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the UPR in neurological diseases. We will discuss evidence 
for UPR activation in neurodegenerative diseases, and the 
methodology to study UPR activation and its connection to 
brain pathology will be addressed. More recently, the UPR 
is recognized as a target for drug therapy for treatment and 
prevention of neurodegeneration, by inhibiting the function 
of specific mediators of the UPR. Several preclinical stud-
ies have shown a proof-of-concept for this approach target-
ing the machinery of UPR, in particular the PERK path-
way, in different models for neurodegeneration and have 
yielded paradoxical results. The promises held by these 
observations will need further support by clarification of 
the observed differences between disease models, as well 
as increased insight obtained from human neuropathology.

Keywords ER stress · Unfolded protein response · 
PERK · eIF2alpha · Neuropathology · Neurodegeneration

The UPR, a highly conserved stress response

Neurodegenerative disorders like Alzheimer’s disease 
(AD), Parkinson’s disease (PD), prion disease, Hunting-
ton’s disease (HD), frontotemporal dementia (FTD), and 
amyotrophic lateral sclerosis (ALS) are characterized by 
the accumulation and aggregation of misfolded proteins. 
The proteins found in the aggregates and the brain areas 
where they accumulate are different for each neurodegen-
erative disease. Like all cells, neurons have an extensive 
system for protein quality control. This serves to detect 
and remove aberrant proteins, to prevent the detrimental 
aggregation process and deal with misfolding early in the 
process. A major site of protein synthesis is the endoplas-
mic reticulum (ER), where secretory, transmembrane and 
organelle-targeted proteins are synthesized, comprising 

Abstract The unfolded protein response (UPR) is a stress 
response of the endoplasmic reticulum (ER) to a distur-
bance in protein folding. The so-called ER stress sensors 
PERK, IRE1 and ATF6 play a central role in the initiation 
and regulation of the UPR. The accumulation of misfolded 
and aggregated proteins is a common characteristic of neu-
rodegenerative diseases. With the discovery of the basic 
machinery of the UPR, the idea was born that the UPR or 
part of its machinery could be involved in neurodegenera-
tive diseases like Alzheimer’s disease, Parkinson’s disease, 
amyotrophic lateral sclerosis and prion disease. Over the 
last decade, the UPR has been addressed in an increasing 
number of studies on neurodegeneration. The involvement 
of the UPR has been investigated in human neuropathology 
across different neurological diseases, as well as in cell and 
mouse models for neurodegeneration. Studies using differ-
ent disease models display discrepancies on the role and 
function of the UPR during neurodegeneration, which can 
often be attributed to differences in methodology. In this 
review, we will address the importance of investigation of 
human brain material for the interpretation of the role of 
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approximately 30 % of the proteome. A key component 
of protein quality control in the ER is the unfolded pro-
tein response (UPR), which comes into play if the protein 
homeostasis (proteostasis) in the ER is disturbed.

Before the UPR was discovered, it had already been 
observed that different types of cellular stress like viral 
transformation, inhibition of glycosylation and calcium 
ionophore treatment induced the expression of a select 
group of proteins. These proteins were called glucose-
regulated proteins (GRPs) because of their induction by 
glucose deprivation and to distinguish them from a related 
group of proteins that were induced by heat, the heat-
shock proteins [53, 104]. In 1988, the first direct con-
nection between protein folding stress in the ER and the 
induction of GRPs, including GRP78 (BiP), was made by 
overexpression of mutant influenza hemagglutinin protein 
in mammalian cells [52]. This stress response was thus 
designated unfolded protein response or UPR. Gradually, 
the key signaling events that mediate the response were 
identified, with pioneering work done in yeast, demon-
strating that a specific promoter element is responsible for 
the transcriptional upregulation of GRPs and other targets 
[67]. This was followed by the identification of the sensor 
in the ER membrane responsible for transducing the sig-
nal from the misfolded proteins in the ER to the nucleus 
(Ire1p/Ern1p), reported more or less simultaneously by two 
groups [18, 66]. Two mammalian homologues (IRE1α and 
β) were identified a few years later [109, 119]. Ire1p oli-
gomerizes when the response is triggered which results in 
trans-autophosphorylation [94, 120]. An important result of 
activation of Ire1p is the unconventional splicing of Hac1p 
mRNA, resulting in the generation of the active transcrip-
tion factor Hac1p [19, 98]. The mammalian substrate of the 
IRE1 endonuclease, XBP1 mRNA, has remained elusive 
for a long time as it bears no homology to Hac1p. Nonethe-
less, the mechanism of activation by unconventional splic-
ing is conserved [11, 55, 126].

The yeast UPR is mediated entirely by the Ire1p path-
way, but metazoans have additional sensors and, as a result, 
more downstream targets and broader cellular effects. It 
was observed that during activation of the UPR in mamma-
lian cells protein synthesis is inhibited by phosphorylation 
of the translation initiation factor eIF2α, as is also a com-
mon response to other types of cellular stress [later termed 
the integrated stress response (ISR), see below]. However, 
none of the eIF2α kinases known at the time were activated 
by ER stress. Protein kinase R (PKR)-like endoplasmic 
reticulum kinase (PERK), an ER transmembrane protein, 
was later identified as this novel eIF2α kinase [33, 95]. It 
combines the interesting properties of a luminal domain 
highly homologous to IRE1 to sense misfolded proteins in 
the ER connected to a cytosolic kinase domain that resem-
bles the other eIF2α kinases. Mammalian cells contain 

another ER stress transducer, the third in line to be discov-
ered, activating transcription factor 6 (ATF6). This mem-
brane-bound transcription factor is transported to the Golgi 
upon UPR activation where it is processed and released to 
the nucleus [34, 125]. As for IRE1, for ATF6 also two iso-
forms exist, ATF6α and ATF6β.

