitation and GST pull down assays since 
they transfect with high efficiency and so produce robust 
readouts that are particularly suitable for such biochemical 
studies.

Biochemical fractionation

ER, MAM and mitochondria were prepared from adult 
Sprague–Dawley rat brains essentially as described [87]. 
Briefly, fresh rat brains were washed in ice-cold isolation 
buffer containing 225 mM mannitol, 75 mM sucrose, 0.5% 
BSA and 0.5 mM EGTA in 30 mM Tris–HCl buffer pH 7.4. 
All procedures were then performed on ice. Three brains 
were chopped into fine pieces and washed three times in 
isolation buffer and then prepared as a 10% w/v mixture 
in isolation buffer. Tissues were homogenized using a 
Dounce homogenizer (20 strokes by hand using the tight-
est pestle) and the homogenate centrifuged twice at 740×g 
for 5 min to remove nuclei and unbroken cells. The crude 
mitochondrial fraction was then pelleted by centrifugation 
at 9000×g for 10 min and the remaining supernatants were 
centrifuged at 100,000×g for 30  min to pellet ER/micro-
somes. To isolate MAM and pure mitochondria, the crude 
mitochondrial pellet was resuspended in isolation buffer 
and layered on top of a self-forming 30% Percoll gradient 
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(225 mM mannitol, 1 mM EGTA, 0.05% BSA, 30% Per-
coll, 25  mM Na-HEPES pH 7.4). After centrifugation at 
95,000×g for 30 min the mitochondria were recovered at 
the bottom of the gradient and MAM retrieved above. To 
remove residual Percoll, the mitochondrial fraction was 
diluted in mitochondria resuspending buffer (5 mM HEPES 
pH 7.4 containing 250 mM mannitol and 0.5 mM EGTA) 
and the mitochondria washed twice by centrifugation at 
6300×g for 10 min. The MAM band was diluted with iso-
lation buffer and centrifuged once at 6300×g for 10 min to 
remove any residual contaminating mitochondria. MAM 
was then pelleted from the resulting supernatant by cen-
trifugation at 100,000×g for 1 h. All final organelle pellets 
were resuspended and lysed in in RIPA buffer containing 
50 mM Tris–HCl pH 6.8 containing 150 mM NaCl, 1 mM 
EDTA, 1  mM EGTA, 1% Triton X-100, 0.5% sodium 
deoxycholate, 0.1% SDS with Complete protease inhibitor 
(Roche). Protein concentrations were determined using a 
Bradford assay (Bio-Rad Laboratories).

Electron microscopy

Cells were fixed with 2.5% glutaraldehyde in 0.1 M sodium 
cacodylate buffer pH 7.2 for 3 h at 20 °C and then harvested 
by a gentle scraping with a plastic scaper. The cells were 
pelleted by centrifugation at 800 g (av) for 10 min, washed 
in 0.1 M sodium cacodylate buffer and post-fixed for 1 h 
in 2% osmium tetroxide and 1.5% ferricyanide in 0.1  M 
sodium cacodylate buffer. The cells were then stained for 
1 h with 1% uranyl acetate in water before dehydration and 
embedding in epoxy resin (TAAB). 150 nm semi-fine sec-
tions were cut on a Reichert Ultra cut E ultramicrotome and 
stained for 6 min in 0.16% lead citrate in 0.1 M NaOH fol-
lowed by 3 washes in distilled water. Samples were viewed 
on a Tecnai 12 electron microscope at 4800× magnifica-
tion. Digital images were acquired and the circumference 
of each mitochondria and the proportions of the mitochon-
drial surface closely associated (<30  nm) with ER were 
calculated. Cells were randomly selected for analyses with-
out prior knowledge of transfected plasmid or siRNA. All 
clearly identified mitochondria in the samples were scored 
and the numbers of mitochondria and ER profiles were 
quantified from lower magnification images. Image analy-
ses were performed using ImageJ.

Light microscopy

For super resolution structured illumination micros-
copy, cells plated on glass coverslips were fixed with 3% 
paraformaldehyde and 0.1% glutaraldehyde in PBS for 
10  min at 20  °C. After washing with PBS, samples were 
quenched by incubation with 50  mM NaBH4 in PBS for 
7 min, washed in PBS and then permeabilized and blocked 

for 30 min in PBS containing 0.2% Triton X-100 and 3% 
bovine serum albumin (BSA). Samples were then incu-
bated with primary antibodies diluted in blocking solution, 
washed with PBS and incubated with goat anti-rabbit or 
anti-mouse secondary Igs conjugated to AlexaFluor 546 
or AlexaFluor 633 (Invitrogen). Following final washings 
in PBS, the samples were mounted in Mowiol-DABCO 
mounting medium containing 10% (w/v) Mowiol 4-88 
(Calbiochem), 25% (w/v) glycerol and 2.5% (w/v) DABCO 
(1,4-diazobicyclo[2.2.2]octane) in 100  mM Tris–HCl 
pH 8.5. Samples were analysed on a Nikon Eclipse Ti-E 
inverted microscope equipped with a Nikon N-SIM Super 
Resolution System. Images were captured using a CFI Plan 
Apo IR SR 60× water immersion objective and then recon-
structed using Nikon Imaging Software Elements AR with 
N-SIM module. ER–mitochondria interactions were quan-
tified by Mander’s coefficient using ImageJ software. Co-
localized signals were displayed using the ImageJ 1.44p 
RG2B co-localization plugin to determine co-localized 
pixels.

For confocal and wide-field microscopy, cells were fixed 
in 4% paraformaldehyde in PBS, immunostained essen-
tially as described [28] and analysed using a Leica TCS-
SP5 confocal with x63HCX PL APO lambda blue CS 1.4 
objective or a Leica DM5000 fluorescence microscope 
equipped with a 40×/0.75NA HCX-PL-FLUOTAR lens. 
Mitochondria and ER morphologies and cellular distribu-
tions were determined using ImageJ with the Analyse Parti-
cle function and Mitochondrial Morphology [17] and Ana-
lysedSkeleton [3] Plugins.

