
Abstract The immune response in the central nervous
system (CNS) is under tight control of regulatory mecha-
nisms, resulting in the establishment of immune privilege.
CNS injury induces an acute inflammatory reaction, com-
posed mainly of invading leukocytes and activated mi-
croglial cells/macrophages. The generation of this robust
immune response requires binding of receptors such as
CD14, a pattern recognition receptor of the immune sys-
tem. CD14, a surface molecule of monocytic cells, is up-
regulated after monocyte stimulation and is involved in
cellular activation. To examine CD14 expression in hu-
man brain lesions we investigated sections of brains ob-
tained at autopsy from 25 cases following closed trau-
matic brain injury (TBI) and 5 control brains by immuno-
histochemistry. Detection of CD14 in controls demon-
strated constitutive expression by perivascular cells, but
not in parenchymal microglial cells, equivalent to known
expression pattern of ED2 in rats. Following TBI, num-
bers of CD14+ cells in perivascular spaces and in the brain
parenchyma increased in parallel within 1–2 days, both at
the lesion and in adjacent perilesional areas. The number
of CD14+ cells in perivascular spaces and in the brain
parenchyma reached maximum levels within 4–8 days
and remained elevated until weeks after trauma. In con-
trast to activated parenchymal microglia/macrophages,
resting parenchymal microglial cells lacked CD14. Thus,
early CD14 expression constitutes an essential part of the
acute inflammatory CNS response following trauma.

Keywords Traumatic brain injury · Inflammation · 
Immune response · CD14

Introduction

Central nervous system (CNS) injury induces an acute in-
flammatory reaction, composed mainly of invading leuko-
cytes and activated resident microglia/macrophages [53].
Brain macrophages following injury derive from distinct
sources and can be divided into different populations:
perivascular cells [23] (also called ‘perivascular micro-
glia’ [29], pericytes [28], ‘fluorescent monocytes’ [47], or
‘perivascular monocytes’ [41, 74]), infiltrating blood mono-
cyte-derived macrophages, and parenchymal microglial
cells [6]. Microglial cells are considered bone marrow-de-
rived cells that populate the CNS parenchyma early in
embryonic development [34, 43, 69]. In contrast, under
adult physiological conditions, there is little or no repopu-
lation of parenchymal microglia by blood-derived mono-
cytes [31, 33, 42]. Activation of microglial cells is con-
sidered to be a hallmark of various pathological condi-
tions of the CNS, including infection and inflammation,
neurodegenerative disorders, ischemia and traumatic
brain injury (TBI) [18, 37, 48, 53]. The generation of these
local immune responses requires signal transduction via
binding of receptors. CD14 is a key pattern recognition
receptor of the innate immune system [27], associated
with inflammatory events including: (1) signal transduc-
tion (via Toll-like receptors [35, 70]), (2) activation of
several intracellular signaling pathways including the IκB
kinase-NF-κB pathway and three mitogen-activated pro-
tein kinase (MAPK) pathways (ERK1, ERK2, JNK and
p53) [25], (3) synthesis of cytokines such as tumor necro-
sis factor-α (TNF-α), interleukin (IL)1, -6, -8, -18, and
nuclear factor-κB (NF-κB) [15, 46, 49, 58], and (4) in-
creased phagocytic capacity [16], and can also mediate
uptake and metabolism of extracellular phosphatidylino-
sitol as a source of arachidonate for leukotriene synthesis
[76] and, thus, plays a crucial role in immune response,
inflammation and tissue homeostasis.

CD14 is expressed as a 55-kDa glycosylphospatidyl-
inositol-anchored membrane-bound protein (mCD14) on
myeloid cells, including macrophages and activated mi-
croglial cells [8, 73] and is mainly known to function as a
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receptor for lipopolysaccharide (LPS), the endotoxin of
Gram-negative bacteria [79]. Beside LPS and components
of other pathogens such as Gram-positive bacteria [40,
56], mycobacteria [57], respiratory syncytial virus [39],
and membrane structures of apoptotic cells [2, 16], en-
dogenous mediators such as heat shock proteins (hsp60,
hsp70), TNF-α, IL-2, phosphatidylinositol and phosphat-
idylserine are known to activate monocytic cells via
CD14 [5, 12, 36, 51, 76, 77].