The IRE1, PERK and ATF6 pathways together comprise 
an intricate network that has a broad range of transcrip-
tional and translational targets. The UPR is closely con-
nected to the proteolytic machinery of the cell. Proteins that 
misfold in the ER are exported to the cytosol and degraded 
by the proteasome [80]. However, once the UPR is acti-
vated, autophagy is increased and this becomes the major 
proteolytic system [5, 24, 69, 73, 90]. Although many 
mechanistic details and additional regulatory pathways are 
still being uncovered, the core signaling of the mammalian 
UPR had been unraveled by 2002 (Fig. 1).

An important function of the UPR is its function as a 
homeostatic stress response initiated by ER dysfunction. 
In addition, it is employed to adjust the physiology of 
cells under situations where ER function is not impaired 
[81]. For example, during the differentiation of B-cells to 
antibody-producing plasma cells, pathways of the UPR are 
employed to expand the ER [46]. Also in cells that dem-
onstrate a highly dynamic physiologically regulated range 
of secretory demand, like insulin secretion in pancreatic 

Fig. 1  The unfolded protein response. The unfolded protein response 
consists of three independent signaling pathways that work in parallel 
and are activated upon accumulation of unfolded proteins inside the 
ER. Each signaling pathway is defined by the different ER-resident 
transmembrane proteins that act as ER stress sensors: RNA-activated 
protein kinase R (PKR)-like ER kinase (PERK), activating transcrip-
tion factor 6 (ATF6) and inositol requiring enzyme 1 (IRE1). Activa-
tion of the UPR leads to an overall translational block and specific 
activation of ER stress responsive genes, which will increase the pro-
tein folding capacity and decrease the protein folding load in the ER. 
See text for further details



317Acta Neuropathol (2015) 130:315–331 

1 3

β-cells, the UPR is involved [91]. Not surprisingly, dys-
function of the UPR can therefore give rise to disease. For 
example, Wolcott–Rallison syndrome is a rare hereditary 
disease caused by loss of function of PERK [23]. Individu-
als with this disease develop defects that are connected to 
loss of the physiological function of the UPR, including 
diabetes due to loss of β-cell function. A completely oppo-
site way in which the UPR can lead to disease is observed 
in cancer, where hyperactivity of the UPR facilitates the 
survival of tumor cells [63]. In contrast, in neurodegenera-
tive diseases—the focus of this review—UPR activation is 
connected to ER dysfunction and leads to loss of neuronal 
function. It is important to be aware of the different faces 
that the UPR has in physiology and pathology.

Because accumulation of misfolded proteins is a com-
mon characteristic of neurodegenerative diseases, it is not 
surprising that the involvement of the UPR during neurode-
generation has been extensively studied in both in vitro and 
in vivo models (for review see [79]). It is becoming appar-
ent that the role of the UPR in these models is not always 
consistent and sometimes even paradoxical (see detailed 
discussion below). The proposed functional role of the 
UPR concluded from these models is often difficult to con-
nect to the situation in the human brain under pathologi-
cal conditions. To understand the impact or relevance of the 
UPR in vitro or in vivo using models for neurodegeneration 
a direct relation should be made with human neuropathol-
ogy. In 2005, our group reported activation of the UPR in 
human AD brain [42]. The investigation of many different 
neurodegenerative diseases in even more different model 
systems has increased enormously. Below, we will discuss 
the progress made in UPR research in neurodegenerative 
diseases over the last decade. We will specifically address 
similarities and discrepancies between observations in 
human pathology and disease models.

UPR activation in human neuropathology

To detect UPR activation in samples of human brain, dif-
ferent methods can be employed. Altered expression of 
UPR target genes can be determined by analysis of mRNA 
expression in brain lysates. This is a sensitive method, but 
has the disadvantage that changes in only a subset of the 
cells may not be detected because they are diluted out. 
The same limitation applies to measuring protein levels of 
UPR markers in protein lysates. Currently, many antibodies 
are available directed to the main players of the UPR that 
enable studying its activation using different techniques. 
It should be noted that determination of UPR protein lev-
els not always allows assessment of UPR activation since 
part of the UPR relies on mechanisms that involve protein 

cleavage, post-translational modification, intracellular dis-
tribution or altered conformation.

For detection of UPR activation, phospho-specific 
antibodies that specifically detect the active, phosphoryl-
ated, forms of the ER stress sensors PERK and IRE1 have 
become an important tool. Also, for the phosphorylated 
substrate of PERK, p-eIF2α, phospho-specific antibodies 
are available, but this is not a specific UPR marker, because 
it is the converging point of the ISR. The ISR involves apart 
from PERK three other stress-induced eIF2α kinases, PKR 
(protein kinase double-stranded RNA-dependent), GCN2 
(general control non-depressible-2), and HRI (heme-reg-
ulated inhibitor) [25]. In addition, immunohistochemistry 
or immunofluorescence can be employed for UPR-related 
translocation events, of the transcription factors ATF6 
and XBP1 to the nucleus. In addition, ATF4 and CHOP 
positive nuclei are in accordance with UPR activation, but 
again these downstream targets in the PERK pathway are 
not specific UPR markers because of the presence other 
eIF2α kinases. An additional advantage of UPR detection 
in situ by immunohistochemistry or immunofluorescence 
is that it can be pinpointed to specific cells (e.g., neurons 
or glia) and directly correlated to pathological hallmarks. 
Using above-described methods, different UPR markers 
have been observed in different neuropathological condi-
tions (Table 1).

