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Abstract
Newtonian non-Brownian concentrated suspensions show a mismatch between the steady state and the complex viscosity, 
whatever the strain amplitude imposed in the oscillatory flow. This result is counterintuitive in the two extreme cases of 
vanishing strain amplitude and very large one. In the first case, the oscillatory flow should not be able to alter the steady 
microstructure, as well as in the other opposite limit for which the strain amplitude is so high that the oscillatory flow resem-
bles a steady flow reversal. If the microstructure is not altered with respect to the steady one, similarly the complex viscosity 
should be equal to the steady one. We here investigate experimentally and numerically the origin of the viscosities mismatch 
at any imposed strain amplitude. We focus on the first two or three cycles of oscillations and different particle concentrations. 
Experimental and numerical results agree and allow to prove that for intermediate amplitudes, the oscillatory shear induces 
the breakage of particle clusters and the microstructure modifies so to minimise particle collisions. For very small strain 
amplitudes, the oscillatory shear only induces the rotation of few couples of touching particles and the complex viscosity 
results slightly smaller than the steady one, while for very large strains, the oscillatory flow reshuffles the particles inducing 
a microstructure as clustered as the steady state one but with a different angular distribution function. We show that the vast 
majority of the microstructure rearrangement takes place in the first half cycle of oscillation.

Keywords  Stokesian dynamics · Dense suspensions · Non-Brownian

Introduction

Industrial applications involving multiphase fluids are 
frequently encountered; often a characterization of the 
rheological properties of these fluids is required to design 
and control the process. However, this task is not always 
easy, as, e.g., it is often difficult to measure with rotational 
rheometers the steady-state viscosity at the high shear rates 
of industrial interest because of experimental artefacts as 
sample or edge fracture, secondary flows and so on. Simi-
larly, fast in line viscosity measurements are highly desired 
when designing a control algorithm. Typically, the above-
mentioned requirements are accomplished with dynamic 

experiments that are much faster than the steady state ones 
and that allow to safely rich very high frequencies. From the 
results obtained with the dynamic experiments, one can get 
information on the steady-state properties of the fluid under 
investigation in view of the renowned Cox-Merz rule. In 
1958, Cox and Merz (1958) related the steady shear viscos-
ity, η, and the modulus of the complex viscosity, |�∗| (from 
here on referred to as �∗ for the sake of simplicity), through 
an empirical correlation stating their numeric equivalence, 
Eq. (1), if the shear rate, 𝛾̇ , is expressed in s−1, the angular 
frequency of the oscillatory shear, ω, in rad·s−1 and the oscil-
latory experiments are executed in the linear regime.

Much more recently, Winter (2009) proposed a modifi-
cation of Eq. (1) such that the dynamic viscosity was con-
sidered as a function of the shear stress, while the complex 
viscosity of the complex modulus. The rule proposed by 
Winter provides additional insight into the sample viscoe-
lasticity and may allow for a better comparison among dif-
ferent polymers. The practical impact of Cox-Merz rule is so 

(1)𝜂(𝛾̇) = 𝜂∗(𝜔)

 *	 Mario Minale 
	 mario.minale@unicampania.it

1	 Department of Engineering, University of Campania 
“Luigi Vanvitelli”, Real Casa dell’Annunziata via Roma 29, 
81031 Aversa, CE, Italy

2	 Albanian University – Universitas Fabrefacta Optime, Tirane, 
Albania

/ Published online: 25 April 2021

Rheologica Acta (2021) 60:309–325

http://orcid.org/0000-0002-7756-3536
http://crossmark.crossref.org/dialog/?doi=10.1007/s00397-021-01270-8&domain=pdf


1 3

important that several equations correlating the fluid elastic 
parameters in steady and oscillatory shear can be found in 
the literature, but none of them shows the same wide valid-
ity of Cox Merz rule. Cox and Merz themselves proposed a 
correlation for the elastic viscosity, the so-called Cox–Merz 
rule of consistency; however, this rule was not consistent 
with Eq. (1) (Booij et al. 1983), though experimentally it 
proved to work properly for a variety of polymers. Laun 
(1986) proposed an empirical rule relating the first normal 
stress difference to the storage and the loss modulus and, 
more recently, Sharma and McKinley (2012) introduced a 
more sophisticated empirical rule to predict the first normal 
stress difference either from dynamic or from steady viscos-
ity data.

The Cox-Merz rule, Eq.  (1), originally proposed for 
flexible polymers, finds a theoretical explanation for linear 
polymers whose dynamics can be described with the tube 
model corrected with non-linear mechanisms like the con-
vective constraint release, as first proved by Marrucci (1996) 
and Ianniruberto and Marrucci (1996), and successively by 
Mead (2011) in a more consistent way. Snijkers and Vlas-
sopoulos (2014) assessed the validity of the Cox-Merz rule 
also for polymers with different architectures, though a gen-
eral theoretical interpretation for flexible polymers different 
from linear ones is still missing. The Cox-Merz rule has 
become such a powerful tool in rheology that its validity has 
been investigated also for complex fluids that exhibit defor-
mation-dependent microstructure like, e.g., heterogeneous 
fluids and associating polymers. In these cases, Cox-Merz 
rule typically fails (Al-Hadithi et al. 1992; Larson 1999).