Proximity ligation assays to quantify VAPB-PTPIP51 
and α-synuclein-VAPB interactions were performed essen-
tially as described previously using Duolink reagents 
(Sigma-Aldrich) [20, 28, 78]. Cells were fixed in 4% para-
formaldehyde in PBS and probed with primary antibodies. 
Signals were developed using the Duolink In Situ Orange 
kit. Cells were counterstained with 4′,6-diamidino-2-phe-
nylindole (DAPI) to show nuclei and/or further immu-
nostained for NFH or MAP2. Proximity ligation assay sig-
nals were quantified using the Particle Analysis function of 
ImageJ.

Ca2+ measurements

Ca2+ measurements were performed essentially as 
described previously [20, 78, 79]. SH-SY5Y cells were 
loaded with 2 μM Fluo4-AM and/or Rhod2-AM dye (Inv-
itrogen) in external solution (145  mM NaCl, 2  mM KCl, 
5  mM NaHCO3, 1  mM MgCl2, 2.5  mM CaCl2, 10  mM 
glucose, 10  mM Na-HEPES, pH 7.25) containing 0.02% 
Pluronic-F27 (Invitrogen) for 15 min at 37 °C, followed by 
washing in external solution for 15 min at 37 °C. Fluo4 and 
Rhod2 fluorescence were timelapse recorded (1 s intervals) 
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at 37 °C using either an Axiovert S100 microscope (Zeiss) 
driven by MetaMorph (Molecular Dynamics) and equipped 
with GFP (Fluo4) and DsRed (Rhod2) filtersets (Chroma 
Technology), a 40× Plan-Neofluar 1.3NA objective (Zeiss), 
and a Photometrics Cascade-II 512B36 EMCCD camera or 
a Nikon Ti-E microscope using a CFI Plan Apo VC 20× 
objective and Nikon Andor Neo sCMOD high-resolution 
camera and appropriate filter sets. The cells were kept under 
constant perfusion with external solution (0.5  ml/min). 
Inositol 1,4,5-trisphosphate (IP3) receptor-mediated Ca2+ 
release from ER stores was triggered by application of 100 
μM oxotremorine-M for 2 min. Ca2+ levels were calculated 
as relative Rhod2 or Fluo4 fluorescence compared to base-
line fluorescence (F/F0) at the start of the measurement. 
Oxotremorine-M was from Santa Cruz Biotechnology and 
was dissolved in water.

ATP measurements

ATP levels in cultured cells were measured using a ViaLight 
ATP kit (Lonza) according to the manufacturer’s instruc-
tions; luminescence signals were obtained with a FluoSTAR 
luminometer (BMG Labtech). To determine ATP levels gen-
erated by oxidative phosphorylation in mitochondria, cells 
were first treated with 100 μM iodoacetate (Sigma) for 2 h 
to inhibit ATP produced by glycolysis. ATP levels were also 
determined using a FRET based plasmid reporter (Adeno-
sine 5′-Triphosphate indicator based on Epsilon subunit 
for Analytical Measurements; ATeam reporter) [42]. To do 
so, cells were transfected with AT1.03 cytosolic ATeam 
reporter and then imaged in Hanks Balanced Salt Solution 
(HBSS) without phenol red at 37 °C by timelapse micros-
copy (12 s intervals) on a Zeiss Axiovert S100 microscope 
equipped with a 40×/1.3NA Plan-Neofluar objective and a 
Photometrics Cascade-II 512B EMCCD driven by Meta-
Morph (Molecular Dynamics). FRET filtersets (ECFP exci-
tation filter ET 430/24×; ECFP emission filter 470/24  m; 
EYFP emission filter ET545/40m) were from Chroma Tech-
nology. 1 mM KCN in HBSS was applied using a peristaltic 
pump (0.5 ml/min). YFP/CFP ratios prior to and after KCN 
treatment were measured as described and used to calculate 
relative ATP levels in the different samples which were dis-
played as bar charts [42].

Statistical analyses

All experiments were repeated at least three times. Statisti-
cal analyses were performed with Prism 5.0 (GraphPad 
Software).

Results

Wild‑type and familial Parkinson’s disease mutant 
α‑synuclein disrupt ER–mitochondria associations 
and the VAPB‑PTPIP51 interaction

To determine the effects of α-synuclein on ER–mitochondria 
associations, we quantified ER–mitochondria contacts in 
polyclonal populations of SH-SY5Y cells stably expressing 
either enhanced green fluorescent protein (EGFP) control 
vector, EGFP-α-synuclein or familial Parkinson’s disease 
mutant EGFP-α-synucleinA53T or EGFP-α-synucleinA30P. 
Numerous studies have utilized α-synuclein tagged with 
EGFP in this way (e.g. [35, 61, 64, 72, 77]). Probing of 
immunoblots with an EGFP antibody revealed that they 
expressed similar levels of exogenous protein and that 
expression of α-synuclein did not affect expression of the 
ER–mitochondria tethering proteins VAPB and PTPIP51, of 
mitofusin-2 which has been proposed as a further ER–mito-
chondria tether, or of the Sigma-1 receptor which has also 
been linked to ER–mitochondria tethering [5, 19, 29, 86] 
(Fig. 1a). Likewise, no changes in the levels of TOM20 or 
PDI were detected (Supplemental Fig. 1a). The absence of 
changes in the levels of PTPIP51, TOM20 and mitofusin-2 
(mitochondrial proteins) or of VAPB and PDI (ER proteins) 
suggest that there are no overall changes in mitochondrial or 
ER masses in the different transfected cells. We also quanti-
fied the numbers of mitochondria and ER profiles, and mito-
chondrial circumferences in the EM and detected no differ-
ences between the different transfected cells (data obtained 
from 30 to 35 cells; analysed by one-way ANOVA). How-
ever, confocal and structured illumination microscopy 
(SIM) revealed that mitochondria in EGFP-α-synuclein 
and EGFP-α-synucleinA53T cells had increased circularity 
(rounding up) (EGFP-α-synucleinA30P displayed a trend 
for increased circularity) and that mitochondria in wild-type 
and mutant EGFP-α-synuclein cells had reduced cytosolic 
distributions (increased clustering) (Supplemental Fig.  1b, 
c). We detected no changes in ER cytosolic distributions, the 
numbers of ER branch points or branch length (i.e. overall 
ER morphology) in wild-type or mutant EGFP-α-synuclein 
cells compared to control (Supplemental Fig. 1d, e, f).

