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Abstract
We investigated the rheological properties of bidisperse entangled-polymer blends under high-deformation-rate flows by
slip-link simulations with a friction reduction mechanism. The friction reduction mechanism induced by the stretch and
orientation (SORF) is important to predict the viscoelasticity under uniaxial elongational flows. To test the applicability of
this mechanism for bidisperse systems, we incorporated an expression of friction reduction (Yaoita et al. Macromolecules
45:2773–2782 2012) into the Doi-Takimoto slip-link model (DT model) (Doi and Takimoto Philos Trans R Soc Lond A
361:641–652 2003). For six experimental bidisperse systems, i.e., four polystyrene blends and two polyisoprene blends,
the extended DT model where the order parameter of the friction reduction mechanism is evaluated through the component
averages succeeds in reproducing the data under uniaxial elongation and shear. This success is due to the suppression of
the stretch of the longer chains using the statistical average over each component. Through this study, the SORF expression
improves the rheological prediction for bidisperse entangled polymer melts under uniaxial elongational flows with strain
rates comparable to or larger than the inverse of the Rouse relaxation time of the longer chains. Additionally, the predictions
with the SORF using the component average for the stretches reproduce the steady viscosities because under elongational
flows, the states of the components with different molecular weights clearly differ from each other depending on their
Rouse relaxation time. The finding means that for chain dynamics, the friction coefficient is determined by the state of the
surrounding polymer chains and the state of the chain.
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Introduction

The rheological properties of a polymer melt in an entangled
state attract much attention due to their importance in
polymer processing. In typical industrial conditions, a
polymer melt with molecular weight distribution is used
to tune rheological properties (Ferry 1980). Thus, it is
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important to investigate the relation between the rheology
and the compositions of the well-entangled polymeric
system. For such a purpose, bidisperse polymer blends have
been extensively studied as a first step to understand the
rheology of polymer melts with arbitrary molecular weight
distributions, as explained in detail below.

Experimental studies on the rheology of bidisperse
polymer melts have been made for several decades
(Mantia et al. 1986; Minegishi et al. 2001; Nielsen
et al. 2006; van Ruymbeke et al. 2010; Hengeller et al.
2016). Linear rheology involves not only the superposition
of the rheology of monodispersed systems but also
contributions from coupled dynamics (Viovy et al. 1991).
The elongational viscosity has been measured by the
Meissner-type rheometer by Minegishi et al. (2001) and
by the filament stretching rheometer by several groups
(Nielsen et al. 2006; Hengeller et al. 2016). Among these
studies, one of the interesting findings is that polymer
blends containing a small amount of ultrahigh-molecular-
weight polymers show significant strain hardenings under
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elongational flows (Minegishi et al. 2001). Nielsen et al.
(2006) examined polystyrene blends and found that
the maximum steady-state elongational viscosity became
indistinguishable from three times the zero-shear viscosity
calculated from linear viscoelasticity as the concentration of
higher-molecular-weight chains increased in their examined
samples. Hengeller et al. (2016) classified the time regimes
for the relaxations after cessation of elongational flow for
the bidisperse system. The relaxations after cessation of
the steady elongations exhibit the three regimes originating
from the dynamics of short, long, or both short and
long polymer chains. To predict the mechanical properties
based on the coupled dynamics over the components, it is
desirable to develop a coarse-grained model.

The theoretical and numerical models of polymers
have rationalized the molecular-based mechanism and
reproduced the rheological properties by considering the
coupled dynamics among the polymer chains. The models
for entangled polymer melts are based on the bead-spring
model and the tube model (Doi and Edwards 1986). For
entangled polymers, the pioneering model is the famous
tube model. The important dynamics of the tube are
reptation, the change in the tube length, and the release
of entanglements. Based on the original tube model, slip-
link models (Hua and Schieber 1998; Masubuchi et al.
2001; Doi and Takimoto 2003) and slip-spring model
(Likhtman 2005) were developed to numerically predict
the rheological properties (Masubuchi 2014). These models
can quantitatively reproduce the rheological properties in
the linear and near-linear response regimes. However, it is
difficult to predict some phenomena under high deformation
rate flows because of the lack of the mechanisms required
to predict nonlinear rheology. For example, typical slip-link
models cannot predict the decrease in the steady viscosities
of entangled polymer melts with strain rates under uniaxial
elongational flows (Doi and Takimoto 2003).

For the unexplained rheological behavior under high
deformation rate flows, friction reduction between a seg-
ment and the surrounding polymers induced by the stretched
and oriented polymers (SORF mechanism) has been pro-
posed (Ianniruberto et al. 2012). For the rheology of entan-
gled and unentangled polymer melts, some studies support
that the SORF is important for accurate predictions of
nonlinear rheology (Ianniruberto et al. 2020; Matsumiya
and Watanabe 2021). For entangled systems, Masubuchi
and coworkers extensively examined nonlinear rheological
properties by the primitive chain network (PCN) model.
After developing the PCN model with SORF for linear
polystyrene (Yaoita et al. 2012), they examined the univer-
sality of SORF (Masubuchi et al. 2014a), and the associated
predictions under biaxial elongational flows (Takeda et al.
2018) and planar elongational flows (Takeda et al. 2020).
Moreover, they investigated the applicability for pom-pom

polymers (Masubuchi et al. 2014b) and for star polymers
(Masubuchi et al. 2021). Subsequently, Sato and Taniguchi
(2019) studied the SORF by extending the slip-link model
developed by Doi and Takimoto (2003). Tests for unentan-
gled polymer melts have also been reported with the dumb-
bell model (Watanabe et al. 2020) and the Rouse model
(Sato et al. 2021). While the SORF mechanism has been
tested for monodispersed polymers, few studies have exam-
ined the effect of such a mechanism in bidisperse melts.