Recent experiments have shown that treatment with
anti-CD14 antibodies produces anti-inflammatory effects
in human cell cultures [46] and in animal [21, 59] and hu-
man [75] in vivo studies. To provide a pathophysiological
basis for the action of CD14 in human traumatic brain le-
sions, we have analyzed CD14 expression following TBI
compared to control brains.

Material and methods

Patients

We investigated brain specimens obtained at autopsy from 25 pa-
tients (age 18–93 years, mean 52.9±20.9 years) from a previously
described series of cases who died after various survival times fol-
lowing closed TBI [9]. Age, gender and survival times of cases are
listed in Table 1 (for further clinical and autopsy data see [9]). In
addition to patient data, hematoxylin-eosin, Luxol fast blue (LFB)
and iron (Fe) staining was used for evaluation of the typical histo-
logical features defined as standard indicators of trauma age [24].
In addition to samples from the lesion site area, sections taken re-
mote from the contusion were investigated in five cases with vari-
ous survival times post trauma (cases 3, 10, 17, 18 and 25). As
controls, the results were compared to tissue of five cases out of a
recently described series of neuropathologically unaffected control
cases (Table 2) [50].

Immunohistochemistry

Formalin-fixed paraffin-embedded tissue sections were rehydrated
and boiled in a microwave oven (600 W, seven times for 5 min) in
citrate buffer (2.1 g sodium citrate/l, pH 6.0). Endogenous peroxi-
dase was inhibited with 1% H2O2 in methanol (1:10; 15 min). Sec-
tions then were incubated with 10% normal porcine serum
(Biochrom, Berlin, Germany) to block nonspecific binding of im-
munoglobulins.

Immunohistochemistry for CD14 was performed in all cases
using a monoclonal antibody (NCL-CD14–223, clone 7; Novocas-
tra Laboratories, Newcastle, UK; dilution 1:100). CD14 antibody
was applied overnight at 4°C. Antibody binding was visualized
with a biotinylated secondary antibody (rabbit anti-mouse), strep-
tavidin and biotinylated horseradish peroxidase (HRP) complex
(StreptABComplex/HRP; Dako, Glostrup, Denmark) and di-
aminobenzidine (DAB; Dako) as chromogen. Sections were coun-
terstained with Mayer’s hematoxylin. Negative controls consisted
of sections incubated in the absence of the primary antibody.

Furthermore, to verify CD14 expression patterns, selected
paraffin sections were appropriately immunostained using an addi-
tional polyclonal antibody detecting the N terminus of human
CD14 (CD14-N, sc-6998; Santa Cruz Biotechnology, Santa Cruz,
Calif.; goat anti-human). The polyclonal CD14 antibody was ap-
plied following microwave pretreatment at 4°C overnight (dilution
1:100). The monoclonal and the polyclonal anti-CD14 antibody re-
vealed no detectable differences in staining patterns in our series.

Blocking procedures

Preabsorption controls were performed to confirm the specificity
of CD14 immunostaining patterns of the two anti-CD14 antibod-
ies. In these, prior to application to the tissue sections, the primary
antibody (CD14, Santa Cruz Biotechnology) was coincubated for
2 h on ice with tenfold access of one of the following peptides: 
(1) purified recombinant CD14 blocking peptide (sc-6998 P; Santa
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Table 1 Clinical and autopsy data from cases with TBI (TBI trau-
matic brain injury)

Case Age Sex Survival Cause of death
(years) time

1 64 M <1 h Disruption of brain stem
2 57 M <1 h Polytrauma 
3 49 M 1 h Asystole
4 93 F 5 h Polytrauma
5 20 M 5.2 h Polytrauma
6 27 M 5.5 h Severe TBI
7 63 F 5.7 h Polytrauma
8 27 F <6 h Herniation
9 43 M <6 h Herniation

10 63 M 7 h Severe brain edema
11 46 M 12 h Severe brain edema
12 28 M 14 h Hemorrhagic shock
13 44 M 20 h Severe TBI
14 52 M 20 h Herniation
15 87 F 36 h Severe TBI
16 64 M 48 h Severe brain edema
17 84 F 4 days Polytrauma
18 59 M 7 days Herniation
19 55 M 8 days Anoxic encephalopathy
20 41 M 10 days Contusion of brain stem
21 38 M 12 days Herniation
22 83 M 14 days Pneumonia
23 80 F 15 days Herniation
24 18 F 16 days Multiple-organ failure
25 56 F 6 months Pneumonia