ER–mitochondria associations were, therefore, quan-
tified by determining the proportion of the mitochon-
drial surface that was closely apposed (less than 30 nm) 
to ER following analyses by EM. This and similar EM 
approaches have been used previously [15, 16, 23, 24, 
26, 52, 78, 85]. Compared to control cells, expression of 
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wild-type and mutant α-synuclein all led to significant 
reductions in ER–mitochondria associations (Fig. 1b).

We also enquired whether loss of α-synuclein influenced 
ER–mitochondria associations. To do so, we quantified ER–
mitochondria associations by EM in untreated SH-SY5Y cells 
and in cells treated with control or α-synuclein siRNAs. Prob-
ing of samples on immunoblots revealed that the α-synuclein 
siRNAs produced an approximate 90% knockdown of 
α-synuclein but this did not affect expression of VAPB, 
PTPIP51, mitofusin-2 or the Sigma-1 receptor (Fig. 1c). How-
ever, compared to untreated or control siRNA treated cells, the 
EM studies revealed no change in ER–mitochondria associa-
tions in the α-synuclein knockdown cells (Fig. 1d).

To complement the EM studies, we monitored the effects 
of α-synuclein expression on ER–mitochondria associa-
tions using super resolution structured illumination micros-
copy (SIM) [39]. For these studies, SH-SY5Y cells were 
transfected with EGFP control vector, EGFP-α-synuclein, 
EGFP-α-synucleinA53T or EGFP-α-synucleinA30P and 
then immunostained for PDI and TOM20 to label ER 
and mitochondria, respectively. Co-localisation analyses 
of PDI and TOM20 revealed that wild-type and mutant 
α-synuclein again disrupted ER–mitochondria associations 
(Fig.  2). Further analyses of these images revealed that a 
proportion of α-synuclein localized with the co-localized 
PDI/TOM20 signals (i.e. some α-synuclein is present at 
ER–mitochondria contact sites) (Supplemental Fig. 2).

We also used in  situ proximity ligation assays [75] to 
monitor the effects of α-synuclein on ER–mitochondria 
associations. Proximity ligation assays have a resolu-
tion similar to that detected by resonance energy transfer 
between fluorophores (i.e. approximately 10 nm) [75] and 
so are suitable for quantifying ER–mitochondria associa-
tions. For these assays, we used VAPB and PTPIP51 pri-
mary antibodies as markers for ER and mitochondria, 
respectively, since these proteins interact directly to tether 
ER with mitochondria [20, 78, 79]. Indeed, proximity liga-
tion assays have already been used to quantify ER–mito-
chondria associations and the VAPB-PTPIP51 interaction 
[5, 20, 36]. We have previously demonstrated the specific-
ity of these VAPB-PTPIP51 proximity ligation assays via 
control experiments involving the absence of each or both 
primary antibodies [20, 79]. Transfection of SH-SY5Y 
cells with EGFP-α-synuclein, EGFP-α-synucleinA53T or 
EGFP-α-synucleinA30P all produced significant reductions 
in ER mitochondria associations in these assays (Fig. 3a).

Since we detected no α-synuclein-induced changes in 
expression of VAPB or PTPIP51 (Fig.  1a, c), these prox-
imity ligation assays not only confirm that α-synuclein 
reduces ER–mitochondria associations, but also show that 
this reduction involves breaking of the VAPB-PTPIP51 
tethers. To test this further, we performed immunopre-
cipitation assays to monitor the effect of wild-type and 
mutant α-synuclein on binding of VAPB to PTPIP51. To 
do so, we co-transfected cells with hemagglutinin (HA)-
tagged PTPIP51 and either control vector, α-synuclein, 
α-synucleinA53T or α-synucleinA30P and monitored the 
amounts of VAPB bound to immunoprecipitated PTPIP51-
HA by immunoblotting of the samples. Consistent with 
the proximity ligation assays, both wild-type and mutant 
α-synuclein decreased the amounts of endogenous VAPB 
bound to immunoprecipitated PTPIP51-HA in these assays 
(Fig. 3b).

The VAPB‑PTPIP51 interaction is disrupted 
in dopaminergic neurons derived from iPS cells 
that carry a familial Parkinson’s disease α‑synuclein 
gene triplication

To determine whether α-synuclein also disrupts the 
VAPB–PTPIP51 interaction in Parkinson’s disease 
patient material, we utilized proximity ligation assays 
to probe ER–mitochondria associations and the VAPB-
PTPIP51 interaction in iPS cell-derived dopaminergic 
neurons from a SNCA triplication patient (α-synuclein 
triplication; AST) and a non-disease first degree relative 
control (normal α-synuclein; NAS) [21]. SNCA tripli-
cation causes autosomal dominant familial Parkinson’s 
disease and neurons carrying this mutation have higher 
levels of α-synuclein compared to controls [21, 41, 74]. 