With the PCN model, the SORF expression has been
tested for three bidisperse samples containing small
amounts of the high-molecular-weight polymers (Takeda
et al. 2015). Takeda et al. (2015) examined the SORF
expression proposed by Yaoita et al. (2012) with the
PCN model. They found that the PCN model reproduces
the rheology of the bidisperse well-entangled polystyrene
melts reported by Nielsen et al. (2006) and that the
SORF mechanism explains the data under high-strain-rate
elongational flows. In their results, at elongational strain
rates below the inverse of the Rouse relaxation time of the
long-chain component, suppressing the stretches of the long
chains improves the rheological predictions. On the other
hand, at elongational strain rates above that, the relaxations
of the short chains suppress the SORF effects. Note that
two models, namely, the slip-spring model (Read et al.
2018) and the Rolie-double-Poly (RDP) model (Boudara
et al. 2019), can predict the linear and nonlinear rheological
properties well, but these works still do not adopt the SORF
mechanism. This RDP model can predict the transient
viscosities within the regime of a short time; on the other
hand, the steady elongational viscosities have difficulty in
predictions under high-deformation-rate flows. We have to
clarify whether the SORF mechanism is generally effective
by making assessments based on more evidence, e.g.,
systems consisting of a larger amount of high-molecular-
weight polymers.

From the viewpoint that the friction of a chain with others
is a many-body problem, the coupling of the state of the
entangled chain itself with the environment has not been
investigated in depth. Specifically, unlike a monodispersed
system where the state of a chain is statistically the same
as the states of the surrounding chains, in a bidisperse
system, the state of a longer or shorter entangled chain
itself and the state of environments that can be evaluated
by averaging the surrounding polymer chains might be
different. Thus, the following question arises regarding how
the friction coefficient (tensor) is determined by the state
of a considering chain and/or the state of the environment
around it, which factor is more dominant, the state of the
considering chain or the state of the environment. Judging
from the fact that the nonlinear rheology of bidisperse
polymer melts has not been well tested, we should also
consider the comparison of the two contributions from the
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considered chain and the environment in the extension to the
bidisperse systems.

In this study, we assess the SORF mechanism for the
bidisperse entangled polymer melts because the empirical
relation used in the previous study (Takeda et al. 2015) has
arbitrariness in using bidispersed polystyrene melts. In more
detail, the SORF expressions thus far proposed are obtained
from the monodisperse system; thus, the contribution
originating from the difference in the states of the
components has been ignored. This study takes into account
the contribution to the friction reduction from the states of
the long- and short-chain components. For such a purpose,
we employ the pseudo-single-chain slip-link model, for
which the effect of the SORF mechanism on the rheological
properties has been tested in the case of monodisperse
entangled polymer melts (Sato and Taniguchi 2019).

The contents of the present paper are as follows. In
section “Model,” we explain the slip-link model and the
SORF extension, and in section “Results and discussion,”
we show the simulation results for six experimental
samples. In section “Conclusions,” we summarize and
discuss the results.

Model

Doi Takimoto original slip-linkmodel

We employ a dual slip-link model developed by Doi and
Takimoto (2003), namely, DT model. Here, “dual” refers
to the assumption that an entanglement is made of two
points on different chains. An entangled polymer chain is
modeled by a primitive path, the two tails, and the slip-links
on the path. The slip-links are pinned in space. A polymer
molecule has two tails, and one-end of a tail is fixed by a
slip-link and the other end is free. Each tail is considered
to be an ideal chain. From the viewpoint of rheological
properties, the entangled polymer chain is characterized by
the number of entanglements at equilibrium Zeq and the
maximum stretch ratio λmax. The units for the model are
the length of a strand between two adjacent slip-links at
equilibrium a, the Rouse relaxation time of a strand τe, and
a stress value σe connected to the plateau modulus.

The state of the ith polymer chain can be described by
the positions of the slip-links {R}, the length of the two tails
{shead, stail}, the numbers of entanglements of a chain Z, and
the pair list of the slip-links. The primitive path length of the
ith polymer chain Li is calculated as

Li = si
head + si

tail +
Zi−1∑

k=1

|r i
k|, (1)

where r i
k(= Ri

k+1 − Ri
k) is the bond vector of the adjacent

two (k, k + 1) slip-links. The stretch ratio λi is defined as

Li/Li
eq , where Li

eq(= aZi
eq) is the equilibrium length of

Li .
This model contains the three relaxation mechanisms

considered in the recent tube model (Larson 1999):
reptation, contour length fluctuation (CLF), and constraint
release (CR). It is assumed that the tension on a chain
is always balanced within time τe. Note that the major
difference between the DT model and the PCN model is the
nonexistence of the dynamics originating from the tensile
balance. Therefore, the momentum equation of the slip-link
contains only affine deformation as

dRi
k

dt
= κ · Ri

k, (2)

where κ = (∇v)T, i.e., καβ = ∇βvα is the velocity gradient.
The primitive path length Li(t) follows the overdamped
Langevin equation with the Rouse relaxation time of a chain
τ i

R = τe(Z
i
eq)

2,

dLi

dt
= −f i

τ i
R

(Li − Li
eq) +

(
dLi

dt

)

affine
+

√
2a2

3τeZi
eq

wclf(t),

(3)

where f i(≡ {1−(1/λi
max)

2}/{1−(λi/λi
max)

2}) is the FENE
parameter of the ith chain, and λi

max is the maximum stretch
ratio of the ith chain. wclf(t) is a Gaussian white noise
satisfying these relations:

〈wclf(t)〉 = 0, 〈wclf(t)wclf(t
′)〉 = δ(t − t ′). (4)

The three terms of the RHS in Eq. 3 refer to the
contributions of the chain length restoration, the affine
deformation, and the contour length fluctuation by thermal
noise. By assuming a tension balance along strands, the two
tails take over the change of L half by half on behalf of the
pinned slip-links. Thus, the lengths of the two ends si

head and
si

tail change according to the following equations:

dsi
head

dt
= 1

2

(
dLi

dt
−

(
dLi

dt

)

affine

)
+ √

2Di
cwrep(t),

dsi
tail

dt
= 1

2

(
dLi

dt
−

(
dLi

dt

)

affine

)
− √

2Di
cwrep(t), (5)

where Di
c(= (Li

eq)
2/π2τ i

rep) is the diffusion constant

of pure reptation motion and τ i
rep = 3(Zi

eq)
3τe is the

reptation time calculated from the Doi-Edwards model (Doi
and Edwards 1986). The first term in the RHS in Eq. 5 is
related to the contributions in Eq. 3 except for the affine
deformation, and the second term is related to the thermal
fluctuations. Here, wrep(t) is a Gaussian white noise that
satisfies the same equation as Eq. 4 of wclf. The lengths of
the two ends are checked every τe. If the length of an end is
more than a or less than zero, the creation or annihilation of
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entanglement occurs, respectively, which mimics constraint
renewal.