Table 2   Clinical and autoptical data from control cases

Case Age
(years)

Sex Cause of death Neuropathological findings

26 21 F Hemorrhagic shock after car accident Single eosinophilic hippocampal neurons
27 44 M Acute posterior myocardial infarct Inconspicuous
28 56 F Hemorrhagic shock after recurrent ulcer bleeding Inconspicuous
29 76 F Hemorrhagic shock after severe esophageal varicose

hemorrhage
Inconspicuous

30 82 F Hemorrhagic shock after femoro-femoral bypass
operation

Minor signs of hypertensive arteriopathy



Cruz Biotechnology), or (2) recombinant endothelial-monocyte-
activating polypeptide 2 (EMAP-II) [61], as an irrelevant control
peptide. After coincubation of CD14 antibody with cognate CD14
peptide, no immunostaining was detectable, as in sections devel-
oped in the absence of primary antibody. In contrast, preabsorption
with the recombinant irrelevant control peptide EMAP-II did not
affect immunolabeling, demonstrating specificity of the immunos-
tainings.

Double-labeling experiments

In double-labeling experiments, we first stained a cell-type or acti-
vation-specific antigen using the avidin-biotin-peroxidase complex
(ABC) procedure in combination with alkaline phosphatase conju-
gates. Specific antigens were labeled with monoclonal antibodies
against glial fibrillary acid protein (GFAP; Novocastra, 1:500) to
detect astrocytes, and against CD68 (Dako, 1:100) for identifica-
tion of microglia/macrophages. Activated microglia/macrophages
were detected with antibodies against HLA-DR, -DP, -DQ (MHC
class II; Dako, 1:50) or MRP8 (BMA, Augst, Switzerland; 1:100).
B lymphocytes (CD20; Dako; 1:200) and T lymphocytes (CD3;
Novocastra, NCL-CD3-PS1; 1:100) were identified using appro-

priate antibodies. Endothelial cells were labeled with an antibody
detecting CD31 (Dako; 1:50). For visualization of antibody bind-
ing Fast-Blue BB salt (Sigma, Deisenhofen, Germany) was used as
chromogen, yielding a blue reaction product. Briefly, slices were
deparaffinized, irradiated in a microwave oven for antigen re-
trieval and incubated with nonspecific porcine serum. Visualiza-
tion was achieved by adding biotinylated secondary antibodies
(1:400) for 30 min and alkaline phosphatase-conjugated ABC
complex diluted 1:400 in TBS-BSA for 30 min. Consecutively, we
developed with Fast-Blue BB salt as chromogen. Before CD14 
immunolabeling was applied, sections were irradiated in a 
microwave oven for 5 min in citrate buffer. CD14 antibody 
(NCL-CD14-223; Novocastra) was then applied as described
above, revealing a brown reaction product with DAB. In double-
labeling experiments for identification of T lymphocytes, the CD3
antibody was applied first and visualized with DAB, after which
CD14 immunolabeling was performed using Fast-Blue BB salt as
chromogen. In double-labeling experiments sections were not
counterstained with Mayer’s hematoxylin.

For color reproduction, slides were digitally converted using a
film scanner (CannonScan FS 2710, Canon Inc., Tokyo, Japan)
and contrast enhanced using an image processing program (Adobe
PhotoShop 5) to obtain pictures comparable to the original slides.

Evaluation

Immunolabelings for CD14 were evaluated separately in the core
of the lesion, in the adjacent perilesional tissue and in areas remote
to the contusion. For evaluation of CD14 staining patterns, the
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Fig.1 a Accumulation of perivascular CD14+ cells following
TBI. b Accumulation of perivascular CD14+ cells in lesional and
perilesional areas following TBI (TBI traumatic brain injury, d days,
we. weeks, mo. months)

Fig.2 a Parenchymal accumulation of CD14+ cells following
TBI. b Parenchymal accumulation of CD14+ cells in lesional and
perilesional areas following TBI



number of CD14+ perivascular cells (cells nestled against the outer
vessel wall in a monolayer fashion and cells in Virchow-Robin
spaces) were counted per ten vessels. Numbers of CD14+

parenchymal cells were counted in ten high-power fields (×400
with an eyepiece grid representing 0.0625 mm2).