Alzheimer’s disease

Alzheimer’s disease (AD) is the most prevalent neurode-
generative disease and the most common form of demen-
tia. Deposits of aggregated proteins are a prominent neu-
ropathological hallmark of AD: intracellular aggregates 
of tau in the neurofibrillary tangles (NFTs), dystrophic 
neurites and neuropil threads, and extracellular aggregates 
of β-amyloid (Aβ) in the senile plaques. AD thus repre-
sents a prime example of a protein folding disease [106]. 
Markers specific for UPR activation are increased in AD 
brain tissue compared to non-demented control brain tis-
sue (Fig. 2). GRP78 is increased in AD in the hippocam-
pus and temporal cortex and various studies from different 
groups have shown increased presence of phosphorylated 
(p)PERK, pIRE1, and p-eIF2α in AD neurons [15, 29, 41, 
42, 103, 111]. These markers appear either in morphologi-
cally healthy neurons or in neurons with abnormally phos-
phorylated tau protein, but are almost absent from NFT-
containing neurons. Overall, the levels of GRP78 and the 
occurrence of pPERK in AD neurons correlate very well 
with the presence of abnormally phosphorylated tau and 
the Braak staging for NFTs [41]. These observations indi-
cate that the UPR is involved in the early stages of AD 
pathology.
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Non‑AD tauopathies

Neurodegenerative diseases that show a primary pathol-
ogy consisting of inclusions of filamentous tau can be des-
ignated as a tauopathy and include diseases like sporadic 
corticobasal degeneration (CBD), progressive supranuclear 
palsy (PSP), Pick’s disease (PiD), as well as hereditary 
FTD and parkinsonism linked to chromosome 17 (FTDP-
17T). Different groups have now shown increased pres-
ence of pPERK, p-eIF2α and pIRE1 in affected brain areas 
in these tauopathies [70, 103, 111]. From these studies, it 
appears that UPR activation markers occur in cells, i.e., 
neurons and glia that show abnormal tau phosphorylation, 
suggesting that UPR activation and tau phosphorylation are 
closely linked during neurodegeneration.

Synucleinopathies

Parkinson’s disease (PD) is characterized by the selec-
tive loss of dopaminergic neurons in the substantia nigra 
pars compacta (SN) and the accumulation of α-synuclein 
in Lewy bodies. The involvement of the UPR in PD has 
primarily been shown in in vitro models [82]. Although a 
role for the UPR in neuronal cell death in PD pathogen-
esis is widely suggested, there is hardly any data on UPR 
activation from postmortem studies on PD cases. Our 
group investigated the immunohistochemical localiza-
tion of pPERK and p-eIF2α in the substantia nigra of PD 
and control cases [40]. Immunoreactivity for pPERK 
and p-eIF2α is observed in PD in neuromelanin contain-
ing neurons of the SN, while these markers are absent in 
control cases. Multiple system atrophy (MSA) is a spo-
radic neurodegenerative disease that is also characterized 
by intracellular accumulation of α-synuclein. In MSA, 
pPERK, p-eIF2α, and pIRE1 were increased in and closely 
associated with glial cytoplasmic inclusions containing 
α-synuclein during the initial state of deposition [61]. The 
close association between UPR markers and accumulation 
of α-synuclein in the cytoplasm suggests a strong relation 
between α-synuclein and ER stress. This is supported by 
in vitro models showing that overexpression of wild-type 
or mutant α-synuclein increases the vulnerability for ER 
stress through various mechanisms [17, 100].

Prion disease

Prion disease or transmissible spongiform encephalopa-
thies (TSEs) are fatal neurodegenerative disorders (e.g., 
Creutzfeldt–Jakob (CJD), Gerstmann–Sträussler–Schenker 
disease (GSS), fatal familial insomnia (FFI), and Kuru), 
which are characterized by rapidly progressing neuronal 
loss and extracellular accumulation of the scrapie form 
of the prion protein (PrPSc), a pathological isoform of the Ta
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normal cellular prion protein (PrP). Detection of UPR acti-
vation markers, especially phosphorylated proteins, could 
be difficult in human prion disease due to the relatively 
long postmortem delay as a result of infectivity precau-
tions. In 2003, Hetz and colleagues reported on increased 
caspase-12 activation and elevated levels of ER stress 
markers GRP58, GRP78 and GRP94 in cortical samples 
from sporadic CJD and variant CJD cases [36]. The role of 

caspase-12 in neurodegeneration in general and in human 
neuropathology in particular is debatable. In mice, cas-
pase-12 is also involved in the innate immune responses by 
regulating the processing of inflammatory cytokines and 
caspase-12 deficiency in mice confers resistance to sepsis 
[83]. In the great majority of the human population, how-
ever, caspase-12 is expressed as a truncated, catalytically 
inactive protein. A subset of individuals of African descent 
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Fig. 2  UPR activation in Alzheimer’s disease. Immunohistochemical 
detection and antibodies used for the detection of UPR markers and 
phosphorylated tau (AT8, AT100 and AT270) have been described 
previously [41, 42]. Shown are pictures of the hippocampal sub-area 
subiculum of a control case (CTRL, Braak 0) and an AD case (Braak 
5). a–c pPERK is detected by immunohistochemistry in pyramidal 
neurons of an AD case and is absent in a control case showing no 
AD pathology. pPERK is present in granules which can be defined 
as granulovacuolar degeneration. d–f p-eIF2α immunohistochem-
istry on the same area shown for the control and AD case in a–c. 
Also p-eIF2α can be detected as granules in pyramidal neurons. g–i 

pIRE1α is also detected in pyramidal neurons in the subiculum of an 
AD case and is absent in a control case (shown is the same area as 
indicated in a–c). Similar granular structures are detected as observed 
with pPERK and p-eIF2α immunohistochemistry. j–k UPR mark-
ers in AD are localized in neurons showing increased presence of 
phosphorylated Tau protein; j Double immunolabeling for pPERK 
(brown) and AT8 (red, pTau Ser202), k pPERK (brown) and AT100 
(red, pTau Ser212 and Thr 214) and l pPERK (brown) and AT270 
(red, pTau Thr181). Sections were counterstained with haematoxylin 
(blue). Scale bar a, b, d, e, g, h 300 μm; c, f, i–l 40 μm
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expresses full-length caspase-12 rendering these indi-
viduals more susceptible to inflammatory diseases, again 
pointing more to a key role for this caspase in the immune 
response [84]. These issues should be kept in mind consid-
ering the interpretation of caspase-12 activation in human 
brain tissue samples.

