Skip to main content

Advertisement

Log in

„Pulsed field ablation“

Die Ablationstechnik der Zukunft?

Pulsed field ablation

The ablation technique of the future?

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Zusammenfassung

Die Ablation kardialer Arrhythmien stellt heute eine Standardtherapie in der invasiven Elektrophysiologie dar. Den Schwerpunkt bildet hier das Vorhofflimmern aufgrund dessen hoher Prävalenz. Die Ablation mittels thermischer Energieformen wie der Radiofrequenz- oder Kryoenergie sind die bis heute am häufigsten eingesetzten Techniken. Aufgrund von Limitationen in Bezug auf Effektivität und Sicherheit der thermischen Ablationstechniken kann die Ablation durch die sog. „pulsed field ablation“ (PFA) eine sichere und wirksame Alternative sein. Hierbei handelt es sich um eine nichtthermische Energieform, die durch die Erzeugung kurzer, hochenergetischer elektrischer Impulse effektive Myokardläsionen mittels einer irreversiblen Elektroporation erzeugt. Erste Daten zeigen eine hohe Effektivität bei niedriger Komplikationsrate. Myokardiales Gewebe zeigt eine hohe Spezifität für diese Energieform unter Schonung umliegender Strukturen wie dem Ösophagus, dem N. phrenicus und umliegender Gefäßstrukturen. Daher ist die irreversible Elektroporation eine sehr vielversprechende Technik und hat das Potenzial, die perfekte Energieform für viele Katheterablationen und insbesondere für die Pulmonalvenenisolation zu werden. Im folgenden Beitrag wird eine Übersicht über den aktuellen Stand zur PFA als auch einen Ausblick über zukünftige Behandlungsfelder gegeben.

Abstract

The ablation of cardiac arrhythmias is now standard therapy in invasive electrophysiology with a focus on atrial fibrillation due to its high prevalence. Thermal energy sources such as radiofrequency or cryoablation are the most commonly used techniques to date. Due to limitations in terms of effectiveness and safety because of possible indiscriminate tissue destruction, ablation using pulsed field ablation (PFA) can be a safe and effective alternative to thermal ablation techniques. This is a nonthermal form of energy that creates effective myocardial lesions by means of irreversible electroporation by generating short, high-energy electrical impulses. Preliminary data show high effectiveness with a low complication rate. Myocardial tissue shows a high specificity while sparing surrounding structures such as the esophagus, the phrenic nerve and surrounding vascular structures. Therefore, irreversible electroporation is a very promising technique and has the potential to become the perfect form of energy for many catheter ablations and especially for pulmonary vein isolation. In this article we provide an overview of the current status of PFA as well as an outlook on future fields of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Andrade JG, Champagne J, Dubuc M et al (2019) Cryoballoon or radiofrequency ablation for atrial fibrillation assessed by continuous monitoring: a randomized clinical trial. Circulation 140:1779–1788

    Article  Google Scholar 

  2. Anic A, Breskovic T, Sikiric I (2021) Pulsed field ablation: a promise that came true. Curr Opin Cardiol 36:5–9

    Article  Google Scholar 

  3. Borggrefe M, Budde T, Podczeck A et al (1987) High frequency alternating current ablation of an accessory pathway in humans. J Am Coll Cardiol 10:576–582

    Article  CAS  Google Scholar 

  4. Calkins H, Hindricks G, Cappato R et al (2018) 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 20:e1–e160

    Article  Google Scholar 

  5. Cochet H, Nakatani Y, Sridi-Cheniti S et al (2021) Pulsed field ablation selectively spares the oesophagus during pulmonary vein isolation for atrial fibrillation. Europace 23:1391–1399

    Article  Google Scholar 

  6. Deneke T, Nentwich K, Krug J et al (2014) Silent cerebral events after atrial fibrillation ablation—overview and current data. J Atr Fibrillation 6:996

    PubMed  PubMed Central  Google Scholar 

  7. du Pré BC, van Driel VJ, van Wessel H et al (2013) Minimal coronary artery damage by myocardial electroporation ablation. Europace 15:144–149

    Article  Google Scholar 

  8. Koruth JS, Kuroki K, Iwasawa J et al (2020) Endocardial ventricular pulsed field ablation: a proof-of-concept preclinical evaluation. Europace 22:434–439

    Article  Google Scholar 

  9. Koruth JS, Kuroki K, Kawamura I et al (2020) Pulsed field ablation versus radiofrequency ablation: esophageal injury in a novel porcine model. Circ Arrhythm Electrophysiol 13:e8303