Statistical analysis

For statistical analysis cases were clustered into five groups with
increasing survival times post TBI (up to 24 h, 1–2 days, 4–8 days,
weeks or months; compare Figs. 1a,b and 2a,b). Data obtained
from these case groups were compared to controls using the two-
tailed unpaired Student’s t-test. The numbers of CD14+ perivascu-
lar cells were calculated as means of labeled cells (MLPVC ± SEM).
Data of the density of CD14+ parenchymal cells were calculated as
means of labeled parenchymal cells (MLPC ± SEM).

Results

CD14 expression pattern

Immunolabelings with both anti-CD14 antibodies applied
revealed a profound membranous expression pattern.
Moreover, both anti-CD14 antibodies occasionally re-
vealed a cytoplasmic staining.

CD14 expression in control brains

In control brains no CD14+ cells were present in the brain
parenchyma (MLPC 0.0±0.0). Around blood vessels fre-
quently CD14+ perivascular cells were seen (MLPVC 7.4±
1.0) often nestled against the outer vessel wall in a mono-
layer fashion (Figs. 1a, b, 3A). Occasionally single CD14+

cells that were not attached to vessel walls occurred in
Virchow-Robin spaces. Additionally, a weak staining of
plexus choroideus epithelium and single CD14+ cells in
the subarachnoid space were seen (not shown).

CD14 expression following TBI

CD14+ perivascular cells

Numbers of CD14+ perivascular cells increased signifi-
cantly following TBI, both at the lesion core (P=0.0015)
and in perilesional areas (P=0.062), but not in areas re-
mote from the contusion (P=0.3486). Increasing numbers
of CD14+ perivascular cells appeared within 1–2 days
post TBI (lesion core: MLPVC 15.0±3.0; perilesional
area: MLPVC 13.0±2.0), and further increased reaching
significant levels at 4–8 days (lesion core: MLPVC
25.3±4.8, P=0.0362; perilesional area: MLPVC 25.7±3.8,
P=0.0357) and weeks post TBI (lesion core: MLPVC
28.4±6.2; perilesional area: MLPVC 19.2±4.5) corre-
sponding to the known time course of invasion of blood-
derived macrophages (Figs. 1a, b, 3C) [64].

Parenchymal CD14+ cells

The time course of CD14+ cells occurring in the brain
parenchyma paralleled accumulation of CD14+ cells in

perivascular spaces (Fig.2a, b). CD14+ cells increased
significantly in the brain parenchyma, both at the lesion
core (P≤0.0001; MLPC 2.5±0.4) and in perilesional tissue
(P≤0.0001; MLPC 1.4±0.1), when compared to controls.
In general, significantly higher numbers of CD14+ cells
were detected at the lesion core in comparison to perile-
sional areas (Fig.2a, P=0.0004). Within 24 h a few
parenchymal cells expressing CD14 were present at the
lesion and in perilesional tissue. Thereafter, numbers of
CD14+ parenchymal cells increased further, reaching sig-
nificant levels within 1–2 days (lesion core: MLPC
2.5±0.4, P=0.0001; perilesional area: MLPC 1.2±0.3,
P≤0.0001) compared to controls, and increased further
significantly (in comparison to levels after 1–2 days)
reaching maximum levels at lesional (P=0.0004; MLPC
7.1±0.7) and in perilesional areas (P=0.0004; MLPC
4.5±0.4) after 4–8 days and remained elevated until
months following TBI (lesion core: MLPC 2.3±0.4; peri-
lesional area: MLPC 1.6±0.2) (Fig.3C).

Remote areas following TBI

Sections taken remote from the contusion revealed results
similar to sections from control brains. No CD14+ cells
could be detected in the brain parenchyma (MLPC
0.0±0.0). CD14+ expressing perivascular cells were fre-
quently nestled against the outer vessel wall in a mono-
layer fashion seen (MLPVC 5.3±1.1).

Cellular sources of CD14 expression 
(double-labeling experiments)

CD14 expression was found to be colocalized in CD68+

microglia/macrophages and perivascular cells (CD68+/
CD14+) (Fig.3B). Moreover, CD14 was found to be colo-
calized with the activation antigens MRP8 (S100A8; 
Fig.3D) and MHC class II (Fig.3E). No colocalization of
CD14 expression was detected in endothelial cells (CD31+/
CD14–; Fig.3F), astrocytes (GFAP+/CD14–), B lympho-
cytes (CD20+/CD14–) or T lymphocytes (CD3+/CD14–).