Despite this, though the suspensions are heterogeneous 
fluids, several attempts to find the range of validity of the 
rule for this class of materials, and eventually a valid exten-
sion of it, were done in the literature. The stress response 
to both small amplitude oscillatory shear (SAOS), i.e. in 
the limit of linear viscoelasticity, and large amplitude oscil-
latory shear (LAOS), necessary to test suspensions with a 
yield stress, was investigated. Following a chronological 
order, which leads us to discuss systems with a decreasing 
level of complexity, the response to LAOS attracted first the 
literature attention as the suspensions may often exhibit a 
yield stress. Doraiswamy et al. (1991) derived a new rule, 
the so-called Rutger-Delaware rule valid for shear thinning 
suspensions with yield stress, stating the correspondence of 
the plot of the complex viscosity vs. the maximum (or effec-
tive) shear rate (γ0 ω) with that of the steady-state viscosity 
vs. shear rate:

where γ0 is the strain amplitude of the oscillatory shear. The 
Rutger-Delaware rule was validated experimentally by Mas 
and Magnin (1997) concluding that Eq. (2) can be used only 

(2)𝜂(𝛾̇) = 𝜂∗
(
𝛾0𝜔

)
,

for large strains, such that the stress resulting in the sample is 
larger than the yield value. Later on, Wang and Wang (1999) 
studied shear thinning fluids with yield stress and a measur-
able Newtonian plateau. In this case, Eq. (2) resulted valid 
in the shear thinning region, while failed in the Newtonian 
limit. Raghavan and Khan (1997) showed its validity for 
large strains also for shear thickening suspensions, both in 
the shear thinning and in the shear thickening region.

In the linear regime, starting from the observation that 
shear thinning suspensions under SAOS conditions obey 
Cox-Merz rule in the Newtonian plateau, while show 
𝜂∗ > 𝜂 in the shear thinning region, Gleissle and Hoch-
stein (2003) derived a modified Cox-Merz rule, valid for 
this class of materials, applying the shear stress equiva-
lent shear rate concept. They showed that a single param-
eter B, function of the solid volume fraction ϕ, is required 
to superimpose the shear stress vs. shear rate plot to that 
of the complex modulus vs. the angular frequency. The 
shear stress equivalent shear rate concept accounts for 
a horizontal shift of the stress curves, through the shift 
coefficient B, and a vertical shift of the complex moduli, 
again through B. In terms of viscosity, it states the neces-
sity of a single horizontal shift of the dynamic viscosity 
plot (Eq. (3)).

Xu et al. (2008) showed that in a shear thinning sus-
pension for particle volume fractions below a critical 
value, ϕc = 0.036, which corresponds to a percolation 
threshold, Cox-Merz rule held true, while above ϕc, a 
modified rule, actually coincident with Eq. (3), resulted 
verified.

Finally, Newtonian suspensions attracted less attention, 
although the modified rules reported in Eqs. (2) and (3) are 
both ineffective for such materials. Bayram et al. (1998) 
showed the validity of the Cox-Merz rule for Newtonian 
suspensions up to a particle volume fraction of 30%, while 
Kaully et al. (2007) showed its validity up to a particle vol-
ume fraction of 20–40%, depending on the particle size 
distribution. Both papers showed that for higher concen-
trations, the complex viscosity resulted smaller than the 
dynamic ones ( 𝜂∗ < 𝜂 ), in contrast to the case of shear thin-
ning suspensions.

To try to explain why Cox-Merz rule fails also for New-
tonian suspensions under SAOS conditions, let us recall 
that non-Brownian concentrated suspensions may show 
a peculiar dynamic even when subjected to a linear flow 
like that of Stokes. In simple unidirectional shear, since 
the papers of Eckstein et  al. (1977) and Leighton and 
Acrivos (1987), it is known that in the creeping flow limit, 
the particles of a non-Brownian suspension may diffuse 

(3)
𝜂(B(𝜙)𝛾̇)

B(𝜙)
=

𝜂∗(𝜔)

B(𝜙)
.
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because of hydrodynamics and interparticle interactions. 
In the same limit, under small amplitude oscillatory 
shear, Gadala-Maria and Acrivos (1980) observed par-
ticle re-suspension, driven by the shear-induced particle 
migration, and, later on, Pine et al. (2005) demonstrated 
experimentally the particle trajectory irreversibility if the 
strain amplitude overcomes a critical value, function of 
the concentration. Both phenomena are due to the suspen-
sion microstructure reorganization under oscillatory shear, 
driven by a diffusion-like mechanism that is suggested to 
be due to the chaotic nature of the hydrodynamic interac-
tions (Drazer et al. 2002). More recently, based on a sim-
plified numerical model, it was suggested that the origin 
of irreversibility and chaos in oscillating suspension are 
the contacts between particles (Metzger and Butler 2010; 
Metzger et al. 2013). Breedveld et al. (2001) showed that 
the particle self-diffusion revealed two different regimes, 
a long-term and a short-term one.

As regard the long-term regime, Bricker and Butler 
(2006) studied the rheological behaviour of concentrated 
suspensions in a long-term oscillatory shear flow as a 
function of the accumulated strain (γtot = 4 γ0 nc, with nc 
the number of cycles, of the order of thousands). They 
showed that the regime complex viscosity, reached at large 
γtot, decreases with the applied strain amplitude, it passes 
through a minimum in correspondence of γ0 ≈ 1 and then it 
increases again. At small amplitudes, the regime complex 
viscosity may also overcome the steady one (Martone et al. 
2020). This behaviour was explained (Bricker and Butler 
2007) with simulations based on the Stokesian dynam-
ics (Brady and Bossis 1988) showing that at small strain 
amplitudes, the system self-organises in a crystal-like 
structure, at larger strain amplitudes, in correspondence 
of the minimum of the regime complex viscosity, a parti-
cle ordering into layers orthogonal to the velocity gradient 
direction is found, while at the largest applied strains, the 
formation of hydroclusters oriented along the compression 
direction of the shear flow field, which justifies the viscos-
ity increase, is observed. Successively, in agreement with 
Breedveld et al. (2001), Lin et al. (2013) suggested that 
at the largest strain amplitudes, the final microstructure is 
immediately formed after practically a single oscillation, 
similarly to what happens in a flow reversal, and its dynam-
ics is not as slow as those of the microstructural reorgani-
zations at the smaller strains that are driven by particle 
diffusion. Recently, Martone et al. (2020) showed that, in 
the long-term regime, Newtonian suspensions may even 
exhibit a dependence on the frequency in oscillatory shear 
that can be predicted if a weak Van der Waals adhesive/
repulsive force is considered in the equations of motion 
(Ge et al. 2020). This weak force, negligible in steady 
shear, is able to mediate the microstructure evolution in 

oscillatory shear, which will consequently depend on the 
imposed frequency.