The stress σ of the system consisting of Nchain-chains in
the volume V is calculated with the Kramers formula:

σ = σe

〈
f

rr

a|r|
〉

. (6)

The unit stress σe is related to the plateau modulus GN as

σe = 3kBT

V

Nchain∑

i=1

Zi
eq = 3ρRT

Me
= 15

4
GN, (7)

where ρ is the mass density, R is the gas constant, kB is
the Boltzmann constant, T is the temperature, and Me is the
entanglement molecular weight. The plateau modulus GN is
generally expressed as

GN = A
ρRT

Me
, (8)

where the constant A equals 4/5 when considering the
thermal fluctuations of the length along the primitive
path (Doi and Edwards 1986). Note that Uneyama and
Masubuchi (2021) reported a more detailed analysis of this
factor A.

SORF expression

At present, the contributions of SORF are determined by
empirical order parameters correlated to the stretch and
orientation (Yaoita et al. 2012; Costanzo et al. 2016). In
this study, we utilize the relation proposed by Yaoita et al.
(2012). The expression is accurate enough to reproduce the
rheological properties.

We briefly explain the SORF mechanism considered
in the original study for a monodisperse polymer melt.
To express the segments’ orientation and stretch to the
elongational direction, Yaoita et al. (2012) proposed the
stretch/orientation order parameter Fs/o defined as

Fs/o ≡ λ̃2S̄, (9)

where λ̃ = λ/λmax and S̄ is the averaged orientation
anisotropy, defined as

S̄(S) ≡ |s1 − s2|, (10)

where S = 〈uu〉 is the orientation tensor, u(= r/|r|) is
the normalized bond vector between the adjacent slip-links,
and s1 and s2 are respectively the maximum and minimum
eigenvalues of the orientation tensor.

Yaoita et al. (2012) derived the empirical relation
between the friction coefficient ζ and the order parameter
Fs/o,

τe(Fs/o)
τe(0)

= ζ(Fs/o)
ζ(0)

1
fFENE

= 1
(1+β)γ

[
β + 1−tanh{α(F ′

s/o−F ′∗
s/o)}

2

]γ

, (11)

where fFENE(≡ 1/(1 − λ̃2)) is the FENE parameter. For
F ′

s/o ≡ fFENEFs/o, the parameters α = 20, β = 5.0 ×
10−9, γ = 0.15, and F ′∗

s/o = 0.14 are obtained from the
experiments in monodispersed PS melts. F ′

s/o used here is
the same as that used in Yaoita et al. (2012). The reason why
they introduced F ′

s/o is that it is impossible to experimentally
separate fFENE from Fs/o. In this study, we just follow the
way used by Yaoita et al. (2012). Equation 11 expresses the
friction change to a lower value by exceeding the threshold
parameter of F ′

s/o, and was used for the multichain slip-link
model (Masubuchi et al. 2001) and the DT model (Doi and
Takimoto 2003). Masubuchi et al. (2014a) used Eq. 11 with
the above parameter values to examine polyisoprene and
poly(n-butyl acrylate) melts and found that the predictions
were improved. Nevertheless, the parameter could not be
applied universally for chemical structures; thus, Sato and
Taniguchi (2019) reported that a smaller value of F ′∗

s/o �
0.007 gives better predictions for PI melts.

Note that there are other expressions for SORF. For
example, Costanzo et al. (2016) used a power-law-type
function to describe friction reduction. While these can also
reasonably improve the predictions for the entangled and
unentangled polymer melts, the functional form and the
order parameter have not yet been fully established.

We also note that the strength of the thermal fluctuation
is determined using the friction coefficient under flows
through the fluctuation-dissipation theorem. Recently,
Watanabe and coworkers discussed the change in the
Brownian force intensity under strong flow for unentan-
gled chains (Watanabe et al. 2020, 2021; Sato et al. 2021).
Using the modified Rouse (or dumbbell) model to allow
the spring strength, friction coefficient, and the strength of
the Brownian force to be changed, they formulated rheo-
logical quantities under shear and elongational flow. Using
these rheological quantities, they found that the fluctuation-
dissipation theorem might not be valid under strong flow.
Since the origin of the friction is local dynamics, this
argument can also be applied to entangled melts. Neverthe-
less, considering the strength of the thermal fluctuation is
outside this study’s scope and deferred to future research.

The application of Eq. 11 to the polydisperse melts
has arbitrariness in terms of averaging the stretch and the
orientational anisotropy. The SORF expressions are thus
far obtained from monodispersed polymer melt systems.
Unlike a monodisperse system where the state of a chain
is statistically the same as the states of the surrounding
chains, in a polydisperse system, the state of a component
often differs from those of other components. For example,
in a bidisperse system, the state of a longer or shorter
entangled chain and the state of the environment defined by
an average over the surrounding polymer chains might be
different under a flow because the two types of chains have
different relaxation times. The friction of a chain moving
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relative to the surrounding chains can be considered to
be a consequence of many-body interaction among them,
and the coupling of the state of the entangled chain itself
with the environment has not yet been clarified. Therefore,
the following question arises regarding how the friction
coefficient (in general, friction coefficient tensor) of a
polymer chain along its contour is determined by (i) the
state of the considering chain and/or (ii) the state of the
environment around it, and furthermore, which factor of the
two is more dominant, (i) or (ii).

In this study, we investigate bidisperse blend systems
composed of long and short chains (hereafter C stands
for a component, i.e., C=“short” or “long”), where we
consider different types of SORF expressions by replacing
the statistical quantities in F ′

s/o in Eq. 11. Eight types of
SORF expressions for a chain belonging to a component
C are possible by changing the averages for the statistical
quantities: the chain stretch ratio λ and orientation tensor S

used in the parameter F ′
s/o, i.e.,

F
′(X Y Z)
s/o = fFENE(〈λ̃〉X)Fs/o(〈λ̃〉Y, SZ), (12)

for the bidisperse blend systems instead of F ′
s/o in Eq. 11.