Fig. 1   Expression of wild-type and familial Parkinson’s disease 
mutant α-synuclein reduce ER–mitochondria associations in SH-
SY5Y cells. a Expression of α-synuclein does not alter expression 
of VAPB, PTPIP51 mitofusin-2 (MFN2) or the Sigma-1 receptor in 
stably transfected SH-SY5Y cells. Immunoblots of SH-SY5Y cells 
stably transfected with EGFP as a control, EGFP-α-synuclein, EGFP-
α-synucleinA53T or EGFP-α-synucleinA30P and probed on immu-
noblots as indicated; GAPDH is shown as a loading control. Molecu-
lar masses in kD are shown on the right. b Representative electron 
micrographs of ER–mitochondria associations in SH-SY5Y cells 
expressing control EGFP vector (CTRL), EGFP-α-synuclein, EGFP-
α-synucleinA53T or EGFP-α-synucleinA30P; arrowheads with loops 
show regions of association. Scale bar is 200  nm. Bar chart shows 
% of the mitochondrial surface closely apposed to ER in the differ-
ent samples. Data were analysed by one-way ANOVA followed by 
Tukey’s multiple comparison test. N  =  30–35 cells and 107–155 
mitochondria; error bars are SEM; ***p < 0.001. c, d siRNA loss of 
α-synuclein does not alter expression of VAPB, PTPIP51, mitofusin-2 
(MFN2) or the Sigma-1 receptor, or affect ER–mitochondria asso-
ciations in SH-SY5Y cells. c Immunoblots of cells either untreated 
or treated with control (CTRL) or α-synuclein siRNAs; GAPDH is 
shown as a loading control. Molecular masses in kD are shown on 
the right. d Representative electron micrographs of ER–mitochondria 
associations in untreated, control (CTRL) and α-synuclein siRNA 
treated cells. Arrowheads with loops show regions of association. 
Bar chart shows % of the mitochondrial surface closely apposed to 
ER in the different samples. Data were analysed by one-way ANOVA 
followed by Tukey’s multiple comparison test. N = 30–32 cells and 
66–99 mitochondria. Error bars are SEM; NS not significant. Scale 
bar is 200 nm

◂
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Compared to controls, the VAPB-PTPIP51 proxim-
ity ligation assay signals were significantly reduced in 
the SNCA triplication neurons (Fig.  4). Thus, expres-
sion of both wild-type and mutant α-synuclein reduces 
ER–mitochondria associations and the VAPB–PTPIP51 
interaction in a number of different assays and this 
includes in dopaminergic neurons derived from famil-
ial Parkinson’s disease patients carrying SNCA gene 
triplication.

Wild‑type and mutant α‑synuclein disrupt IP3 
receptor‑mediated delivery of Ca2+ from ER stores 
to mitochondria

A primary function of ER–mitochondria associations is 
to facilitate delivery of Ca2+ to mitochondria from ER 

stores. This delivery is mediated via IP3 receptors located 
in MAM [16, 19, 46, 48, 63, 70, 82]. Thus, disruption to 
the VAPB–PTPIP51 interaction via siRNA loss of VAPB 
or PTPIP51 to loosen ER–mitochondria associations per-
turbs this delivery [20, 78, 79]. Since expression of wild-
type and mutant α-synuclein reduces both ER–mitochon-
dria associations and the VAPB–PTPIP51 interaction, we, 
therefore, monitored the effect of α-synuclein on mitochon-
drial Ca2+ uptake following its release from ER stores. For 
these experiments, we used SH-SY5Y cells stably express-
ing control empty vector, α-synuclein, α-synucleinA53T 
or α-synucleinA30P and triggered physiological IP3 
receptor-mediated Ca2+ release from ER by application 
of the M3 muscarinic acetylcholine receptor agonist oxo-
tremorine-M. This approach has been utilized previously 
[20, 78, 79]. In agreement with previous studies [20, 78, 

Fig. 2   Super resolution SIM 
reveals reduced ER–mito-
chondria associations and 
VAPB–PTPIP51 interactions 
in SH-SY5Y cells express-
ing wild-type or mutant 
α-synuclein. SH-SY5Y cells 
were transfected with either 
EGFP control vector (CTRL), 
EGFP-α-synuclein (α-syn), 
EGFP-α-synucleinA53T (A53T) 
or EGFP-α-synucleinA30P 
(A30P) and immunostained 
for PDI and TOM20 to label 
ER and mitochondria (Mito), 
respectively; α-synuclein were 
detected via their EGFP tags. 
Merge (ZOOM) show zoomed 
images of boxed regions and co-
localisation shows co-localised 
pixels. Scale bar is 15 μm. Bar 
chart shows ER–mitochondria 
co-localisation (Manders coef-
ficient) normalized to control 
in the different samples. Data 
were analysed by one-way 
ANOVA with Tukey’s post hoc 
test. 30 cells were analysed per 
condition from 3 independent 
experiments; error bars are 
SEM, *p < 0.05, **p < 0.01, 
***p < 0.001
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79], oxotremorine-M induced a time-dependent increase in 
mitochondrial Ca2+ levels (Fig.  5a). However, compared 
to controls, the peak values were lower in cells expressing 
wild-type or mutant α-synuclein (Fig. 5a). This finding sug-
gests that α-synuclein perturbs Ca2+ delivery to mitochon-
dria. To test this further, we monitored cytosolic and mito-
chondrial Ca2+ levels following oxotremorine-M mediated 
Ca2+ release from ER. Compared to controls, the time-lags 
between cytosolic and mitochondrial peak values were 
longer in cells expressing wild-type and mutant α-synuclein 
(Fig.  5b). Finally, we enquired whether the reduced Ca2+ 
uptake by mitochondria in α-synuclein expressing cells 
following IP3 receptor-mediated release could be rescued 
by transfection of VAPB to restore ER–mitochondria asso-
ciations; VAPB overexpression increases ER–mitochon-
dria contacts [78]. In agreement with previous studies [28], 
transfection of VAPB increased mitochondrial Ca2+ uptake 
(Fig.  5c). Moreover, VAPB overexpression completely 
abrogated the effect of α-synuclein on mitochondrial Ca2+ 
uptake (Fig. 5c). Thus, α-synuclein induced breaking of the 
VAPB-PTPIP51 tethers and loosening of ER–mitochondria 
associations are accompanied by disruption to delivery of 
Ca2+ to mitochondria from ER stores.

Wild‑type and mutant α‑synuclein inhibit 
mitochondrial ATP production

Ca2+ is required by mitochondria for generating ATP via 
the tricarboxylic acid cycle [30] and so the reduced mito-
chondrial Ca2+ levels seen in both wild-type and mutant 
α-synuclein expressing cells predict that α-synuclein 
impairs mitochondrial ATP production. We, therefore, 
monitored mitochondrial ATP production in the stably 
expressing α-synuclein SH-SY5Y cells. To do so we 
used a bioluminescent assay that measures total cellular 
ATP levels (generated by both glycolysis and oxidative 
phosphorylation) and inhibited glycolytic ATP produc-
tion with iodoacetic acid. This method has been used 
by others to measure ATP generated by oxidative phos-
phorylation in mitochondria [4]. To first confirm the 
effect of iodoacetic acid, we measured ATP production 
in control SH-SY5Y cells treated with either vehicle or 
iodoacetic acid; as predicted, iodoacetic acid markedly 
reduced ATP levels (Fig. 6a). We then measured ATP lev-
els in the different transfected cells following treatment 
with iodoacetic acid. Compared to control cells, the lev-
els of ATP generated by oxidative phosphorylation were 
significantly reduced in cells expressing α-synuclein, 
α-synucleinA53T and α-synucleinA30P (Fig. 6b).