As regard the short-term regime, Corté et al. (2008) and 
Park et al. (2011) argued that the microstructural change is due 
to the collisions between the particles that, at strains below a 
critical value, self-organise to avoid further collisions so to 
enter into an absorbing state where a reversible quasi-steady 
state is attained, while above the critical strain, particle col-
lisions never cease and an irreversible quasi-steady regime 
is reached. Let us notice that in this regime the frequency 
dependence observed by Martone et al. (2020) has not enough 
time to show its effects. The short-term regime microstructural 
reorganization mechanisms are active only when the strain 
amplitude overcomes a small minimum critical value required 
to induce particle collisions.

The short-term and long-term mechanisms cannot be 
invoked to explain the failure of the Cox-Merz rule as they 
both require a large number of cycles to show their effects. In 
particular, the short-term mechanism requires few hundreds of 
cycles to reach a quasi-steady state (Lin et al. 2013); moreover, 
the minimum critical strain amplitude to be applied to induce 
the collisions between the particles decreases with the suspen-
sion particle volume fraction and, e.g., it is larger than 10% for 
ϕ = 0.4. In the SAOS tests usually run to obtain the complex 
viscosity frequency spectra, experimental points are collected 
within two or three cycles for each frequency, and the applied 
strain amplitude is typically much smaller than 10%.

The goal of the paper is to highlight the microstructure 
reorganization mechanisms that take place in a Newtonian 
suspension in no-more than three oscillation cycles. Particu-
lar relevant are the cases at both vanishing imposed strain 
amplitudes and very large ones. In the first case, one would 
expect that the shear should not be able to perturb the micro-
structure, while in the second case, the amplitude is so large 
that the oscillation resembles a steady flow reversal (Breedveld et al. 
2001; Lin et al. 2013) and then, once again, the microstructure 
should not result altered by the oscillatory shear. As a con-
sequence, in both cases, the steady viscosity should match 
the complex one, i.e. lato sensu Cox-Merz rule should hold. 
To this end, we experimentally study non-Brownian suspen-
sions made of hollow rigid glass microspheres suspended in 
a Newtonian oil, spanning a wide range of volume fractions 
under small amplitude and large amplitude oscillatory shear. 
We then numerically investigate the behaviour of suspen-
sions at three different concentrations made of mono-sized 
rigid spheres immersed in a Newtonian fluid using the 
Stokesian dynamics as implemented by Rexha and Minale 
(2011). We eventually individuate the mechanisms at the 
basis of the observed discrepancy between the complex 
and the dynamic viscosity of Newtonian suspensions, also 
in the two extreme cases of very small and large strain 
amplitudes.
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Experiments

Materials and methods

The suspensions are made of inert glass hollow microspheres 
dispersed in Polyisobutene. The microspheres, generously 
supplied by Potters Industries (Sphericel® 110P8), have the 
volumetric distribution function shown in Fig. 1 with an 
average diameter of 15.4 μm. The mean density is equal to 
1.1 g/cm3. Due to their dimensions, the microspheres can 
be considered non-Brownian, the Péclet number is indeed 
always much greater than one, and in the experimental con-
ditions of interest for this paper, it is always larger than 105.

The Polyisobutene was provided by INEOS (Indopol® — 
grade H50). The fluid is Newtonian with viscosity equal to 
15.8 Pa.s, at 21.2 °C. Its density is equal to 0.884 g/cm3. The 
very similar density value of the matrix and the suspended 
microspheres allows neglecting sedimentation phenomena 
during the experiments, as the Shields number is on average 
larger than 103 (Martone et al. 2020), and as confirmed by 
the Newtonian behaviour of the suspension (Fig. 2a).

The investigated suspensions have a volume fraction of 
microspheres ranging from 2 to 45%. Each sample was pre-
pared by hand mixing the desired amount of the two compo-
nents up to the achievement of a macroscopically homoge-
neous “cream”, and the sample was then put under vacuum 
over night to remove the air bubbles entrapped during the 
mixing process.

Rheological tests were run with two rotational rheom-
eters. A stress-controlled rheometer (NOVA, Reologica) 
equipped with a stainless steel cone and plate geometry 
with radius of 12.5 mm and cone angle of 4°. The cone tip 
truncation is such that the nominal gap is 150 μm and thus 
the average gap in the sample is 512 μm. The temperature 
was set to 21.2 °C and controlled with a forced convection 

oven (ETC) with a precision of ± 0.1 °C. The gap between 
the cone and plate is much larger than the particle diameter 
everywhere, also at the tip where it is about ten times the 
mean diameter; thus, the effects of particle confinements 
can be neglected. A strain-controlled rheometer (ARES G2, 
TA) was used with a cone and plate geometry with radius 
12.5 mm, cone angle of 6.36° and truncation of 60 μm. In 
this case, the gap at the tip is about four times the mean 
particle diameter and the average gap is 727 μm; thus, also 
with this device, the confinement effects can be neglected. 
The temperature was set at 21.2 °C and controlled with a 
Peltier cell with a precision of ± 0.1 °C.