The superscript X Y Z refers to averaging the arguments,
where X stands for the normalized stretch ratio in the
FENE factor, Y for the normalized stretch ratio in the order
parameter Fs/o, and Z for the orientation. F ′

s/o consists of the
two contributions fFENE and Fs/o, and one can consider that
two contributions may have different physical origins. For
instance, in a monodisperse polymer system, the average
quantities used in the two contributions are considered to be
identical; in a bidispersed polymer system, they might be
different because the state of a considering type of chain,
e.g., a long chain can be different from the average over the
whole long and short chains. Therefore, we retain possible
combinations of variables in F ′

s/o and discuss later which
combination is the better one.

The component average of a quantity Q, 〈Q〉C means
the average of Q over the chains with the same equilibrium
length as a considering chain; on the other hand, the system
average of Q, 〈Q〉S expresses overall average of the chains
(in other words, environment around the considering chain).
The subscripts S and C indicate the averages of stretch and
orientation over the system and the component, respectively.
For example, the superscript C S S on F ′

s/o means the
component average is used for the FENE parameter, the
system average for the stretch ratio λ, and the orientation
tensor S in Fs/o. Note that Takeda et al. (2015) used the
system averages for all quantities in F ′

s/o; specifically, they
used F ′

s/o, expressed as S S S in our notation.
In the next section, we focus on the three combinations,

i.e., C S S, C C S, and S S S. Here, we can consider
the eight combinations at maximum. However, the four
combinations S S Z and X C C clearly give no meaningful

results in agreement. In the remaining half, the two
expressions, C S S and S C S, gave similar results to each
other for the examined samples in this study. Considering
the roles of the factors in F ′

s/o, the factor fFENE comes from
the finite extensibility of chains, so we consider it natural
that fFENE is reflected from the state of the considered
chain. In the next section, we discuss the results using C
for X in X Y Z on supposing the factor fFENE reflects the
finite extensibility of the chains under consideration. The
remaining two combinations, C C S and C S C, provide
mutually similar results to each other for the examined
samples. C C S clearly focuses on the stretch ratios of
the considered chains and the orientation anisotropy of
the entire system. On the other hand, the interpretation
of C S C on the physical meanings has considerable
complexity. Therefore, we provide the results in C C S, and
the discussion on the difference between C C S and C S C
is excluded from the target of this research. To summarize,
in the next section, we discuss the results for three cases:
S S S, C S S, and C C S; i.e., S S S is chosen as a
reference case for the previous research where just system
averages were used, and C S S and C C S are chosen as the
representative cases where the component average for the
stretch of the considered chains is taken into account.

Results and discussion

The systems considered here are bidisperse polymer blends.
In Table 1, we show the characteristics of each system
and their simulation conditions. The sample code is given
as PS-AAAS-BBBL-CCw, where PS (or PI) stands for
polystyrene (or polyisoprene), AAA is the molecular weight
of the main-polymer component in the unit of kDa, BBB
also denotes the molecular weight of the secondary polymer
component in the unit of kDa, and CC expresses the weight
percent of the secondary component in the system. ZS is the
number of entanglements at equilibrium Zeq for the short
chain (the main component), and ZL denotes that for the
long chain (the secondary component).

We first compare the storage modulus G′(ω) and the
loss modulus G′′(ω) calculated from the simulations with
experimental results to determine the unit values τe and
σe, and thus obtain the Rouse relaxation time τR(= Z2

eqτe)

and the longest relaxation time τd. The fitted parameters
are τe = 0.16 s and σe = 0.68 MPa for 130 ◦C PS
melts. These values are of similar order to the previous
reports by Masubuchi and Amamoto (2016) and Sato and
Taniguchi (2019). For 25 ◦C PI melts, the values are τe =
1.1 × 10−5s and σe = 1.2 MPa. In Appendix, we show
the fitted complex moduli for the bidisperse PS and PI
melts and the monodisperse PS melts containing polymers
of the same molecular weight polymers as before blending,
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Table 1 Conditions with experiments and simulations

No. Sample code ZS ZL λmax T [◦C] τe [s] σe (MPa)

I PS- 95S-545L-50w 8.6 50 4.4 130 0.16 0.68

II PS- 52S-390L- 4w 4.5 36 4.4 130 0.16 0.68

III PS- 52S-390L-14w 4.5 36 4.4 130 0.16 0.68

IV PS-100S-390L-14w 9.1 36 4.4 130 0.16 0.68

V PI- 23S-226L-20w 5.3 53 5.9 25 1.1 × 10−5 1.2

VI PI- 23S-226L-40w 5.3 53 5.9 25 1.1 × 10−5 1.2

as shown in Figs. 5, 6, 7, and 8. The predictions of the
linear viscoelasticities (LVEs) are in agreement with the
experimental results obtained from the blends.

Comparison of the different SORFs

In this section, we compare selected SORF expressions
defined in Eq. 12 to the experimental results for the uniaxial
elongations. Figures 1 and 2 show the predictions with
the extended DT model for the transient viscosities under
elongational flows. Figure 1 displays the stress growth and
relaxation for the bidisperse system-I reported by Hengeller
et al. (2016), which consists of the high weight fraction of
the long chains (50 wt%). In contrast, Fig. 2 expresses the
transient viscosities of the three samples with low weight
fractions (4–14 wt%). The two out of the three samples,
II and IV, are reported by Nielsen et al. (2006) and III is
reported by van Ruymbeke et al. (2010).