    PubMed  PubMed Central  Google Scholar 

  10. Loh P, van Es R, Groen MHA et al (2020) Pulmonary vein isolation with single pulse irreversible electroporation: a first in human study in 10 patients with atrial fibrillation. Circ Arrhythm Electrophysiol 13:e8192

    Article  Google Scholar 

  11. Metzner A, Rausch P, Lemes C et al (2014) The incidence of phrenic nerve injury during pulmonary vein isolation using the second-generation 28 mm cryoballoon. J Cardiovasc Electrophysiol 25:466–470

    Article  Google Scholar 

  12. Mir LM, Belehradek M, Domenge C et al (1991) Electrochemotherapy, a new antitumor treatment: first clinical trial. C R Acad Sci Iii 313:613–618

    CAS  PubMed  Google Scholar 

  13. Neven K, Füting A, Byrd I et al (2021) Absence of (sub-)acute cerebral events or lesions after electroporation ablation in the left-sided canine heart. Heart Rhythm 18:1004–1011

    Article  Google Scholar 

  14. Neven K, van Driel V, van Wessel H et al (2014) Safety and feasibility of closed chest epicardial catheter ablation using electroporation. Circ Arrhythm Electrophysiol 7:913–919

    Article  Google Scholar 

  15. Neven K, van Es R, van Driel V et al (2017) Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ Arrhythm Electrophysiol 10(5):e4672. https://doi.org/10.1161/CIRCEP.116.004672

    Article  PubMed  Google Scholar 

  16. Ramirez FD, Reddy VY, Viswanathan R et al (2020) Emerging technologies for pulmonary vein isolation. Circ Res 127:170–183

    Article  CAS  Google Scholar 

  17. Reddy VY, Anic A, Koruth J et al (2020) Pulsed field ablation in patients with persistent atrial fibrillation. J Am Coll Cardiol 76:1068–1080

    Article  Google Scholar 

  18. Reddy VY, Anter E, Rackauskas G et al (2020) Lattice-tip focal ablation catheter that toggles between radiofrequency and pulsed field energy to treat atrial fibrillation: a first-in-human trial. Circ Arrhythm Electrophysiol 13:e8718

    CAS  PubMed  Google Scholar 

  19. Reddy VY, Koruth J, Jais P et al (2018) Ablation of atrial fibrillation with pulsed electric fields: an ultra-rapid, tissue-selective modality for cardiac ablation. JACC Clin Electrophysiol 4:987–995

    Article  Google Scholar 

  20. Reddy VY, Neuzil P, Koruth JS et al (2019) Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J Am Coll Cardiol 74:315–326

    Article  Google Scholar 

  21. Sale AJ, Hamilton WA (1968) Effects of high electric fields on micro-organisms. 3. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta 163:37–43

    Article  CAS  Google Scholar 

  22. Scheinman MM, Morady F, Hess DS et al (1982) Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA 248:851–855

    Article  CAS  Google Scholar 

  23. Schmidt B, Chen S, Tohoku S et al (2021) Single shot electroporation of premature ventricular contractions from the right ventricular outflow tract. Europace. https://doi.org/10.1093/europace/euab212

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takami M, Lehmann HI, Parker KD et al (2016) Effect of left atrial ablation process and strategy on microemboli formation during irrigated radiofrequency catheter ablation in an in vivo model. Circ Arrhythm Electrophysiol 9:e3226

    Article  Google Scholar 

  25. van Driel VJ, Neven K, van Wessel H et al (2015) Low vulnerability of the right phrenic nerve to electroporation ablation. Heart Rhythm 12:1838–1844

    Article  Google Scholar 

  26. van Driel VJ, Neven KG, van Wessel H et al (2014) Pulmonary vein stenosis after catheter ablation: electroporation versus radiofrequency. Circ Arrhythm Electrophysiol 7:734–738

    Article  Google Scholar 

  27. Yarmush ML, Golberg A, Serša G et al (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Reinsch MHBA, FESC.

Ethics declarations

Interessenkonflikt

N. Reinsch, A. Füting, D. Höwel und K. Neven geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinsch, N., Füting, A., Höwel, D. et al. „Pulsed field ablation“. Herzschr Elektrophys 33, 12–18 (2022). https://doi.org/10.1007/s00399-021-00833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-021-00833-9

Schlüsselwörter

Keywords

Navigation