To complement these studies, we also used a FRET 
reporter system that permits ATP quantification in sin-
gle living transfected cells [42]. Cellular ATP is gen-
erated by a combination of oxidative phosphorylation 

and glycolysis and so we assayed ATP production in 
cells treated with potassium cyanide (KCN) which 
inhibits cytochrome C oxidase to block oxidative 
phosphorylation. Monitoring ATP levels in the indi-
vidually transfected cells prior to and after KCN treat-
ment thus permits calculation of the levels of mito-
chondrial ATP production [42, 79]. SH-SY5Y cells 
were, therefore, co-transfected with the ATP FRET 
reporter and either control vector, wild-type or mutant 
α-synuclein and the relative ATP levels generated by 
oxidative phosphorylation determined. These studies 
revealed that compared to control transfected cells, 
both wild-type and mutant α-synuclein reduced mito-
chondrial ATP production (Fig. 6c). We also used the 
ATP FRET reporter to quantify mitochondrial ATP 
production in rat cortical neurons co-transfected 
with control vector, wild-type or mutant α-synuclein. 
These experiments revealed that α-synuclein likewise 
reduced mitochondrial ATP production in the neurons 
(Fig. 7). Thus, the α-synuclein-induced disruptions to 
IP3 receptor-mediated Ca2+ delivery to mitochondria 
are accompanied by reductions in mitochondrial ATP 
production.

α‑Synuclein does not cause a noticeable increase 
in GSK‑3β activity

Recently, GSK-3β has been shown to regulate ER–mito-
chondria associations and binding of VAPB to PTPIP51 
[78, 79]. Inhibition of GSK-3β promotes whereas activa-
tion inhibits the VAPB-PTPIP51 interaction and this leads 
to complementary changes in ER–mitochondria asso-
ciations [78, 79]. The α-synuclein-induced loosening of 
ER–mitochondria associations and the VAPB–PTPIP51 
interaction may, therefore, involve activation of GSK-3β. 
A major route for regulating GSK-3β activity involves 
inhibitory phosphorylation of serine-9 [44] and so we 
monitored GSK-3β serine-9 phosphorylation in control, 
α-synuclein, α-synucleinA53T and α-synucleinA30P 
expressing SH-SY5Y cells by immunoblotting. However, 
we detected no differences in GSK-3β serine-9 phos-
phorylation between these different cells (Supplemental 
Fig. 3).

α‑Synuclein is present in MAM and binds to VAPB

An alternative mechanism whereby α-synuclein could 
disrupt the VAPB-PTPIP51 tethers might involve its 
binding to either VAPB or PTPIP51 so as to steri-
cally interfere with their interaction. In support of this 
notion, a proportion of α-synuclein localizes to MAM 
[31, 67]. To test this possibility further, we first sought 
to confirm the biochemical localization of α-synuclein 
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to MAM and so prepared MAM, mitochondria and ER 
fractions from rat brain, and probed these for the pres-
ence of α-synuclein on immunoblots. In agreement with 
earlier studies [31], we detected a significant proportion 
of α-synuclein in MAM (Fig.  8a). We, therefore, moni-
tored binding of wild-type and mutant α-synuclein to 
PTPIP51 and VAPB using immunoprecipitation assays 

from PTPIP51 + α-synuclein and VAPB + α-synuclein 
co-transfected cells. Although we detected no interac-
tion between α-synuclein and PTPIP51 in these assays, 
we obtained robust signals for binding of both wild-type 
and mutant α-synuclein to VAPB (Fig.  8b, c). Moreo-
ver, we obtained stronger signals for binding of VAPB to 
α-synucleinA53T and α-synucleinA30P than to wild-type 
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α-synuclein (Fig.  8c). We also used immunoprecipita-
tion assays from rat brain to determine whether endog-
enous α-synuclein and VAPB interact. Again, α-synuclein 
bound to VAPB in these assays (Fig. 8d, e).

To confirm the binding of VAPB to α-synuclein using 
other methods, we first performed proximity ligation 
assays in non-transfected SH-SY5Y cells using VAPB and 
α-synuclein antibodies. Omission of primary VAPB and/
or α-synuclein antibodies produced very few signals but 
inclusion of both antibodies generated robust signals con-
sistent with a direct interaction of the two endogenous pro-
teins in  situ (Fig.  9a). We also performed these assays in 
the control (NAS) and α-synuclein triplication (AST) iPS 
cell neurons and these likewise produced signals consistent 
with a direct interaction (Fig. 9b). Moreover, we obtained 
greater numbers of signals in the AST neurons that express 
higher levels of α-synuclein [21] (Fig. 9b).

To test this direct binding further, we prepared recombi-
nant VAPB and α-synuclein in E. coli and monitored their 
binding in vitro. For these experiments, we generated dif-
ferent domains of VAPB as GST fusion proteins and used 
the GST moiety to isolate the VAPB “baits” along with 
any bound α-synuclein. VAPB is anchored in the ER via a 
C-terminal membrane-spanning domain with its N-termi-
nus projecting into the cytoplasm through which it inter-
acts with PTPIP51 [20, 78]. The VAPB cytoplasmic region 

contains an N-terminal major sperm protein (MSP) domain 
and a centrally located coiled-coil domain (Fig. 10a). We, 
therefore, prepared GST-VAPB “baits” comprising the 
entire cytoplasmic domain, the MSP domain, the coiled-
coil domain and sequences encompassing the C-terminal 
cytosolic region of VAPB, and tested their abilities to bind 
to α-synuclein in pull-down assays. Both the entire VAPB 
cytoplasmic domain and the MSP domain, but not the 
coiled-coil or C-terminal domains bound to α-synuclein in 
these assays (Fig.  10a). Finally, we used the GST-VAPB 
“baits” to pull down α-synuclein from transfected cell 
lysates. Again, only the entire VAPB cytoplasmic domain 
and the MSP domain bound to VAPB in these cellular 
assays. Thus, VAPB and α-synuclein interact in a variety of 
assays including in vitro assays in the absence of other pro-
teins and this interaction involves the VAPB MSP domain.