On each sample, both the steady-state viscosity and the 
complex viscosity were measured. The latter was measured 
in the linear regime with SAOS and outside it with LAOS. 
In agreement with the pertinent literature (Bricker and Butler 
2006; Lin et al. 2013; Park et al. 2011), also outside the linear 
regime, a single synthetic parameter, the complex viscosity, 
was used to study the data so to have a unique whole pic-
ture of the suspension behaviour both in SAOS and LAOS 
conditions. The complex viscosity is typically calculated 
by the rheometer software from the main harmonic of the Fig. 1   Particle distribution function measured with the  Mastersizer 

3000 (Malvern)

Fig. 2   Steady state and dynamic data for suspensions at different par-
ticle volume fraction: (a) viscosity and first normal stress difference 
(inset) vs. shear rate; (b) complex viscosity, storage (crosses) and loss 
(circles) moduli vs. angular frequency. The dynamic data are calcu-
lated by the rheometer SW at each angular frequency from a single 
cycle, either the second or the third, depending on the frequency and 
the quality of the signal. (Data taken with ARES G2 rheometer)
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oscillatory response; it should be referred to as apparent 
complex viscosity in LAOS and SAOS conditions, if the 
response is not perfectly linear. For the sake of simplicity, 
we will refer to it as complex viscosity. The complex vis-
cosity and the dynamic moduli are calculated in this paper 
within no more than three cycles, typically from a single 
cycle that is either the second or the third, depending on the 
frequency and the quality of the signal.

With preliminary tests, run with a plate-plate device at 
different imposed gaps, we checked that wall slip was neg-
ligible for all samples (Barnes 1995). Only at the highest 
volumetric fraction, 45%, wall slip sometimes starts to occur 
and the use of rough geometries could have been preferred 
(Carotenuto and Minale 2013; Carotenuto et al. 2015; Paduano 
et al. 2019). However, to avoid a change of the measuring 
geometry for the different investigated suspensions inevita-
bly complicating their comparison, we preferred the use of 
smooth cones and plates for all cases and the data at 45% 
are retained only when wall slip was considered negligible.

Experimental results

The rheology of suspensions is sensitive to the microstruc-
ture and so it may depend on the initial conditions. To erase 
the flow history, we preconditioned each sample with a pre-
shear at 1 s−1 for 2 min. All the investigated suspensions 
essentially show a viscosity constant with the applied tan-
gential stress, or shear rate, and a measurable negative first 
normal stress difference (N1) linear in the applied shear rate 
(Fig. 2a). Similarly, in the linear regime, the complex vis-
cosity resulted constant with the applied angular frequency, 
the loss modulus, G”, linear with it and the storage one, G’, 
hardly measurable, but quadratic in the angular frequency 
(Fig. 2b). The occurrence of negative N1, typical of this 
kind of suspensions (Denn and Morris 2014; Tanner 2018), 
together with a positive G’ implies the failure of any empiri-
cal rule developed to predict N1 from dynamic data.

We checked the linearity regime of each sample by run-
ning stress sweep and strain sweep experiments at a con-
stant frequency and we found that the higher the particle 
volume fraction, the smaller the critical strain that marks the 
transition from the linear to the non-linear regime. Figure 3 
highlights that for volume fractions smaller than 20%, the 
linear regime extends up to the largest investigated strain. 
The non-monotonous trend shown in Fig. 3 for the 30%, 
35% and 40% suspensions was already observed by Lin 
et al. (2013). It can be hypothesised that the oscillatory flow 
alters the initial microstructure, formed during the precon-
ditioning steady state, proportionally to the applied strain 
amplitude until a limit value above which the strain is so 
high that the oscillatory shear may resemble a flow reversal 
after which the initial microstructure is reconstituted. For 
these large strains, the microstructure is thus similar to that 

of the smallest applied strains and so the complex viscos-
ity increases back. In Fig. 3, the value of the viscosities of 
the steady shear preceding the oscillatory test is shown as 
horizontal segments and it is clear that the Cox-Merz rule 
holds until a volume fraction of about 30%, if the complex 
viscosity is measured well within the linear regime, or for 
very large strain amplitudes. For the two more concentrated 
suspensions, data of Fig. 3 show the mismatch between the 
complex viscosity and steady one, i.e. the failure of the Cox-
Merz rule, both for the smallest strain amplitudes, 0.1%, and 
the largest ones (500%). To check the effect of the strain 
accumulated at each strain amplitude, the data were meas-
ured also after a steady preshear run before each single point 
and the results obtained were superimposable to those shown 
in Fig. 3.

In the remaining part of the paper, we will only show 
graphs of relative viscosities, i.e. of the ratio between the 
viscosity of the suspension and that of the suspending 
fluid. Figure 4 shows the measured relative steady state 
and relative complex viscosity as a function of the suspen-
sion volume fraction and the error bars are calculated 
as ± the standard deviation of 3 independent measure-
ments, i.e. from data obtained from three independent 
loadings. The complex viscosity is obtained with an 
applied strain of 1%, i.e. in the linear regime for all the 
measured suspensions, and with an applied strain of 100%, 
which lays outside the linear regime for volume fractions 
larger than 20% (see Fig. 3), and it corresponds more or 

Fig. 3   Strain sweep tests executed with the ARES G2 rheometer at 
ω = 1  rad/s on suspensions with different particle volume fractions. 
Data are calculated by the rheometer SW at each strain amplitude 
from the second cycle. Horizontal segments indicate the value of the 
viscosity measured in the pre-shear at 1 s−1
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less to the minimum values of each curve of Fig. 3. Con-
cerning the behaviour at the highest strains, let us consider 
that the values of complex viscosity measured at a strain 
amplitude of 1% also represent the largest strain data, see 
Fig. 3, and thus to avoid to excessively crowd Fig. 4, only 
the two mentioned strain amplitudes are considered. As 
expected (Raghavan and Khan 1997; Stickel and Powell 
2005), �r and �∗

r
 increase by increasing the particle volume 

fraction. They are almost coincident for small concentra-
tions (ϕ < 0.2), while for larger values, they start to differ, 
obtaining always 𝜂r > 𝜂∗

r
 and 𝜂∗

r
||𝛾0=0.01 > 𝜂∗

r
||𝛾0=1 . Both 

inequalities increase by increasing the particle volume 
fraction. We interpolated the steady-state viscosity data 
with Krieger and Dougherty (1959) equation (Eq.  (4)) 
obtaining ϕM = 0.671 ± 0.018 and a = 3.072 ± 0.059 with 
R2 = 0.999. These parameters are consistent with the 
literature.