Figure 1 shows (a) elongational transient viscosities and
(b) transient viscosities (η+

E for the start-up and η−
E after the

cessation) in stress-growth-and-relaxation measurements
of (I) PS- 95S-545L-50w under elongational flows. In
Fig. 1a, the five series data points of the transient viscosities
expressed as the symbols are for the experiments with
constant elongational strain rates: 1 × 10−5, 3 × 10−4,
3 × 10−3, 3 × 10−2, and 1 × 10−1 s−1 from right to left.
Figure 1b shows the three data points of the stress growth
and relaxation after the cessation, displaying initial uniaxial
elongation deformation with a constant strain rate up to the
fixed Hencky strain ε0 = 3.5 and then a strain rate set
to zero. The three strain rates are 3 × 10−3, 3 × 10−2,
and 1 × 10−1 s−1. As a reference, the Rouse relaxation
time and the longest relaxation time are evaluated to be
τ

(long)
R (= (ZL)2τe) = 4.0 × 102 s and τ

(long)
d = 1.6 × 104 s

for the long chain, respectively. The relaxation times of the
short chains are smaller than those of the long chains, which
are τ

(short)
R (= (ZS)2τe) = 12 s and τ

(short)
d = 36 s. These

quantities for this sample I and those for other samples (II-
IV) and appear later as obtained by the analyses of the linear
viscoelasticity data (see Appendix).

In Fig. 1a and b, the predictions by extended DT models
with C S S (colored solid lines), C C S (colored dash-
dotted lines), S S S (colored dashed lines), and by the DT
model without SORF (black dotted lines) are shown. From
these figures, both C S S and C C S are in agreement with
the experimental results. On the other hand, those for S S S
(colored dashed lines) and without SORF overestimate the
experimental values in the two high-deformation-rate flows:
3 × 10−2, and 1 × 10−1 s−1, which are in the region
ε̇ > 1/τ

(long)
R . When comparing the predictions with C S S

and C C S, C S S gives the best prediction for the steady
values of the transient viscosities and the maximum values
for the stress growth. Under flows, the averaged stretch
has the relation: 〈λ〉C=“long” > 〈λ〉S > 〈λ〉C=“short”. Thus,
the contribution of SORF is larger when using C S S and
C C S, that is, the notable failure of S S S for ε̇ > 1/τ

(long)
R

comes from the less effect of SORF on the stress. Regarding
the average of λ used in fFENE, the results obtained by
the component average is better than those by the system
average. Thus, fFENE in F ′

s/o should be determined by the
average over the chains of the same type as the considering
chain as expected in section “SORF expression.”

In Fig. 1a, the nonlinear behavior of the DT model
changes from strain softening to strain hardening with
increasing the elongational strain rate. However, the
experimental results of (I) PS- 95S-545L-50w do not
show such strain softening of the simulation results for
the middle elongational strain rate region 1/τ

(long)
R <

ε̇ < 1/τ
(long)
d . We suppose that the relaxation of the

long chain is overestimated compared to that expected
from the experiments for bidisperse blend systems. The
underestimation of the transient viscosities appears in
previous studies for polydisperse polymer melts with the
original Doi-Takimoto model (Doi and Takimoto 2003) and
for bidisperse polymer melts with the multichain slip-link
model (Takeda et al. 2015).

In Fig. 1b, especially in the case of ε̇ = 1.0 ×
10−1 s−1, the best prediction by C S S (green solid line)
cannot fully reproduce the two-step relaxation after flow
cessation. Considering the time, the first of the two-step
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Fig. 1 (a) Elongational transient viscosities and (b) transient
viscosities in stress-growth-and-relaxation measurements of (I)
PS- 95S-545L-50w reported by Hengeller et al. (2016), showing
initial uniaxial elongation deformation with a constant elongational
strain rate up to the fixed Hencky strain ε0 = 3.5 and then a strain
rate set to zero. The colored lines and black dotted lines are the
results obtained by the extended DT model with and without SORF,
respectively. The blue dashed, red solid, and green dash-dotted lines
correspond to the SORFs calculated from the different combinations
for X Y Z: S S S, C S S, and C C S, respectively. The black solid line
indicates the LVE result. (a) The circles are the experimental results
under elongational flows having the five strain rates: 1 × 10−5, 3 ×
10−4, 3×10−3, 3×10−2, and 1×10−1s−1 from right to left. (b) The
circles, squares, and triangles represent the experiments with the three
respective elongational strain rates 3×10−3, 3×10−2, and 1×10−1s−1

from right to left

relaxation behavior seems to correspond to the Rouse
relaxation time of the short chains. It is assumed that the
fast dynamics of the tensile balance not considered here
cause the deviation. In the long-term regime, the predictions
show underestimates of the elongational viscosity from the
experimental results after cessation, notably for the lower
deformation rates. Sato and Taniguchi (2019) demonstrate

Fig. 2 Transient elongational viscosities of (II) PS- 52S-390L- 4w,
(III) PS- 52S-390L-14w, and (IV) PS-100S-390L-14w. (circles)
The data in graphs II and IV are obtained from Nielsen et al. (2006),
and the data in graph III are obtained from van Ruymbeke et al. (2010).
The blue dashed, red solid, and green dash-dotted lines correspond to
the SORFs calculated from the different arguments: S S S, C S S, and
C C S, respectively. The black dotted and solid lines are the simulation
results without the SORF and the LVE result, respectively. The vertical
lines across the graphs correspond to the Rouse and longest relaxation
times of the long chain. The circles are the experimental results under
elongational flows having six strain rates: 1×10−3, 3×10−3, 1×10−2,
3 × 10−2, 1 × 10−1, and 3 × 10−1 s−1 from right to left. Here, the
graphs for II, III, and IV show the experimental results with only the five
smaller strain rates, only the five larger strain rates, and all the strain
rates, respectively

the predictions for PS145k show the deviation similar to this
at the long time region. We consider that the dynamics of the
long chains dominate the relaxation on the long time scale,
but the relaxation of the long chains in our model seems
faster than that expected by the experimental results.

Through these results for (I) PS- 95S-545L-50w in
Fig. 1, we find that the statistical averages over each
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component are important in the system with the high weight
fraction (50wt%) of the long chains, where C S S is the
best one. The success of C S S, as well as C C S, implies
that fFENE should be evaluated from the considering chains.
In system (I), dominated by the long chains of 50 wt%,
the system averages used to evaluate Fs/o reasonably match
the component averages over the long chains. Hence, the
difference in F ′

s/o between C S S and C C S should be
small. In the next paragraph, by using the three types of
expressions of F ′

s/o, we discuss the prediction of rheology
for the systems with the lower-weight fractions of the long
chains.