Discussion

CD14 is a ligand for cell wall molecules from diverse
pathogens (e.g., LPS) [39, 40, 56, 57, 79] or membrane
structures from apoptotic cells [2, 16] and mediates acti-
vation of monocytic cells by cytokines like IL-2, hsp60 or
hsp70 [5, 12, 36], triggering production and release of
mediators such as TNFα, IL-1, IL-6, IL-8, IL-18 and
IFNβ [15, 46, 58] in addition to chemical mediators like
NO [22, 58]. CD14-mediated activation of three mitogen-
activated protein kinase pathways (ERK1, ERK2, JNK
and p53) leads to an increased phagocytic activity [72],
resulting in the uptake and metabolism of extracellular
phosphatidylinositol as a source of arachidonate for syn-
thesis of leukotrienes, potent agonists for chemotaxis,
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smooth muscle contraction and cell cycle stimulation (pro-
liferation) [76, 77]. These cytokines and mediators have
pleiotrophic biological activities and play crucial roles in
the immune response and inflammation.

A large variety of pathological conditions or diseases
of peripheral organs, including LPS-mediated damage of
lung, kidney and liver [20], inflammatory diseases such as
diverse types of arthritis [63], Kawasaki disease [68] or
respiratory syncytial virus infection [39], myocardial in-
farction [32], as well as polytrauma and severe burns [38],
have been shown to be associated with an up-regulation of
CD14 by monocytic cells. In contrast, little is known
about CD14 expression in the diseased CNS. Elevated
levels of soluble CD14 (sCD14) were found in cere-
brospinal fluid (CSF) and in brain microglia/macrophages
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Fig.3 A In control brains CD14 expression is restricted to single
perivascular cells. B Double-immunolabeling experiments in con-
trols reveal colocalization of CD14 (brown) and CD68 (blue) in
perivascular cells (arrows), whereas parenchymal microglia/
macrophages, in contrast, constitutively express CD68 (blue, ar-
rowheads) but not CD14 (brown). C Following TBI, increasing
numbers of CD14+ cells in perivascular spaces around some blood
vessels (asterisk) occur. In parallel to the increase in numbers of
CD14+ perivascular cells, CD14+ cells appear in the brain
parenchyma. D–F In traumatic brain lesions CD14+ microglia/
macrophages (brown) coexpress MRP8 (blue, D) and MHC class
II molecules (blue, E), whereas blood vessels (asterisks) reveal no
colocalization of CD14 in CD31+ endothelial cells (blue, F). Bars
A, D, E, F 50 µm; B 100 µm; C 250 µm



in acute bacterial or viral infections [13, 52] and in multi-
ple sclerosis [19, 73]. In a murine model of experimental
meningitis dramatically elevated levels of sCD14 in CSF
and an active amplification of CD14 and concomitant sur-
face expression (mCD14) by leukocytes in the subarach-
noid space were detected, whereas parenchymal astro-
cytes and microglial cells did not significantly contribute
to elevated CD14 levels in this model [13]. Furthermore,
parenchymal CD14+ cells were frequently detected in
vivo in HIV encephalitis [54].

To investigate contribution and pathophysiological se-
quence of CD14 in the altered immune privilege follow-
ing CNS damage, we now analyzed the time kinetic and
cellular source of CD14 expression following human
closed TBI. A significant early lesion-associated increase
in numbers of CD14+ cells, reaching maximum levels
within several days to weeks and remaining elevated till
months post TBI, was observed. The up-regulation of
CD14 by monocytes/macrophages in perivascular spaces
and by parenchymal microglia/macrophages correlated
positively, indicating that both, infiltrating monocytes and
activated parenchymal microglial cells, contribute to the
pool of CD14 expressing cells following TBI.