The relative viscosity difference, normalised with the 
value of the relative steady-state viscosity, 

(
�r − �∗

r

)
∕�r , 

henceforth referred to as normalised delta viscosity, is 
plotted vs. the particle volume fraction in Fig. 5. For vol-
ume fractions smaller than 20%, both normalised delta vis-
cosities are smaller than 1%, and this value is of the order 
of the experimental error and thus the three viscosities 
can be considered coincident; consequently, in the graph 
in Fig. 5, we do not show these points. For ϕ > 20%, the 
normalised delta viscosity increases monotonically with 

(4)�r(�) =

(
1 −

�

�M

)−a�M

the particle volume fraction reaching values larger than 
30% at the highest concentrations.

Numerical simulations

To individuate the possible mechanisms that lead to a 
complex viscosity smaller than the dynamic one, both in 
the linear and non-linear regime, we numerically investi-
gated a suspension of non-Brownian spheres immersed in 
a Newtonian fluid undergoing simple shear flows, steady or 
oscillatory. The numerical approach is based on the Stoke-
sian dynamics (Brady and Bossis 1988) with the Eulerian/
Lagrangian scheme proposed by Rexha and Minale (2011). 
We first summarise the modified Stokesian dynamics and 
then present the numerical results.

Stokesian dynamics

The motion of the fluid is governed by the Stokes equations, 
and the particle motion is described by the coupled N-body 
Langevin equations, which can be written as follows

where m is the generalised mass/moment of inertia matrix of 
the suspended particles, U is the particles translational/rota-
tional velocity vector, d/dt denotes the time derivative, FH is 
the hydrodynamic forces vector acting on the particles due 
to their motion relative to the fluid, FP is the deterministic 
non-hydrodynamic forces (which may be either interparticle 
or external) vector and FB is the stochastic forces vector that 
gives rise to the Brownian particles motion; here it is set 
to zero since the suspensions of interest are non-Brownian. 

(5)m
dU

dt
= F

H + F
P + F

B

Fig. 4   Relative steady state (full symbols) and relative complex 
(empty symbols 1% strain, and black and white symbols 100% strain) 
viscosity versus volumetric concentration, at 21.2  °C. The line is 
Krieger and Dougherty interpolation (Eq. (4)) of the steady-state val-
ues. (Data taken with NOVA rheometer)

Fig. 5   Normalised delta viscosity as a function of the volumetric 
fraction of microspheres at 21.2 °C. Lines serve to guide the eye
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Particle inertia, i.e. the LHS of Eq. (5), is also set to zero 
being the flow Stokesian.

The following analytical expression, Eq.  (6), for the 
hydrodynamic forces can be obtained if (i) the suspension 
undergoes a simple shear flow; (ii) the particle Reynolds 
number is small:

where U∞ is the imposed unperturbed velocity, E∞ is the 
unperturbed rate of deformation tensor and RFU and RFE 
are the configuration-dependent resistance matrices that give 
the hydrodynamic force/torque on the particles due to their 
motion relative to the fluid (RFU) and due to the imposed 
shear flow (RFE). The interested reader can find all the infor-
mation required to compute both matrices in the literature 
(Arp and Mason 1977; Durlofsky et al. 2006; Jeffrey and 
Onishi 1984; Kim and Mifflin 1985).

The deterministic, nonhydrodynamic force vector FP is 
arbitrary and may have almost any form. We here consider 
only short-range repulsive inter-particle forces required to 
prevent particle overlapping, as suggested by Dratler and 
Schowalter (2006), Eq. (7).

where �∗p

��
 is the dimensionless force on particle α exerted 

by particle β, r is the centre-to-centre dimensionless separa-
tion vector directed from particle β to particle α, τ controls 
the spatial decay rate of �∗p

��
 , 𝛾̇ is the nondimensional shear 

rate, such that the ratio 𝜏∕𝛾̇ tunes the relative importance of 
inter-particles forces with respect to shear forces and h is the 
dimensionless distance between the particles surfaces, 
h = |r| − 2 . It should be noted that the use of FP is required 
only for the numerical stability of the code; thus, its precise 
form is unimportant provided that it decays rapidly to zero 
while increasing the particles separation. We, then, checked 
that in our calculations, (i) the contribution to the viscosity 
given by the inter-particle forces is always some orders of 
magnitude smaller than that of the hydrodynamic forces and 
(ii) that particle overlaps are absent. Once both the hydrody-
namic and the inter-particles forces are known, the relative 
viscosity of the suspension can be computed (Brady and 
Bossis 1985). Let us underline that, being FP negligible with 
respect to the other forces, the set of Eqs. (5) and (6) is linear 
in the imposed shear rate, or angular frequency in the case 
of oscillatory shear; thus, the corresponding dimensionless 
set of equations is rate independent. As a consequence, all 
the material functions are also predicted to be rate independ-
ent, in agreement with what observed in Fig. 2.