Figure 2 displays the transient elongational viscosities η+
E

for (II) PS- 52S-390L- 4w, (III) PS- 52S-390L-14w,
and (IV) PS-100S-390L-14w. The data in graphs II and
IV are obtained from Nielsen et al. (2006), and the data in
graph III are obtained from van Ruymbeke et al. (2010).
The characteristic times of the long chain have the values
τ

(long)
R = 2.1 × 102 s and τ

(long)
d = 5.0 × 103 s for PS390k.

The values of the short chain for II and III are τ
(short)
R =

3.2 s and τ
(short)
d = 3.8 s for PS52k, and those for IV are

τ
(short)
R = 13 s and τ

(short)
d = 44 s for PS100k. The circles are

the experimental results under elongational flows having the
five elongational strain rates 3 × 10−3, 1 × 10−2, 3 × 10−2,
1 × 10−1, 3 × 10−1 s−1 for II and under the elongational
flows also having the five elongational strain rates: 1×10−3,
3 × 10−3, 1 × 10−2, 3 × 10−2, and 1 × 10−1 s−1 for III
from right to left. For IV, the elongational flows have the
six elongational strain rates 1 × 10−4, 3 × 10−3, 1 × 10−2,
3×10−2, 1×10−1, and 3×10−1 s−1. In the three figures for
II (top), III (middle), and IV (bottom), the SORF effects with
the component averages (C S S and C C S) fundamentally
improve the predictions for the higher elongational strain
rates than 1/τ

(long)
R , which correspond to the two or three

ε̇ cases from the left. On the other hand, the predictions
with the SORF effects just with the system averages (S S S
expressed by colored dashed lines) are almost the same as
those without SORF, especially in the results of II and III.
The predictions of C S S (colored solid lines) are the best
for sample II, those of C C S (colored dash-dotted lines) are
the best for sample III, and those of C S S and C C S are in
agreement for sample IV.

By focusing on the data from the higher deformation-
rate flows (ε̇ > 1/τ

(long)
R ), we find that the C S S and

C C S predictions are the best for the steady viscosities in
the two results, II and III, respectively. The SORF expression
with C C S shows the best results for the two samples, (III)
PS- 52S-390L-14w and (IV) PS-100S-390L-14w,
while the predictions underestimate the viscosities for
the two samples (I) PS- 95S-545L-50w and (II)
PS- 52S-390L- 4w. On the other hand, the predictions
obtained from C S S are the best for the two samples, I and

II. The two samples, I and II, have the long chain’s high and
low weight fractions (50wt% and 4wt%) and are dominated
by the contributions of the long and short chains, respec-
tively. Thus, on the assumption that the order parameter
Fs/o should describe the environment around the considered
chain in the experiments, we find that the Fs/o obtained from
the system averages rather than the component averages
can describe the elongational rheological properties of the
two systems, I and II. On the other hand, this Fs/o obtained
from the system averages does not fully describe the two
systems, III and IV, with the long chain’s middle weight
fractions.

In this section, we found that the importance in using the
component averages from the comparison in the different
SORFs. The SORF expression with the component average
improves the predictions for all the examined samples
having the molecular weights (4–50 wt%) of the minor
component under the high-deformation-rate flows with a
large elongational strain rate (ε̇ > 1/τ

(long)
R ). For the

dynamics of the polymer chain, taking into account the state
of the considered chain is necessary for the evaluation of
the reduction of friction. We should confirm how much the
condition of a shorter or longer component is extremely
different from that of the other under flows. In the next
subsection, we investigate how much difference in the states
appears between long and short chains.

Further applications

Next, we investigate the rheological properties of bidisperse
blend systems and the state for each component of polymer
chains by using the DT model with a SORF expression
using the component averages (C S S as an example). As
shown in the previous section, we could not find the clear
superiority or inferiority between C S S and C C S; of
course, these two are superior to the other combination, say,
S S S. The expressions S Y Z and C C C do not take this
aspect into consideration because they do not give better
results or it is difficult to give clear physical meanings to
them. For example, it has been confirmed that the results
with C C C show a clear underestimate for the experimental
results although we do not show data in the present paper
due to excessively large deviations.

Thus, the reason to use C S S and not C C S is the
simplicity and relatively clear physical meaning of the
formula, in that the FENE parameter fFENE in Eq. 11
expresses the contribution of the considered chains and the
order parameter Fs/o in Eq. 11 expresses that from the
environment. Figure 3 displays the steady-state properties
for the three PS samples reported by Nielsen et al. (2006)
for investigating the difference in the states of the long and
short chains under elongational flows. In addition, to test the
chemical dependence of the friction reduction mechanism in
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Fig. 3 (a) Elongational viscosities, (b) normalized stretch rates, (c) ori-
entational anisotropy, and (d) normalized numbers of entanglements
for (II) PS- 52S-390L- 4w, (III) PS- 52S-390L-14w, and (IV)
PS-100S-390L-14w. The black, red, and blue lines with sym-
bols express the statistical value averaged over the system, the major
component (short chains), and the minor component (long chains),

respectively. The solid and dotted lines correspond to the results with
and without the SORF mechanism, respectively. In graph (a), the
dashed horizontal line displays the three times of the zero viscosity
3η0 calculated from the LVE results by the DT model, and the dotted
and dash-dotted vertical lines show the inverse of the Rouse relaxation
times τR of the long and short chains

other bidisperse polymer melts, we also study the transient
viscosities under steady shears in Fig. 4 with two PI systems
reported by Read et al. (2012).

Figure 3 shows the (a) steady state elongation vis-
cosity, (b) stretch ratio, (c) orientation anisotropy, and
(d) numbers of entanglements on a chain for (II)
PS- 52S-390L- 4w, (III) PS- 52S-390L-14w, and
(IV) PS-100S-390L-14w, from top to bottom. The solid
and dotted lines are the results with and without SORF,
respectively. Here, we adopt the C S S expression to evalu-
ate the parameter F ′

s/o. The red and blue lines are the aver-
ages over short chains and long chains, respectively. The
black solid lines and the black dashed lines are the steady
viscosities and the LVE results, respectively. The sym-
bols are the experimental values having unimodal shapes
obtained from the report by Nielsen et al. (2006). As seen
from the three columns of II (left), III (center), and IV (right),
the states of the short and long chains are notably differ-
ent from each other. The long chains are fully oriented
and stretched under the region where the anisotropy and
the stretch of the short chain do not largely change. The

difference in the state between the components should be
critical when considering friction reduction.