Discussion

Despite the wealth of data linking α-synuclein to Parkin-
son’s disease, the targets for α-synuclein toxicity are not 
fully understood. Here, we show that α-synuclein per-
turbs ER–mitochondria associations and that this involves 
disruption to the VAPB-PTPIP51 tethering proteins. 
Importantly, this damage is also seen in iPS cell-derived 
dopaminergic neurons from Parkinson’s disease patients 
harbouring triplication of the α-synuclein locus. Although 
we used different α-synuclein triplication and control 
iPS cell clones in these latter studies, it will be important 
to confirm in future studies that other genetic differences 
between the clones do not contribute to this phenotype. 
This could be achieved by analyses of genetically cor-
rected mutant clones such that the genetic backgrounds are 
identical. Using a range of assays including immunopre-
cipitation, cellular GST pull-down, proximity ligation and 
in vitro binding of recombinant proteins, we also show that 
α-synuclein is a direct binding partner for VAPB. Interest-
ingly, earlier mass spectrometry proteomic analyses also 
suggested that α-synuclein was complexed with VAPB 
although these studies did not discriminate between direct 
and indirect binding nor provide confirmatory data [58].

A primary function of ER–mitochondria associations 
is to deliver Ca2+ from ER stores to mitochondria. This 
delivery involves release of Ca2+ from IP3 receptors in 
MAM and uptake via the mitochondrial voltage dependent 
anion channel (VDAC) [46, 48, 63, 70, 82]. Mitochondria 
require Ca2+ to efficiently produce ATP since several dehy-
drogenases in the tricarboxylic acid cycle are Ca2+ regu-
lated [30]. Thus, disruption to the VAPB-PTPIP51 tethers 
perturbs IP3 receptor-mediated ER–mitochondria Ca2+ 
exchange and mitochondrial ATP production [20, 78, 79]. 
Consistent with these findings, we show that disruption 

Fig. 3   Proximity ligation assays and immunoprecipitation experi-
ments reveal reduced ER–mitochondria associations and VAPB–
PTPIP51 interactions in SH-SY5Y cells expressing wild-type or 
mutant α-synuclein. a VAPB-PTPIP51 proximity ligation assays 
in SH-SY5Y cells transfected with EGFP-control vector (CTRL), 
EGFP-wild-type α-synuclein (α-syn WT), α-synucleinA53T (α-syn 
A53T) or α-synucleinA30P (α-syn A30P). Representative maxi-
mum intensity projections of serial confocal optical sections of cells 
transfected with the different plasmids are shown. Zoom shows high 
magnification proximity ligation assay signals in boxed regions. 
Proximity ligation assays were performed using rabbit VAPB and rat 
PTPIP51 antibodies. Bar chart shows proximity ligation assay sig-
nals (normalised to control) in the different samples. Data were ana-
lysed by one-way ANOVA and Tukey’s post hoc test. N = 176–255 
cells from 3 different experiments; error bars are SEM, *p  <  0.05, 
**p  <  0.01. Scale bar is 5 μm. b VAPB-PTPIP51 immunopre-
cipitation assays in SH-SY5Y cells transfected with CAT control 
vector (CTRL), CTRL  +  PTPIP51-HA or PTPIP51-HA  +  either 
α-synuclein, α-synucleinA53T, α-synucleinA30P. PTPIP51 was 
immunoprecipitated via the HA tag and endogenous bound VAPB 
detected by immunoblotting. No signals for either VAPB or PTPIP51 
were detected in immunoprecipitations from CTRL transfected 
cells which demonstrates the specificity of the assays. Both inputs 
and immunoprecipitations (IP) are shown. Extended exposures of 
the blots revealed the presence on endogenous α-synuclein in con-
trol cells. Molecular masses in kD are shown on the right. Bar chart 
shows relative levels of VAPB bound to PTPIP51 in the immunopre-
cipitations following quantification of signals from immunoblots. 
VAPB signals were normalized to immunoprecipitated PTPIP51-HA 
signals. Data were analysed by one-way ANOVA and Tukey’s post 
hoc test. N = 5; error bars are SEM, *p < 0.05, **p < 0.01
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of the VAPB-PTPIP51 tethers by α-synuclein is accompa-
nied by reductions in IP3 receptor-mediated Ca2+ delivery 
to mitochondria. We also show that there are reductions 
in mitochondrial ATP production in α-synuclein express-
ing cells which is in line with reduced mitochondrial Ca2+ 
levels. However, α-synuclein has been shown to damage a 
number of mitochondrial proteins that could impact upon 
ATP production. These include VDAC, mitochondrial ATP 
synthase and TOM20 [22, 56, 69]. Thus, there may be sev-
eral routes including the VAPB-PTPIP51 tethers by which 
α-synuclein could deleteriously affect mitochondrial func-
tion and ATP production, and the precise contributions of 
each of these are not as yet clear.

Neurons are particularly dependent upon correct Ca2+ 
signalling since it is involved in depolarization and synap-
tic activity [10]. Neurons also consume large amounts of 
energy [50]. Thus changes to Ca2+ signalling and mito-
chondrial ATP production are strongly implicated in Par-
kinson’s disease and other neurodegenerative diseases [2, 
10, 14, 62, 65]. Indeed, elegant molecular modelling stud-
ies have shown that even relatively small reductions in 
mitochondrial ATP production can be sufficient to induce 
many salient features of neurodegenerative diseases [51]. 
The α-synuclein induced disruptions to ER–mitochondria 
Ca2+ exchange and mitochondrial ATP production that we 
describe here are thus likely to be major drivers of disease.