Due to the long computational time required to simulate 
an infinite 3D suspension, we focused on a monolayer of 
uniform rigid spherical particles, since it was shown that 
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the bulk properties of a fully three-dimensional suspension 
are well caught by the monolayer, provided that the areal 
fraction of the spheres is opportunely scaled to obtain the 
corresponding volume fraction of the real 3D suspension 
(Brady and Bossis 1988). Moreover, to simulate a non-
confined suspension, cell periodicity is introduced and we 
implemented a Eulerian/Lagrangian approach (Rexha and 
Minale 2011) following which we calculated the motion of a 
set of particles contained in a Eulerian box, but we evaluated 
the forces acting on each particle referring to a Lagrangian 
box centred in the particle itself. In Fig. 6, the computa-
tional Eulerian box, shadowed, is plotted together with its 
eight images, the test particle is shown as a hollow circle 
and the Lagrangian box, centred in it, is shown with a grey 
border. Finally, to reduce the computational time, we also 
implemented a variable time step algorithm. All details on 
the numerical scheme and on the values of the parameters 
required for the numerical integration can be found in Rexha 
and Minale (2011).

Numerical results

We investigated several configurations made of 9 rigid non-
Brownian spheres immersed in a Newtonian fluid undergo-
ing simple and oscillatory shear. The adopted areal frac-
tions ϕa, and the equivalent volume fractions, are reported 

Fig. 6   Cell periodicity: The Eulerian box (shadowed) and the Lagran-
gian box (with grey border) centred in the test particle, a hollow cir-
cle, are shown

Table 1   Areal fractions and the corresponding volumetric fractions of 
the samples investigated in the numerical simulations

Areal fraction, ϕa 0.375 0.45 0.525
Volume fraction,ϕ 0.25 0.3 0.35
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in Table 1. The choice of 9 spheres is appropriate since here 
we only aim at individuating the mechanism underlying the 
microstructure modification in the very firsts cycles of an 
oscillatory shear and the qualitative behaviour of the suspen-
sion is nicely caught already by a configuration with such 
a small number of particles, as demonstrated by Rexha and 
Minale (2011). However, by investigating samples with such 
a small number of particles, we are conscious that we may 
have difficulties to obtain a quantitative agreement with the 
data, but the gain in computational time is strong enough 
to justify our choice. We focused on volume fractions not 
smaller than 25% because we showed experimentally, Figs. 2 
and 3, that Cox-Merz rule ceases to be valid for ϕ > 20%, 
and because we already numerically proved the validity of 
Cox-Merz rule for volume fractions up to 17% for the same 
kind of suspension (Rexha and Minale 2011).

The experimental complex viscosity is uniquely deter-
mined once the system is opportunely preconditioned with a 
steady pre-shear, thus, in the numerical simulations we first 
integrate in the time domain the set of Eqs. (5)–(7) with an 
imposed constant simple shear flow until steady state and 
then, starting from a few configurations representative of the 
steady state, the oscillatory shear is simulated. For each sam-
ple, we always checked to have reached a stable steady state. 
The results of the steady simple shear are shown in Fig. 7 for 
the 25% suspension, chosen as an example. At time zero, the 
initial configuration is a random one. The solid grey line rep-
resents the instantaneous relative viscosity, the dots are the 
relative viscosity mean values calculated starting from time 
0 to the running time and their associated error bars are esti-
mated as ± the standard deviation of the data. The horizontal 
line represents the final steady-state relative viscosity. Let us 
consider that the unique experimental value, determined on 

a sample with a practically infinite number of particles, can 
be seen as equivalent to that numerically obtained averaging 
the results coming from an infinite number of configura-
tions of a finite number of particles. In steady state, this is 
done by averaging the results coming from a configuration 
evolving in the time domain, while in the oscillatory shear 
experiments, this approach cannot be followed. Indeed, each 
dynamic numerical simulation is based on a single configu-
ration and strongly depends on it. To mimic the reality, it is 
necessary to average the results coming from a set of differ-
ent initial configurations that must be chosen so that accurate 
results can be obtained with a set as small as possible. To 
properly choose the initial configurations set so that it nicely 
represents the steady state, we focus on the viscosity associ-
ated with each particle configuration and we require that the 
distribution function of these viscosities has the mean value 
coincident with that of steady state and, to improve the accu-
racy of the numerical predictions, we also require that its 
standard deviation be equal to that of the steady-state data, 
see Appendix. The stars of Fig. 17 individuate the viscosities 
of the set of the 9 initial different configurations complying 
with the discussed requirements, for the 25% sample. The 
configurations associated with the stars, shown in Fig. 7, are 
those forming the initial set used for the oscillatory shear 
simulations.

Figure 8 shows the mean complex viscosity, obtained 
averaging the values originated from the chosen sets of 9 
different configurations, as a function of the applied strain 
amplitude for three different volume fractions. We simulated 
approximately the first two cycles for each strain amplitude, 
and we discarded the first half cycle in the calculation of the 
complex viscosity from the main harmonic of the periodic 
response. Analogously to the experimental data, it can be 

Fig. 7   Numerical simulations: Relative viscosity vs dimensionless 
time in steady shear. ϕ = 0.25. The initial configurations used for the 
numerical simulations in oscillatory shear are shown. Two configura-
tions, A and B, are highlighted (see Fig. 11)

Fig. 8   Numerical simulations: Relative complex viscosity vs applied 
strain amplitude for suspensions with ϕ = 0.25, 0.30, 0.35. The hori-
zontal segments show the relative viscosity of the preceding steady 
shear
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seen that the relative complex viscosity of the three investi-
gated suspensions is always smaller than the relative steady 
state one, whose value is shown with a horizontal segment 
in the graph; the complex viscosity decreases as the applied 
strain amplitude increases, up to a strain of about 100%, and 
then it increases again. In agreement with what observed in 
Fig. 3, the larger the volume fraction, the more evident the 
effect of the applied strain on �∗

r
 , and the smaller the applied 

strain amplitude corresponding to the minimum complex 
viscosity. Let us notice that the numerical data of Fig. 8 
qualitatively reproduce the experimental data of Fig. 3, and 
this confirms that the numerical simulations based on only 
9 particles correctly catch the physics of the problem. The 
mismatch between the steady and the complex viscosity at 
small and large strain amplitudes is also predicted.