The decrease in the steady elongation viscosities appears
under high-deformation-rate flows, while the orientational
anisotropy of the short chains increases. This tendency
of the decrease is in agreement with the experimental
results. From the right column for IV, the behavior in the
steady viscosities clearly appears to suppress the stretch
ratios of the long chains. In the left column II, the steady
viscosities evaluated by the DT model with and without
the SORF are slightly different for the small strain rate
region, and the difference is considered to originate from
the thermal fluctuations. Note also that the steady viscosities
obtained by the PCN model (Takeda et al. 2015) slightly
increase even with the small elongational strain rate, but
our simulations do not show such increases. The major
difference between their PCN model and the DT model
is whether the dynamics of the force balances exist. The
strands of the long chains pull the short chains, and both
dynamics with and without force balance may cause the
difference.
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In the left and center columns for II and III, the
(a) viscosities, (b) stretch ratios, and (c) orientational
anisotropy are similar to each other, but (d) the numbers
of entanglements of (III) PS- 52S-390L-14w remarkably
decrease around the vertical dotted line (1/τ

(long)
R ) with

the elongational strain rate compared to those of (II)
PS- 52S-390L- 4w. The difference between II and
III systems is simply the weight percent of the minor
component (the long chains), that is, the ease in the
releasing “long-long” chains entanglements changes more
than that in the “long-short” chains entanglements under
convection. We suppose that the long chains easily release
the entanglements under the small elongational deformation
rate flows.

In the right column of Fig. 3d, the normalized number
of entanglements shows an upturn in the high deformation
rate region. We consider that the upturn of 〈Z〉 /Zeq is
unphysical, and should be improved. Nevertheless, the
previous study (Sato and Taniguchi 2019) demonstrates that
the increase of Z in the region ε̇ > 1/τR does not bring
the unreasonable rheological properties and the unphysical
conformation since the increased entanglements near the
ends only slightly contributes to the stress. Since the upturn
is not observed in the PCN model from the comparison
with the DT model reported by Sato and Taniguchi (2019),
this might come from the difference between the DT
model and the PCN model, e.g., the Rouse dynamics faster
than 1/τR.

Figure 4 shows the transient viscosities (η+ for shear
and η+

E for elongation) of (V) PI- 23S-226L-20w under
steady shears and (VI) PI- 23S-226L-40w under steady
shears and uniaxial elongations. The values of the two units,
τe and σe, are already written in the second paragraph of
section “Results and discussion.” The characteristic times of
the long chain have the values τ

(long)
R = 3.1 × 10−2 s and

τ
(long)
d = 1.3 s for PI226k. Those of the short chain have the

values τ
(short)
R = 3.1 × 10−4 s and τ

(short)
d = 4.6 × 10−4 s

for PI23k.
In Fig. 4, the transient viscosities under small elonga-

tional strain rate flows are in agreement with the LVE result
for a long time. On the other hand, under sufficiently high
elongational strain rate flows, the responses show nonlin-
earity, i.e., strain hardening within short times. For both
samples under shear flows, the viscosities under higher
shear rate flows display stress overshoots and a decrease in
the steady values with the shear rate. Regarding the transient
shear viscosities, simulations both with and without SORF
reasonably reproduce the data of (V) PI- 23S-226L-20w
and (VI) PI- 23S-226L-40w, even if the shear rates are
larger than the inverse of the Rouse relaxation time of the
long chains (γ̇ τ

(long)
R ∼ 20), which is the same tendency

observed in the Rolie-double-Poly model (Boudara et al.
2019).

Fig. 4 The transient viscosities of (V) PI- 23S-226L-20w under
shear (VI) PI- 23S-226L-40w under shear or uniaxial elongation
were reported by Read et al. (2012). Colored solid lines and black
dotted lines are the results of the extended DT model with or without
the SORF, respectively. Blue dashed lines are the results under uniaxial
elongations with the tuned parameter F ′∗

s/o = 0.007 by Sato and
Taniguchi (2019). The black solid line is the LVE result. Symbols show
the experimental results

In the upper part in the graph for VI, the elongational
viscosity growth functions are also displayed. The elonga-
tional viscosities in the DT model, even with the SORF
mechanism, are overestimated compared with the experi-
mental viscosities. Here, remembering that the parameters
in Eq. 11 are for polystyrene, Sato and Taniguchi (2019)
proposed a different value of the parameter F ′∗

s/o = 0.007
for polyisoprene. With F ′∗

s/o = 0.007, they have shown that
the predictions of the steady viscosities approach the exper-
imental results in the monodispersed polyisoprene. Thus,
we test the proposed parameter for the bidispersed polyiso-
prene melts, expecting the overestimations to be suppressed.
The lower graph for (VI) PI- 23S-226L-40w shows the
elongational viscosities with F ′∗

s/o = 0.14 (black solid lines)
and F ′∗

s/o = 0.007 (blue dashed lines). The results with the
smaller F ′∗

s/o = 0.007 approach the experimental results
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under flows with high elongational strain rates, but still, the
F ′∗

s/o = 0.007 does not bring sufficiently good agreement
to the data of the nonlinear behavior between the simula-
tions and the experiments. Judging from these deviations,
the chemical dependence of the friction reduction mecha-
nism and the appropriate functional form and parameters are
not resolved in this study and should be sought in a future
study.

In this section, we have confirmed the three following
findings: (i) The states of the long chain and the short chain
clearly differ from each other under steady elongations; (ii)
the DT model with SORF using the component average
(C S S) brings the improvement in the prediction not only
for the transient viscosities but also for the steady state
elongational viscosities, and (iii) for shear flows, the results
with and without SORF predictions are not important for
shear flows even with a high shear rate (γ̇ τ

(long)
R ∼ 20).