An extensive immunohistochemical study looking at 
the localization of pPERK and p-eIF2α could not confirm 
the involvement of the UPR in CJD [111]. Only CJD cases 
that showed concomitant AD pathology had increased pres-
ence of pPERK and p-eIF2α, suggesting that these markers 
were not related to the prion pathology. This indicates that 
comorbidity or co-occurrence of neuropathological pro-
cesses is an important factor in the study of UPR activation 
in human neuropathology. Definite conclusions can only be 
made when brain tissue is neuropathologically assessed for 
different pathological hallmarks, particularly abnormally 
phosphorylated tau. Whether other arms of the UPR than 
the PERK pathway are involved in human CJD pathology 
needs to be addressed in future studies.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis is characterized by the 
degeneration of motor neurons in the spinal cord, cortex 
and brain stem, leading to muscle atrophy and paralysis 
[10]. Protein levels of total PERK, ATF6, IRE1 and cas-
pase-4 are increased in the spinal cord of sporadic ALS 
patients [2]. In addition, increased levels of XBP-1s, ATF4 
and GRP58 have been observed in human postmortem spi-
nal cord samples of sporadic ALS patients by Western blot 
analysis [37]. Immunohistochemical analyses indicate an 
increase in CHOP and GRP78 in ALS spinal cord [45, 86]. 
pPERK and p-eIF2α have been observed in the spinal cord 
of transgenic mice models for ALS [68]. To our knowledge, 
there are no reports on increased levels of pPERK in ALS 
spinal cord. By both immunohistochemistry and Western 
blot analyses, increased levels of p-eIF2α are detected in 
spinal cord samples from patients with sporadic ALS com-
pared control cases [44]. UPR activation has been thor-
oughly investigated in models for ALS and increased levels 
of a variety of UPR markers have been reported in spinal 
cord samples from ALS patients. However, it should be 
noted that comparative studies on human postmortem spi-
nal cord samples from ALS patients and matched control 
cases to date only comprised low number of cases making 
statistical analysis difficult.

Repeat expansion diseases

Expanded polyglutamine (polyQ) repeats found in differ-
ent proteins can cause human-inherited neurodegenerative 
diseases, such as Huntington’s disease (HD), spinobulbar 

muscular atrophy, dentatorubal-pallidoluysian atrophy and 
spinocerebellar ataxia (SCA). These disorders are char-
acterized by accumulation of intracellular protein aggre-
gates and selective neuronal death. Expression levels of 
GRP78 and CHOP mRNA were found to be increased 
in the parietal cortex of HD patients compared to control 
cases [12]. Increased protein levels of pIRE1 and GRP78 
can be observed in striatal tissue of HD patients compared 
with controls by Western blot analysis [54]. Vidal and col-
leagues have reported increased protein expression of 
XBP-1s in the striatum of a subset of HD cases compared 
with control cases, while no detectable changes in protein 
levels were observed for ATF4, CHOP, and GRP78 [114]. 
Another study showed that the processing of ATF6 to its 
active nuclear form is impaired in affected brain regions of 
Huntington’s disease patients [26].

A G4C2·G2C4 repeat expansion in a non-coding region 
of the C9ORF72 gene is the most common genetic cause 
of ALS and FTLD-TDP [22, 78]. In the frontal cor-
tex, mRNA levels of ATF4 and CHOP are significantly 
increased in ALS patients with the C9ORF72 repeat expan-
sion compared to ALS patients without the repeat expan-
sion, whereas no differences in GRP78 mRNA levels were 
observed [130].

From observations in postmortem brain, it is hard to 
draw conclusions about the involvement of the UPR in 
repeat expansion diseases. Most studies have been per-
formed with a low number of disease and control cases and 
do not show the association with the extent of pathology 
or the number of repeat expansions in the affected genes. 
This makes statistical analysis and interpretation of data 
very difficult. More extensive studies on UPR markers are 
required to determine the role of the UPR in repeat expan-
sion diseases.

UPR markers are associated with granulovacuolar 
degeneration

In various neurodegenerative diseases (AD, tauopathies, 
MSA), UPR activation markers are observed in neuro-
pathological structures that are defined as granulovacuolar 
degeneration (GVD). GVD is characterized by basophilic 
granules surrounded by a clear zone measuring 1–5 μm in 
diameter, occurring predominantly in hippocampal neurons 
[74, 107]. It is reported that GVD occurs in adult control 
brains and increases slightly with increasing age, however, 
the occurrence of GVD in AD brain is increased compared 
to age-matched control brain [4, 122]. In addition, the 
occurrence of GVD is associated with pathological hall-
marks and clinical signs of AD as it correlates with the 
presence of NFTs, neuritic plaque pathology, Aβ-protein 
deposition phases, cerebral amyloid angiopathy stages and 
clinical dementia rating (CDR) scores [107]. Currently, the 
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molecular events in GVD-containing neurons are poorly 
understood. Histochemical and ultrastructural observa-
tions suggest that GVD may correspond to a special type 
of autophagosome [74]. The presence of UPR activation 
markers in GVD granules may be explained by inclusion 
of ER-derived material in the autophagosomes. Alterna-
tively, there is evidence indicating that the ER can serve as 
a membrane source for autophagosome formation [6].