In Fig. 9, we compare the relative steady state and com-
plex viscosities, for γ0 = 1% and 100%, as a function of the 
volume fraction confirming that the numerical simulations 
show a behaviour in qualitative agreement with the data 
plotted in Fig. 4: The larger the volume fraction, the larger 
the difference between the steady-state viscosity and the 
complex one, at both applied strain amplitudes.

Mechanisms at the basis of Cox‑Merz rule 
failure

In Fig. 10, we compare the experimental and simulation 
results restricting our attention to the volume fractions inves-
tigated numerically. We show the normalised delta viscosity 
as a function of the volume fraction. The numerical results 
over-predict the data at γ00 = 100%, while under-predict them 
at γ0 = 1%, however, this does not surprise since the choice of 

using a set of 9 particles can only lead, as previously under-
lined, to a qualitative agreement with experimental data, that 
is however fully caught by our simulations.

To understand the possible physical origin of the 
observed discrepancy between the complex and the steady-
state viscosity, let us remind that the more aggregated the 
particle microstructure, the higher the viscosity of the 
suspension. Being the complex viscosity smaller than the 
dynamic one, we can then hypothesise that the oscillatory 
shear induces a structure dilation, i.e. a particle decluster-
ing, of the suspension; this means that on average after the 

Fig. 9   Numerical simulations: Relative steady-state viscosity and rel-
ative complex viscosity, at γ0 = 0.01 and 1 vs. the suspension volume 
fraction. Lines serve to guide the eye

Fig. 10   Normalised delta viscosity, at γ0 = 1% (circles) and 100% 
(squares) vs. the suspension volume fraction. Comparison between 
experiments (hollow symbols) and simulations (filled symbols). Lines 
serve to guide the eye

Fig. 11   Relative complex viscosity as a function of the applied strain 
for a dilated particle configuration (A) and a clustered one B with 
φ = 0.25. The horizontal lines correspond to the initial relative vis-
cosities of the two configurations, see Fig. 7. As a reference, the rela-
tive suspension viscosity (dotted line) and the mean relative complex 
viscosity (grey dots, data of Fig. 8) are shown
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first two oscillations, the particles are better dispersed in 
the matrix. This idea is strengthened by the results shown 
in Fig. 11 where the complex viscosity coming from two 
different configurations, namely A and B of Fig. 7, is plot-
ted vs. the strain amplitude. The structure of configuration 
A is very dilated (declustered), being its corresponding 
steady-state viscosity smaller than the mean one, while that 
of configuration B is more clustered, being its correspond-
ing steady-state viscosity larger than the mean one (Fig. 7). 
Starting from the dilated configuration A, the oscillatory 
shear (in only two cycles) tends to aggregate the particles 
and indeed the complex viscosity increases with the applied 
strain amplitude (Fig. 11); the opposite holds when starting 
from the clustered configuration B, at least until an applied 
strain amplitude equal to 100%, for larger strain amplitudes, 
the complex viscosity increases again, thus suggesting a re-
clustering effect. Let us also notice that the complex viscos-
ity of configuration B deviates from the initial value since 
the smallest applied strain amplitudes, while to induce an 
increase of the complex viscosity of configuration A, a much 
larger strain amplitude is required, > 20%. As a reference in 

Fig. 11, the mean complex viscosity is plotted vs. the applied 
strain amplitude (data of Fig. 8) as grey dots. Though the 
viscosities of configurations A and B differ from the mean 
value approximately of the same amount, at each applied 
strain amplitude, the dilation effect induced by the oscilla-
tory shear is more effective than the clustering one thus lead-
ing to an overall reduction of the complex viscosity with the 
strain amplitude. This suggests that in the first two cycles, 
the oscillatory shear is much more effective to disaggregate 
than to aggregate the microstructure until a strain amplitude 
of 100%. For larger strain amplitudes, the data of configura-
tions A and B are very similar because, as we already dis-
cussed, in these conditions, the oscillatory shear resembles 
a flow reversal whose steady value is independent from the 
initial conditions.

To confirm that the reduction of complex viscosity is due 
to a microstructure disaggregation, we evaluated the radial 
pair distribution function immediately before the oscillatory 
shear and upon it for selected strain amplitudes and three 
volume fractions, Fig. 12. The radial pair distribution func-
tion, rdf, describes how particle density varies as a function 

Fig. 12   Radial pair distribution functions (rdf) before the oscillatory shear (initial blue line) and upon it (final red line) for five selected applied 
strain amplitudes and three volume fractions. The horizontal line is for rdf = 1
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of the distance r from a reference particle and is calculated 
following the Eulerian/Lagrangian approach implemented 
in our model. The reference particle is put in the centre of 
the Lagrangian box, concentric circles with progressively 
increasing radius r are drawn around it and the number of 
particles contained in each shell is calculated. This number 
is then divided by the area of each shell and by the average 
density of particles in the system. This calculus is repeated 
considering in turn as reference all the particles contained 
in the Eulerian box and all the results are then averaged 
to obtain the rdf of a single configuration. The final rdf is 
obtained after averaging the rdf of the nine configurations 
used for the simulations.