Changes in mitochondrial morphology have been asso-
ciated with α-synuclein [8] and there is evidence of mito-
chondrial “rounding up” and clustering in our α-synuclein 
expressing cells. Whether such morphological alterations 
are linked to the changes in ER–mitochondria contacts 

that we describe are not clear. We did not detect any gross 
changes to ER morphology. However, several recent stud-
ies have shown that ER–mitochondria contact sites regulate 
mitochondrial biogenesis, division and DNA synthesis [25, 
47, 53]. One possibility is that the effects of α-synuclein 
on mitochondrial morphology are linked to its function at 
ER–mitochondria contact sites.

In immunoprecipitation assays, we found that whilst 
both wild-type and mutant α-synuclein bound to VAPB, 
the mutants bound slightly stronger. However, in the 
functional assays involving ER–mitochondria Ca2+ 
exchange and mitochondrial ATP production we did 
not detect robust differences between wild-type and 
mutant α-synuclein. This may be due to the sensitiv-
ity of these assays in detecting changes induced by 
relatively small alterations in binding of wild-type and 
mutant α-synuclein to VAPB. However, our findings 
are in line with human disease phenotypes. Triplication 
of the α-synuclein gene leading to increased expression 
of wild-type α-synuclein is pathogenic but the famil-
ial mutants are not associated with such overexpression. 
The increased binding of mutant α-synuclein to VAPB, 
therefore, provides a possible explanation for the similar 
pathogenic effects of wild-type and mutant α-synuclein 
involving the VAPB-PTPIP51 tethers. Thus, triplication 
generates increased α-synuclein which binds to VAPB to 
disrupt the VAPB-PTPIP51 tethers. Mutant α-synuclein 
expressed at normal levels binds slightly stronger to 
VAPB to equally disrupt the VAPB-PTPIP51 tethers.

Two other studies have investigated the effect of 
α-synuclein on ER–mitochondria associations but the 
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Fig. 4   ER–mitochondria associations and the VAPB–PTPIP51 
interaction are reduced in dopaminergic neurons derived from iPS 
cells harbouring triplication of the α-synuclein gene. Representative 
images of VAPB-PTPIP51 proximity ligation assays in NAS control 
and AST dopaminergic neurons; cells were also stained for neuro-

filament heavy chain (NFH) to confirm neuronal phenotype. Scale 
bar is 10 μm. Bar chart shows quantification of proximity ligation 
assay signals in the samples. Data were analysed by Student’s t test. 
N = 74–90 cells from 3 different experiments; error bars are SEM, 
***p < 0.001
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resentative Rhod2 fluorescence traces are shown with normalized 
peak values (F/F0) in the bar chart. Data were analysed by one-way 
ANOVA and Tukey’s post hoc test. N =  29–44 cells from 3 differ-
ent experiments; error bars are SEM, ***p < 0.001. b Delayed mito-
chondrial Ca2+ uptake following IP3 receptor-mediated release from 

ER-stores in α-synuclein, α-synucleinA53T and α-synucleinA30P 
expressing cells. Representative Fluo4 (cytosolic; Cyto) and Rhod2 
(mitochondria; mito) fluorescence traces are shown. Bar chart shows 
the time-lag between peak cytosolic and mitochondrial Ca2+ sig-
nals. Data were analysed by one-way ANOVA and Tukey’s post hoc 
test. N =  85–115 cells from 4 independent experiments; error bars 
are SEM, **p  <  0.01 and ***p  <  0.001. c Expression of VAPB to 
increase ER–mitochondria contacts increases mitochondrial Ca2+ 
levels following IP3 receptor-mediated release and rescues defective 
Ca2+ uptake induced by α-synuclein. Representative Rhod2 fluores-
cence traces are shown with normalized peak values (F/F0) in the bar 
chart. Data were analysed by one-way ANOVA and Tukey’s post hoc 
test. N = 16–72 cells from three different experiments; error bars are 
SEM, **p < 0.01, ***p < 0.001
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findings are inconsistent [11, 31]. In particular, one 
reports that wild-type and mutant α-synuclein reduce 
whereas the other reports that wild-type increases con-
tacts [11, 31]. The reasons for these different findings are 
not clear but both studies included confocal microscopy 
experiments to quantify ER–mitochondria associations. 

ER–mitochondria contacts are defined as involving 
10–30 nm distances which is at least an order of magni-
tude beyond the resolution of the confocal microscope; 
appropriate microscopy methods, therefore, need to be 
used when quantifying contacts [16, 37, 55, 63]. Here, 
we utilized EM, proximity ligation assays and super 

Fig. 6   Reduced mitochondrial 
ATP production in SH-
SY5Y cells stably expressing 
α-synuclein, α-synucleinA53T 
or α-synucleinA30P. a ATP 
levels in SH-SY5Y cells treated 
with either vehicle (H2O) or 
100 μM iodoacetate (IAA) 
for 2 h to inhibit glycolysis 
and measured using ViaLight 
assay. Data were analysed by 
Student’s t test. N = 3; error 
bars are SEM, ***p < 0.001. b 
ATP levels in stably transfected 
SH-SY5Y cells expressing 
control empty vector, wild-type 
α-synuclein, α-synucleinA53T 
or α-synucleinA30P and treated 
with 100 μM iodoacetate for 
2 h. Data were analysed by 
one-way ANOVA and Tukey’s 
post hoc test. N = 4; error 
bars are SEM, *p < 0.05 and 
***p < 0.001. c ATP levels were 
measured in SH-SY5Y cells 
transfected with the ATP indica-
tor AT1.03. Cells were imaged 
in time-lapse and treated with 
KCN to inhibit oxidative 
phosphorylation. Representative 
traces of YFP/CFP ratios are 
shown for the different samples. 
The fall in YFP/CFP ratios 
correlates with ATP produced 
by oxidative phosphorylation. 
Bar chart shows relative ATP 
levels produced by oxidative 
phosphorylation (OxPhos) in 
the different samples. Data were 
analysed by one-way ANOVA 
and Tukey’s post hoc test. 
N = 15–27 cells from 3 experi-
ments, error bars are SEM; 
**p < 0.01, ***p < 0.001