Cellular source of CD14 expression

Double-immunolabeling experiments revealed CD14 ex-
pression restricted to invading CD68+ monocytes and
MRP8+ (S100A8+), MHC class II+ activated microglia/
macrophages. We could not detect any colocalization of
CD14 in astrocytes (GFAP+/CD14–), in polynuclear leuko-
cytes (clearly recognizable by morphology), B (CD20+/
CD14–) or T lymphocytes (CD3+/CD14–), nor in endothe-
lial cells (CD31+/CD14–). This is in accordance to previ-
ous studies reporting granulocytes, lymphocytes and en-
dothelial cells to lack intrinsic mCD14 but to be directly
activated by complexes of LPS and sCD14 [4, 44, 60, 71].

Both anti-CD14 antibodies applied in this study re-
vealed a predominant membranous staining pattern, ac-
cording to the expected location of CD14 on the cell
membrane of monocyte-derived cells. Additionally, a cy-
toplasmic CD14 labeling was occasionally observed, pos-
sibly due to known large intracellular pools of CD14 in
monocytic cells [3]. An enhanced CD14 immunolabeling
that possibly could be explained by binding to sCD14
(within the lumen of blood vessels or in edematous brain
tissues) did not occur in traumatic brain lesions, when
compared to areas taken remote from the lesion or con-
trols, suggesting specific detection of mCD14 by both
anti-CD14 antibodies applied in this study. However,
other groups have reported that hepatocytes [67], granulo-
cytes [66, 68], B lymphocytes [80], and endothelial cells
[30, 45] express CD14.

CD14 expression defines an alteration 
of CNS immune privilege

Previous in situ and in vitro studies showed quiescent
parenchymal microglial cells, like astrocytes [13, 26, 79],
to be negative for CD14 [7, 8, 17, 54]. In contrast, as for
ED2 in rat brains, a strong constitutive expression of
CD14 by perivascular cells was demonstrated [7, 64, 65].
The expression by high numbers of CD14+ parenchymal
microglial cells after culture, even under basal conditions
[7, 13, 14], points to CD14 being an early marker of mi-
croglial activation.

In addition to morphological changes, the up-regula-
tion or de novo expression of diverse antigens, including
MHC class II, leukocyte common antigen (LCA/CD45)
and the monocytic antigen CD68, has previously been
used to demonstrate microglial activation. These antigens
are up-regulated by microglial cells under various patho-
logical conditions, but, however, are already expressed
constitutively in vivo and in vitro by microglial cells [7,
11, 50, 78]. In contrast, CD14 expression clearly distin-
guishes between resting (CD14–) and activated (CD14+)
parenchymal microglial cells. Therefore, beside macro-
phage related protein-8 (MRP8/S100A8), which is spe-
cific for microglial activation in human brain lesions of
various etiology, including HTLV-I-associated myelopa-
thy [1], cerebral malaria [62], ischemia [55] and TBI [10],
CD14 represents a key marker of an altered state of the
immune privilege in the pathophysiological response fol-
lowing brain damage.

CD14 as a possible pharmacological target

Recently beneficial effects by treatment with an anti-
CD14 antibodies have been reported in vivo and in vitro
based on suppression of the inflammatory response. In
human peripheral blood mononuclear cells IL-18 gene ex-
pression and secretion after LPS stimulation was signifi-
cantly reduced [46]. Schimke et al. [59] reported, in a rab-
bit model of endotoxic shock, protection from injury to
visceral organs and death even when the anti-CD14 anti-
body was administered after LPS exposure. Recently, Ver-
bon et al. [75] were able to reduce inflammatory host re-
actions in human volunteers by infusion of a human anti-
CD14 antibody (IC14) prior to LPS administration, in-
cluding (1) reduction of clinical symptoms and signs, (2)
decrease of plasma levels of the pro-inflammatory cyto-
kines and attenuation of the increase in serum levels of
acute phase proteins, while the release of anti-inflamma-
tory cytokines were only delayed, (3) inhibition of neu-
trophil and endothelial cells activation, and (4) a modest
reduction in the capacity of phagocytizing monocytes and
granulocytes [75]. Thus, CD14 is a possible pharmacolog-
ical target to prevent detrimental effects of inflammatory
reactions following brain damage.

In summary, increasing numbers of CD14-expressing
cells during the inflammatory reaction following human
closed TBI was restricted to the lesion and adjacent tissue,
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and was confined to infiltrating monocytes and activated
parenchymal microglia/macrophages. Lesional accumula-
tion of CD14+ cells occurred early, reached maximum lev-
els within days and remained elevated until late stages
post trauma, both in perivascular spaces and in the brain
parenchyma.
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