Conclusions from neuropathogical studies

All neurodegenerative diseases described above show fea-
tures of an activated UPR. The most elaborate insight with 
regard to the association with pathological hallmarks and 
disease progression has been obtained for AD. Insight in 
the involvement of the UPR in different pathological stages 
(e.g., Braak stage for NFT of LB, Thal staging for amyloid 
β [8, 9, 108]) will provide directions for functional studies 
into the involvement of the UPR in neurodegenerative mod-
els, and feasibility of potential therapeutic approaches. For 
most neurodegenerative diseases studied, the assessment of 
the three arms of the UPR together is lacking, although this 
is important in view of crosstalk and compensation between 
the pathways (see detailed discussion below). Several fac-
tors can directly or indirectly influence the activity of the 
three ER stress transducers which may fine-tune the output 
of the UPR in physiological conditions. This has been best 
studied for the IRE1 pathway (reviewed in [35]). IRE1 has 
been implicated in determining the switch from adaptive to 
apoptotic signaling if the stress is prolonged, which is then 
followed by apoptosis [30]. However, prolonged activity of 
all 3 branches is observed in several neurodegenerative dis-
eases in the absence of signs of apoptosis. This indicates 
that the dysregulated UPR activity in pathological situa-
tions is very different from that observed in physiological 
cell models. A noteworthy observation across the different 
neurodegenerative diseases is the association of UPR acti-
vation markers with the occurrence of early signs of tau 
pathology. In AD, CBD, PSP, PiD, FTDP-17T and MSA, 
UPR activation is found in neurons that show accumula-
tion of abnormally phosphorylated tau. These observations 
across different diseases strengthen the hypothesis that 
UPR activation and abnormal tau phosphorylation/aggrega-
tion are functionally connected.

UPR activity in models for neurodegenerative 
disease: truth or artifact?

To model neurodegenerative diseases, overexpression of 
aggregating proteins and more often of mutant derivatives 
associated with familial variants of the disease is used. 
Typically, this models only part of the pathogenesis in an 

exaggerated and accelerated fashion. This is useful for 
some purposes, but also creates an artifact-prone situation, 
in particular for a response that is designed to detect protein 
stress. A good example of ambiguous results is Presenilin 
1 (PS1), mutations in which are the most common cause 
of autosomal dominant inherited forms of AD. PS1 was 
reported to affect the signaling of the UPR in models using 
overexpression [48] as well as knockout [71]. In contrast, 
other labs did not observe effects of PS1 mutant overex-
pression or deficiency on the UPR [75, 87, 101]. The exact 
cause of these differences is not known, and may relate 
to different cells, promoters and expression levels, mouse 
lines, specific mutations in PS1 used, etc. In any case, it is 
clear that disturbed UPR signaling is not a common fea-
ture of PS1 mutations and, in addition, it is elusive whether 
UPR signaling is activated and involved in the pathogenesis 
of AD in PS1 mutation carriers.

Several groups reported that exogenous application of 
synthetic Aβ induces or potentiates the UPR, albeit to dif-
ferent extent [14, 105, 127]. What is important to realize 
is that the local amounts of aggregates in these experimen-
tal setups exceeds that observed in the brain excessively. In 
an animal model for prion disease, injection of PrPsc in the 
brain of mice results in UPR activation [65]. Although the 
exposure to PrPsc reflects the pathogenesis of the human 
sporadic disease relatively well, in most experiments it still 
involves exposure to higher levels of aberrant proteins in 
Tg mice that express higher levels of the normal PrPc to 
speed up the pathology. The flooding of neurons and syn-
apses with toxic aggregates may lead to a disturbance in the 
ER, however, this may relate to a more general disturbance 
of cell physiology rather than a specific effect on the UPR. 
It was reported that UPR activation is also observed in the 
absence of overexpressed PrPc [65] and although this will 
increase the time for phenotypes to develop this may be a 
more artifact-free model for the human disease.

This indicates another important issue: The aggregat-
ing proteins in neurodegenerative disease do typically not 
accumulate in the ER and many of them do not enter the 
ER at any stage in their life cycle. Effects on UPR signal-
ing may therefore be indirect or not even directly related to 
ER stress. For example in the prion disease model, PERK 
activation does not seem to be accompanied by activation 
of the other two UPR branches, which makes it a very spe-
cific type of PERK activation, possibly not via ER stress 
[65, 72]. In overexpression models for α-synuclein [17], it 
was shown that accumulation of α-synuclein in the cytosol 
blocks ER–Golgi trafficking, leading to reduced ER exit 
and induction to the UPR. In another example, our own 
lab found that incubation of neuronal cells in culture with 
neurotoxic concentrations of Aβ oligomers did not induce 
a robust UPR within 48 h [14], although the uptake of oli-
gomers occurs within minutes after application [13]. The 
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oligomers did not directly encounter the ER, but did sen-
sitize cells for a secondary ER stress insult. It is for exam-
ple possible that the oligomers disturb intracellular calcium 
homeostasis via their toxic effect on mitochondria and lys-
osomes, thus indirectly affecting calcium homeostasis in 
the ER.

The lack of a direct colocalization between the disease 
causing proteins and the ER has prompted research into 
investigating the connection the other way around and con-
sider the option that UPR activation precedes and facilitates 
pathology. There is for example no evidence for UPR acti-
vation by Aβ pathology in APP/PS1 mice. These only show 
UPR activation in aged mice, despite extensive pathology 
much earlier in younger mice [50].