0.4

0.6

0.8

1

1.2

0 500 1000

α−synA53T

CTRL

α-s
yn

 W
T

α-s
yn

 A53
T

α-s
yn

 A30
P

0

50

100

150

AT
P 

Le
ve

ls
 

(%
 c

on
tro

l)

a

c

b

O
xP

ho
s 

(%
)

0

50

150

CTRL

α-s
yn

 W
T

α-s
yn

 A53
T

α-s
yn

 A30
P

100

0

AT
P 

Le
ve

ls
 

(%
 o

f c
on

tro
l)

CTRL IAA
100 µM

50

100

α−syn

α−synA30P

0.4

0.6

0.8

1

1.2

0 500 1000

time (s)

Y
FP

/C
FP

 

0.4

0.6

0.8

1

1.2

0 500 1000

time (s)

Y
FP

/C
FP

 

0.4

0.6

0.8

1

1.2

0 500 1000

CTRL

time (s)

Y
FP

/C
FP

 

time (s)

Y
FP

/C
FP

 KCN

Ox-
Phos

KCN

Ox-
Phos

KCN

Ox-
Phos

KCN

Ox-
Phos



143Acta Neuropathol (2017) 134:129–149	

1 3

resolution SIM methods to quantify ER–mitochondria 
contacts and all revealed that expression of wild-type and 
mutant α-synuclein decrease ER–mitochondria contacts. 
Such methods afford better resolution for properly quan-
tifying ER–mitochondria associations. We also found that 
α-synuclein disrupts binding between the ER–mitochon-
dria tethering proteins VAPB and PTPIP51. Finally, we 
show that α-synuclein expression perturbs Ca2+ uptake 
by mitochondria following IP3 receptor-mediated release 
from ER stores which is a physiological readout of ER–
mitochondria associations. Together, these findings using 
different but complementary methods and approaches 

demonstrate that overexpression of α-synuclein disrupts 
ER–mitochondria contacts.

Recently, Tar DNA-binding protein-43 (TDP-43) and 
Fused in Sarcoma (FUS), two proteins intimately linked 
to fronto-temporal dementia and related amyotrophic lat-
eral sclerosis (FTD/ALS) have also been shown to dis-
rupt ER–mitochondria associations [78, 79]. As is the 
case with α-synuclein, these effects of TDP-43 and FUS 
involve breaking of the VAPB-PTPIP51 tethers. However, 
for TDP-43 and FUS, this breaking involves activation of 
GSK-3β; GSK-3β is a regulator of the VAPB–PTPIP51 
interaction and so controls ER–mitochondria associations 

0 200 400 600 800

time (s)

0.6

0.8

1

0.7

0.9

1.1

Y
FP

/C
FP

 

time (s)
0 200 400 600 800

0.6

0.8

1

0.7

0.9

1.1

Y
FP

/C
FP

 
0 200 400 600 800

time (s)

0.6

0.8

1

0.7

0.9

1.1

Y
FP

/C
FP

 
0 200 400 600 800

time (s)

0.6

0.8

1

0.7

0.9

1.1

Y
FP

/C
FP

 

KCN KCN

KCNKCN

Ox-
Phos

Ox-
Phos

Ox-
Phos

Ox-
Phos

CTRL α-syn

α-synA53T α-synA30P

O
xP

ho
s 

(%
)

0

50

150

CTRL

α-s
yn

 W
T

α-s
yn

 A53
T

α-s
yn

 A30
P

100

Fig. 7   Reduced mitochondrial ATP production in rat cortical neu-
rons expressing α-synuclein, α-synucleinA53T or α-synucleinA30P. 
7-day-old rat neurons were co-transfected with the ATP indicator 
AT1.03 and either control vector, α-synuclein, α-synucleinA53T or 
α-synucleinA30P. Cells were imaged in time-lapse and treated with 
KCN to inhibit oxidative phosphorylation. Representative traces of 

YFP/CFP ratios are shown for the different samples. The fall in YFP/
CFP ratios correlates with ATP produced by oxidative phosphoryla-
tion. Bar chart shows relative ATP levels produced by oxidative phos-
phorylation (OxPhos) in the different samples. Data were analysed by 
one-way ANOVA and Tukey’s post hoc test. N = 4–6, error bars are 
SEM; *p < 0.05
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and Ca2+ exchange [78, 79]. GSK-3β has been linked 
to α-synuclein and Parkinson’s disease [27, 54, 57] but 
we found no evidence that either wild-type or mutant 
α-synuclein expression caused activation of GSK-3β. 

Rather, we found that α-synuclein bound directly to 
VAPB. Thus, there appears to be different routes by 
which neurodegenerative disease insults can impact 
upon ER–mitochondria tethering via the VAPB–PTPIP51 
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myc and detected on immunoblots with rabbit anti-HA; α-synuclein 
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immunoblots in kD are shown on the right
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interaction, some involving activation of GSK-3β and 
some such as we describe here for α-synuclein, involving 
binding to the tethering proteins.

α-Synuclein toxicity has been linked to a number of 
seemingly diverse pathological features in Parkinson’s 
disease. These include damage to mitochondria, the 
ER, axonal transport, autophagy, Ca2+ homeostasis and 
lipid metabolism [9, 11, 13, 22, 31, 32, 38, 59, 60, 68, 
71, 84, 88, 90, 91]. Indeed, the difficulty in deciphering 

α-synuclein toxicity is linking these different pathologi-
cal changes to a common disease pathway. However, all 
of these physiological processes are regulated by signal-
ling between ER and mitochondria at MAM [46, 48, 63, 
70, 82, 83]. Thus, our demonstration that α-synuclein 
binds to VAPB, disrupts the VAPB-PTPIP51 tethers, 
ER–mitochondria contacts and signalling, represents a 
plausible route whereby α-synuclein may damage such 
a variety of cellular functions. These molecular findings 
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facilitate a proper dissection of the role of ER–mitochon-
dria signaling in α-synuclein linked Parkinson’s disease.
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