Conclusions

We studied the rheological predictions by dual slip-link
model (extended version of the Doi-Takimoto model) for
six samples of the bidisperse entangled polymer melts that
have already been measured experimentally. In the extended
model, the improvement of stretch- and orientation-induced
friction reduction effect is addressed. The rheological
predictions basically support the applicability of the SORF
expression even for the bidisperse melts under shear and
uniaxial elongational flows. The results satisfy the aim of
this study: additional confirmation of the SORF mechanism
for bidisperse entangled polymer melts.

Through this study, there are three findings. First,
the SORF expression proposed by Yaoita et al. (2012)
improves the rheological prediction for bidisperse entangled
polymer melts under the uniaxial elongational flows with
strain rates comparable to or larger than the inverse of
the Rouse relaxation time of the longer chain. Second,
the predictions with the SORF using the component
average for the stretches quantitatively reproduce the steady
viscosities because the states of the components with
different molecular weights differ from each other under
elongational flows. Third, the SORF effect does not affect
the prediction of the nonlinear rheology of the bidisperse
system under shear even for a high deformation rate for
the specific polyisoprene systems. In particular, the second
point means that in the frictional dynamics of an entangled
polymer chain in a polydisperse system, the state of the
considered chain is also important as well as the state of
the environment. We show guidelines for the extension of
the reduction friction effect obtained from monodisperse
melts.

Further studies are clearly required for a deeper under-
standing of the friction reduction in bidisperse systems.
While this study considers two averages (i.e., component
and system averages) to reproduce the experimental rheo-
logical data, this treatment has not been fully validated. For
such a purpose, molecular dynamics simulations are highly
desirable.

This study is intended to guide the future application
of the SORF expression for the prediction of entangled
polymer melts under flows not only with a bidisperse distri-
bution, but also with an arbitrary molecular weight distribu-
tion for the analysis of polymer processing. Recently, some
multiscale simulation (MSS) studies have focused on this
model (Sato and Taniguchi 2017; Sato et al. 2019; Sato and
Taniguchi 2021; Hamada et al. 2021) due to the computa-
tional convenience. The confirmation of the applicability of
the DT model into which the SORF mechanism is incorpo-
rated is important for future analysis by using MSS for poly-
mer processing consisting of polydisperse entangled poly-
mer melts. Our research helps better understand effective
polymer processing by controlling the molecular weight.

Appendix. Linear viscoelasticity

The linear relaxation modulus G(t) is calculated from the
autocorrelations as

G(t) = V

5kBT

( 〈
σxy(t)σxy(0)

〉 + 〈
σyz(t)σyz(0)

〉
(13)

+ 〈σzx(t)σzx(0)〉) + V

30kBT
(
〈
Nxy(t)Nxy(0)

〉

+ 〈
Nyz(t)Nyz(0)

〉 + 〈Nzx(t)Nzx(0)〉 )
,

Fig. 5 Storage (circles and red line) and loss (squares and blue
line) moduli of (I) PS- 95S-545L-50w. The solid lines represent
those obtained by the DT model. Symbols express those obtained by
Hengeller et al. (2016)
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Fig. 6 Storage (circles and red line) and loss (squares and blue line)
moduli of (II) PS- 52S-390L- 4w, (III) PS- 52S-390L-14w, and
(IV) PS-100S-390L-14w. The solid lines represent those obtained
by the DT model. Symbols express those obtained by Nielsen et al.
(2006)

where σαβ is the αβ component of the stress tensor and
Nαβ(= σαα − σββ) is the normal stress difference. The
multiple-tau method (Ramı̀rez et al. 2010) enables us to
evaluate the autocorrelations efficiently.

The reference data and the predictions from the extended
Doi-Takimoto model are shown by the symbols and black
lines, respectively, in Fig. 5 (Hengeller et al. 2016), Fig. 7
(Read et al. 2012), and Fig. 6 (Nielsen et al. 2006). These
figures display only the regions of the terminal relaxation
and the plateau, which can be calculated by the DT model.
The simulation results predict the two contributions of

Fig. 7 Storage (circles and red line) and loss (squares and
blue line) moduli of (V) PI- 23S-226L-20w, and (VI)
PI- 23S-226L-40w. The solid lines represent those obtained by
the DT model. Symbols express those obtained by Read et al. (2012)

the short chains and the long chains. Figures 5, 6, and
7 show that the DT model can successfully reproduce
the linear rheological properties of bidispersed polymers
except for the high frequency region. The deviation from
the experimental data in the high frequency range is
due to the lack of the Rouse-like dynamics in the DT
model.

The values of τe and σe are determined from the
LVE results of bidisperse entangled polymer melts. Here,
we show the comparison between the simulations and
the data of monodisperse melts. Figure 8 shows the
linear viscoelasticity of the monodispersed polystyrene
samples before blended. The numbers of entanglements at
equilibrium Zeq equal 4.5, 8.6, 9.1, 18, 36, and 50 for the
molecular weights 52 k, 95 k, 100 k, 200 k, 390 k, and 545 k
of the mono-dispersed PS melts (130 ◦C), respectively. The
results from the DT model, the storage and the loss moduli,
match almost all the data, but the simulation results for
PS95k and PS100k slightly deviate from the data obtained
from Hengeller et al. (2016) and Nielsen et al. (2006).

68 Rheologica Acta (2023) 62:57–70



Fig. 8 (a) Storage modulus and (b) loss modulus. The graphs show
the compared results with 130 ◦C PS52k (Nielsen et al. 2006), PS95k
(Hengeller et al. 2016), PS100k (Nielsen et al. 2006), PS200k (Bach
et al. 2003; Nielsen et al. 2006), PS390k (Bach et al. 2003; Nielsen
et al. 2006), and PS545k (Hengeller et al. 2016). Circles, upper
triangles, lower triangles, squares, diamonds, and crosses show the
experimental results of PS52k, PS95k, PS100k, PS200k, PS390k, and
PS545k, respectively. The unfilled, filled, and left-filled markers show
the results of experiments reported by Nielsen et al. (2006), Bach et al.
(2003), and Hengeller et al. (2016), respectively. Lines show the results
of the DT model simulations
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