Recent studies show that in animal models for prion dis-
ease and Aβ pathology increased PERK activity results in 
chronic inhibition of protein synthesis by eIF2α phospho-
rylation [60, 64, 65]. This prolonged UPR activation results 
in reduced levels of synaptic proteins and induces synaptic 
loss and neurodegeneration. This is an exciting new view 
on how chronic activation of the UPR facilitates neuro-
degeneration [89]. Although overall translation is inhib-
ited by eIF2α phosphorylation, the translation of a select 
set of mRNAs is increased under these conditions. The 
mRNA encoding BACE1, a key enzyme in Aβ formation, 
was demonstrated to be one of these transcripts. BACE1 is 
thus subject to PERK-mediated translational upregulation 
via eIF2α phosphorylation. This UPR-induced increase in 
BACE1 levels results in enhanced Aβ production in Tg2576 
mice [72]. This corroborates with an earlier report showing 
that UPR activation increases the formation of Aβ in PS1 
mutant fibroblasts [75] although in this study the involve-
ment of the PERK pathway was not specifically addressed.

As was observed in the APP/PS1 mice also in trans-
genic tau mice (P301L), the UPR is activated only in aged 
mice [38, 50]. UPR activity occurs therefore well after the 
occurrence of tau pathology, which makes it unlikely that 
pathological tau induces the UPR. In contrast, both in cell 
culture [113] and animals [56] endogenous tau is phospho-
rylated at disease relevant epitopes upon induction of the 
UPR. This suggests that activation of the UPR facilitates 
tau pathology. Results from our lab indicate that initially 
the UPR-induced tau phosphorylation is reversible and 
may be part of the adaptive response to stress [113]. How-
ever, prolonged UPR activation and tau phosphorylation as 
occurs in the brains of tauopathy patients may facilitate the 
formation of irreversible tau aggregates. In a very aggres-
sively progressing tau mouse model (Tg4510) that shows 
extremely rapid tau aggregation and neuronal loss, it was 
shown that the tau aggregates impair ER proteostasis, thus 
contributing to activation of the UPR [1]. This may in turn 
result in a vicious cycle once aggregates form and may 
explain the UPR induction in aged tau mice [102]. The 

UPR-induced tau phosphorylation can be inhibited using a 
small molecule inhibitor of the PERK pathway [113], sug-
gesting the involvement of this pathway.

Interestingly, subtle changes in UPR activity could 
bear relevance in human disease. Recently, this has gained 
further support from genetic studies that associate the 
EIF2AK3 gene with increased risk of the tauopathies PSP 
and AD [39, 58]. The EIF2AK3 risk allele was shown 
to increase the signaling activity of the PERK pathway 
[57]. Likewise, a polymorphism in the XBP1 gene, which 
encodes the transcription factor activated by the IRE1 
branch of the UPR, was identified as a genetic risk factor 
for AD [59]. The polymorphism affects the expression of 
XBP-1 and thereby the signaling activity in the IRE1 path-
way [47, 77].

Despite the use of different animal and cell models for 
some specific mechanistic questions, many of these are 
quite different from the human disease. Recent advances 
in induced pluripotent stem cell (iPSC) technology lead the 
way to the generation of disease relevant human neurons. 
Cortical neurons derived from sporadic AD and APPE693Δ 
fAD fibroblasts showed extensive intracellular Aβ oligomer 
accumulation and increased GRP78 mRNA levels in par-
ticular in the fAD mutant cells, but involvement of other 
components of the UPR was not reported [51]. Human 
motor neurons derived from SOD1 A4V fALS mutation 
carrier fibroblasts causes hyperexcitation associated with 
upregulation of XBP-1s and increased p-eIF2α [115]. Inhi-
bition of the hyperexcitation reduces the levels of XBP-1s, 
indicating that it is downstream of the electrophysiological 
phenotype [115]. It was suggested that this could induce a 
vicious cycle, because UPR induction has been shown to 
increase activity in motor neurons [49]. The exact mecha-
nism needs further investigation, because if the signaling 
via the PERK pathway was prolonged using Salubrinal 
treatment the neuronal activity was actually reduced. Inter-
estingly, these events all preceded the aggregation of the 
mutant SOD protein [49]. The data suggested that the lev-
els of UPR target proteins are relatively high in wild-type 
motor neurons, indicative of basal UPR activation. Because 
this is associated with a relatively high sensitivity to ER 
stress, this could be an interesting explanation for the selec-
tive motor neuron pathology in ALS. The developments in 
the technology to culture human neurons create an elegant 
model to further elaborate on this, also in less-severe dis-
ease variants than the A4V mutant [92]. Cortical neurons 
were derived from A53T α-synuclein fibroblasts to establish 
a model for cortical synucleinopathy [16]. As was shown in 
yeast and mammalian cell models before, these cells display 
accumulation of ERAD substrates in the ER and increased 
levels of the UPR targets GRP78 and PDI. Also, in this case, 
the added value of human neurons was indicated, as all 
these phenotypic changes required neuronal differentiation.
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Targeting the UPR

Many models for neurodegenerative disease show UPR 
activity, but how do changes in UPR signaling affect the 
neurodegenerative process? This is important from mecha-
nistic point of view, but also when considering targeting of 
the UPR for treatment of neurodegenerative disease.

Knockout mice for the UPR sensors were generated 
already early after their discovery and very severely affect 
the development and physiology of the animals. Homozy-
gous PERK−/− mice have a phenotype very similar to 
humans with Wolcott–Rallison syndrome, in which the 
gene encoding PERK (EIF2AK3) is mutated [23]. Very 
pronounced is the defect in the function of the endocrine 
and exocrine pancreas, resulting in many systemic prob-
lems and early mortality [31, 129]. PERK-deficient cells 
are more sensitive for ER stress [32]. ATF6α deficiency 
also increases sensitivity for ER stress and ATF6αβ dou-
ble knockouts are embryonic lethal [121, 123, 124]. Also, 
germline deletion of XBP1 [76] or IRE1α [128] in mice is 
embryonic lethal.

The apparently increased sensitivity for ER stress in car-
riers of the UPR risk alleles may result in pathology in the 
long run. More research will be needed to establish how 
these risk variants contribute to pathology. The existence of 
risk variants may imply that also protective variants exist. 
In addition, if subtle increases in UPR signaling activ-
ity enhance risk, this could mean that subtle inhibition of 
activity by pharmacological intervention may be a viable 
approach. PERK and IRE1 are considered to be “drugga-
ble” and the list of small molecule inhibitors to target these 
UPR sensors is growing [62].

For IRE1, both RNase and kinase inhibitors have been 
developed that differentially affect the respective activities 
and the dimerization properties of IRE1. Advantage of just 
inhibiting the RNase may be that only the XBP-1 process-
ing is inhibited, whereas phosphorylation of putative other 
substrates of the IRE1 kinase and its dimerization are not 

affected [20, 85]. Type I kinase inhibitors inhibit autophos-
phorylation, but stimulate RNase activity, which may be 
useful for research, but not for clinical development [117]. 
Type II inhibitors inhibit both kinase and RNase activities 
and thus effectively block all signaling via IRE1 [27]. In 
models for ER stress-mediated degeneration the type II 
IRE1 inhibitor KIRA6 promotes cell survival [27].

Targeting of the PERK/eIF2α pathway has received a 
lot of attention the last couple of years (Table 2). An early 
breakthrough was the compound Salubrinal, which targets 
the regulatory subunits of the eIF2α protein phosphatase 
1c (PP1c) [7]. Salubrinal was shown to ameliorate the neu-
rodegenerative phenotype in a mouse model for ALS [88]. 
The drug Guanabenz, which is an α2-adrenergic recep-
tor agonist used to treat hypertension, was demonstrated 
to selectively inhibit the stress-induced eIF2α protein 
phosphatase regulatory subunit 15 A (PPP1R15A; a.k.a. 
GADD34, growth arrest and DNA damage-inducible pro-
tein 34) that forms a complex with PP1c [110], whereas 
Salubrinal also targets the constitutive PPP1R15B-PP1c 
complex. Guanabenz therefore does not completely inhibit 
the dephosphorylation of eIF2α. Guanabenz was beneficial 
in a SOD1 as well as a TDP-43 transgenic mouse model 
[112, 118].

Sephin1, a derivative of Guanabenz without its hypo-
tensive action, was recently demonstrated to prevent neu-
rodegeneration in a mouse model for ALS (SOD1 G93A) 
as well as neuronal loss in a model for the demyelinat-
ing peripheral neuropathy Charcot–Marie–Tooth disease 
type 1B [21]. For treatment of a neurodegenerative pro-
cess that is ongoing, however, this may be different. The 
synaptic loss and neurodegeneration in animal models for 
prion disease and Aβ pathology were attributed to chronic 
inhibition of translation by eIF2α phosphorylation [60, 64, 
65]. Deletion of the PERK gene restores the translational 
defect and rescues the neurodegenerative phenotype [60, 
65]. The rescue in the Aβ model is more difficult to inter-
pret than the effects in the prion disease model, because of 

Table 2  Small molecules targeting the PERK pathway of the UPR: effects in mouse models for neurodegenerative disease

PERK protein kinase R (PKR)-like endoplasmic reticulum kinase, UPR unfolded protein response, p-eIF2α phosphorylated eukaryotic initiation 
factor 2 alpha, eIF2β eukaryotic initiation factor 2 beta, GADD34 growth arrest and DNA damage-inducible protein 34, PP1c protein phos-
phatase 1c, PPP1R15A/B protein phosphatase 1, regulatory subunit 15A/B, ALS amyotrophic lateral sclerosis, CMT1B Charcot–Marie–Tooth 
disease 1B, TDP-43 TAR DNA-binding protein 43, SOD1 superoxide dismutase 1

Compound Target p-eIF2α Disease model Disease effect References

Salubrinal PPP1R15A(GADD34)-PP1c/PPP1R15B-PP1c ↑ ALS (SOD1G93A)
Prion disease

Beneficial
detrimental

[7, 88]
[65]

Guanabenz PPP1R15A(GADD34)-PP1c ↑ ALS (TDP-43)
ALS (SOD1 G93A)

Beneficial [110, 112, 118]

Sephin1 PPP1R15A(GADD34)-PP1c ↑ ALS (SOD1G93A); CMT1B Beneficial [21]

GSK2606414 PERK inhibitor ↓ Prion disease Beneficial [3, 64]

ISRIB eIF2β Not changed Prion disease Beneficial [28, 93, 96]
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the direct effect of eIF2α phosphorylation on BACE1 and 
Aβ. In addition, the effect in the Aβ model is more related 
to eIF2α than PERK, because deletion of GCN2 (another 
eIF2α kinase) has the same effect. In the prion disease 
model, the interventions were initiated when pathology 
was already accumulating and eIF2α phosphorylation was 
persistent. In such a pathological state, a treatment that 
prolongs eIF2α phosphorylation is likely to make things 
worse. Indeed, in this study, decreasing eIF2α dephospho-
rylation by Salubrinal worsened the phenotype, whereas 
increasing the eIF2α dephosphorylation by overexpression 
of the induced phosphatase subunit PPP1R15A/GADD34 
was beneficial. Another factor that may determine whether 
stimulation or inhibition eIF2α phosphorylation is pre-
ferred is the subcellular localization of the accumulating 
proteins. Reduction of synthesis of proteins that accumu-
late in the ER may be beneficial, whereas inhibition of syn-
thesis of cytoplasmic proteins may only lead to further syn-
aptic loss and neurodegeneration. With the development of 
GSK2606414, an ATP competitive small molecule inhibitor 
of the PERK kinase activity, pharmacological intervention 
upstream in the PERK signaling pathway became feasible 
[3]. Treatment with the PERK inhibitor ameliorated neu-
rodegeneration similar to the genetic interventions in the 
PERK pathway [64]. This provides an interesting proof 
of concept for involvement of PERK, however, inhibition 
of PERK is associated with severe pancreas pathology, 
as was also observed in the PERK knockout mouse [31, 
129]. More recently, ISRIB (ISR Inhibitor B) was identi-
fied, which targets the translational arrest downstream of 
eIF2α and thus circumvents PERK [96, 97]. It was dem-
onstrated to act at the level of the exchange factor eIF2β 
and has positive effects on memory formation [93]. In the 
prion disease mouse model, ISRIB was indeed reported to 
ameliorate pathology. Although somewhat less effective 
than the PERK inhibitor in protection against neurodegen-
eration ISRIB showed strongly reduced pancreatic toxicity 
[28]. It is important to note that all treatments that target 
downstream of PERK are not UPR specific, but will affect 
the ISR in general.

The UPR is a homeostatic stress response. This implies 
that it is heavily regulated via positive and negative feed-
back loops. There is crosstalk between the three signal-
ing pathways, so modulation of one pathway will affect 
signaling through the other two pathways as well. In a 
simple metaphor, this compares to the inhibition of water 
to flow through a tube on one end, which increases pres-
sure elsewhere in the tube. Therefore, inhibition of one 
pathway may in fact increase signaling through one of the 
other pathways. For example, deletion of PERK results in 
increased activity of IRE1α [31]. The connection between 
the site of intervention and the effect on the neurodegen-
erative process is therefore not always direct. This is not 

necessarily negative, an example of that is demonstrated in 
mice deficient for XBP-1 [37]. It was expected that inca-
pacity to activate the XBP-1 transcriptional response would 
worsen the phenotype of a SOD1 mouse model for fALS. 
In contrast, it was shown to provide protection in this neu-
rodegenerative model. This was attributed to increased 
autophagic clearance of SOD1 aggregates. It is tempting 
to speculate that inhibition of the IRE1 pathway results in 
increased signaling via the PERK and ATF6 pathways as 
both pathways, predominantly PERK, were shown to acti-
vate autophagy [99, 116]. In a mHtt transgenic model for 
HD, the deletion of XBP-1 was also found to be protective 
and accompanied by increased autophagic clearance of the 
aggregates [114]. However, in this model deletion of ATF4 
alone had no effect on pathology. Instead, the findings sug-
gested the activation of the Forkhead box O1 transcription 
factor. In addition, the HD model mice showed activation 
of the IRE1 pathway only, indicating it was different from 
canonical UPR activation to start with. Also in the studies 
addressing deletion and inhibition of PERK in neurode-
generative mouse models, there was no clear evidence of 
canonical UPR activation [60, 64, 65]. In this respect, we 
should be aware of potential ER stress-independent func-
tions of the major UPR factors as well.

Concluding remarks and perspective

Evidence for UPR activation can be found in patient brains 
as well as models of several neurodegenerative diseases. 
The list of small molecules that target the UPR is grow-
ing. It is however important to distinguish positive and 
negative effects of the UPR. This is complicated by the 
notion that the direction in which to interfere (stimulation 
or inhibition) may be strongly affected by the pathological 
state. Caution is therefore warranted to directly translate 
mechanistic observations in the physiology to an applica-
tion in pathology, where the adaptive UPR may have turned 
maladaptive. For example, the PERK pathway is activated 
in several neurodegenerative diseases, in the presence 
or absence of activation of the other UPR pathways. The 
adaptive PERK pathway functions to restore ER proteosta-
sis by reducing overall protein synthesis via phosphoryla-
tion of eIF2α and increasing the expression of UPR respon-
sive genes via the production of the transcription factor 
ATF4. PERK activation increases BACE levels and thus Aβ 
formation. In addition, tau phosphorylation is increased if 
PERK is activated. The function of these transient events 
in the adaptive response is not fully elucidated. During pro-
longed UPR activation, however, aberrant Aβ and tau pro-
teins will accumulate which will facilitate pathology and in 
turn may contribute to UPR activity directly or indirectly 
in a vicious cycle. In addition, the persistent inhibition of 
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protein translation results in loss of synaptic proteins that 
are essential for neuronal function. The prolonged UPR 
activation in the pathological state turns the adaptive UPR 
maladaptive (Fig. 3). This has important implications when 
using intervention in this pathway as therapeutic strat-
egy. For example, prolonged phosphorylation of eIF2α by 
Guanabenz or Sephin1 may be beneficial in prevention 
paradigms. However, in a pathological state with persis-
tent eIF2α phosphorylation at the start of treatment this 
may take a turn for the worse and inhibition of the pathway 
is preferred, however, ISR activators like sephin1 may be 
beneficial in case of accumulation of ER retained proteins.

Better understanding of the pathological state is pivotal 
to make a next step in UPR targeting for treatment of neu-
rodegeneration. This will involve more precise characteri-
zation of the nature of the disturbance in the different path-
ways, for example, delineation of the involvement of GVD. 
In addition, new insights in the pathogenesis of neurode-
generative diseases like the spreading of pathological pro-
teins will have to be incorporated into the bigger picture. 
These are a few of the issues that need to be addressed in 
the coming decade of UPR research in neurodegeneration.
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