For 10% ≤ γ0 ≤ 100%, the radial pair distribution function 
upon oscillation is significantly smaller than that before the 
oscillation only at r = 2 for all the three volume fractions. 
This means that the probability to find a couple of particles 
touching each other is significantly reduced by the oscilla-
tory shear; thus, the existing clusters generated by the steady 
shear are disrupted by the oscillatory flow. When the strain 
amplitude is larger than 100%, the picture changes with 
the particle concentration: At γ0 = 200%, for ϕ = 25% and 
30%, the radial pair distribution function upon the oscilla-
tory shear is still significantly smaller than the initial one at 
r = 2; thus, a particle declustering is still visible, while for 
the suspension at ϕ = 35%, the two rdf’s are very similar at 
every r and thus the disruption of clusters cannot be appreci-
ated; at γ0 = 400%, for ϕ = 30%, we still measure a difference 
between the initial and the final rdf at r = 2, while this is 
no more visible for ϕ = 25%. What observed for γ0 ≥ 10% 
clearly explains the results of Figs. 3 and 8: For intermediate 
strain amplitudes, the oscillatory shear is capable of induc-
ing a particle declustering that leads to a complex viscosity 
significantly smaller than the steady one; for larger ampli-
tudes, with a threshold depending on the volume fraction, 
the oscillatory shear starts to behave like a flow reversal 
and the final rdf tends to the initial one; consequently, the 
complex viscosity increases back towards the steady one, 
though it remains at the highest concentration always smaller 
than it. Finally, when γ0 ≤ 1%, the two radial pair distribution 
functions are practically coincident and so the dilation action 
is absent. This holds for all the three concentrations and in 
these conditions, the numerical complex viscosity is similar 
to the steady one; nevertheless, at the higher concentrations, 
it remains smaller than it, even if the regime complex viscos-
ity reached at large accumulated strain may be larger than 
the steady one.

As discussed above, the data of Fig. 8 at γ0 ≤ 1% and 
γ0 = 200% show that for the higher volume fractions, a 
residual difference between the steady state and the com-
plex viscosity is still measurable. This happens even if in 
these cases the radial pair distribution functions of the sam-
ples before and after the oscillatory shear are practically 

superimposable. A similar discrepancy between oscillatory 
and steady data is observable also experimentally. In these 
conditions, the reduction of complex viscosity cannot be 
thus attributed to a particle declustering. We then hypoth-
esise that the oscillatory shear at small strain amplitudes and 
at very large ones, due to its fore-aft asymmetry, may induce 
a rotation of anisotropic structures that mostly contribute to 
the suspension viscosity, i.e. clusters of couple of particles 
will orient to exert a smaller resistance to flow. We then plot 
in Fig. 13 the angular pair distribution function of the 35% 
suspension before and after exactly two cycles of oscillatory 
shear, for γ0 = 1% and 200%, considering only practically 
touching particles, i.e. particles whose centres have a dis-
tance r ≤ 2.01. In the case of γ0 = 200%, the two adf’s differ 
significantly, proving that a macroscopic rotation is induced 
to the vast majority of clusters of couple of particles. In 
the case of γ0 = 1%, the two adf are much more similar and 
only few, but significant, differences are observed. These 
small differences may justify the small difference between 
the complex and the steady viscosity observed in these con-
ditions. Let us underline that when γ0 = 200%, the adf before 
and after the oscillatory shear remain different also for non-
touching couple of particles, r > 2.01, while for γ0 = 1%, 
they result always practically coincident. This confirms our 
interpretation that when the applied strain amplitudes are 
large enough, the oscillatory shear behaves similarly to a 
flow reversal and the final particle configuration results as 
clustered as the initial one, as revealed by the rdf, but differ-
ently oriented with respect to the flow, as shown by the adf. 
This difference of orientation may justify the observed dif-
ference in viscosity. Probably, a much larger strain amplitude 

Fig. 13   Angular pair distribution functions of particles (r ≤ 2.01) 
before the oscillatory shear (initial blue line) and after exactly two 
oscillations (final red line) for the suspension with ϕ = 35%. 0° is the 
velocity direction of the steady shear flow. The inset defines the angle 
θ
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is necessary to obtain the adf of the steady state. Conversely, 
in the case of small strain amplitudes, γ0 ≤ 1%, the structure 
is practically unaffected by the oscillatory shear and only 
few touching particle results rotated by the oscillatory flow. 
Since this anisotropic structure largely contributes to the 
suspension stress, even such a small rotation may justify the 
observed complex viscosity reduction.

Further insight into the microstructural 
reorganization mechanism

Going back to the structure evolution of a concentrated sus-
pension under oscillatory shear flow, we already discussed in 
the Introduction that two mechanisms can be individuated: a 
short-term and a long-term one. According to the first (Corté 
et al. 2008, 2009; Lin et al. 2013), if the strain amplitude is 
larger than a critical value, the system enters into an absorbing 
state where particle collisions are suppressed and a reversible 
pseudo steady state is attained, with η* < η; if the applied strain 
is larger than a second higher critical value, an irreversible 
steady state is reached where particle collisions never cease 
and the complex viscosity is not very different from the steady 
state one. What observed in this paper, both experimentally 
and numerically in the first very few cycles of oscillation (< 4) 
at intermediate strain amplitudes, resembles much to what 
happens according to the short-term mechanism in the first 
few hundreds of cycles. To further investigate this, we experi-
mentally run strain sweep hysteresis loops by first increasing 
and successively decreasing the applied strain amplitude at a 
fixed angular frequency. The first point of the hysteresis loop 
is always run after the conditioning pre-shear. The results 
are shown in Fig. 14 for the suspensions at 30, 35 and 40%. 
Both the modulus of the relative complex viscosity and the 

out-of-phase component of the relative complex viscosity, η″r, 
are shown. The latter reflects the elasticity of the system that in 
non-Brownian suspensions is due to either collisions between 
particles, or interparticle interactions that become relevant 
when the particles get very close to each other.

The first run is performed in the same way in which we 
obtained the data of Fig. 3, and indeed, at constant angular 
frequency, by increasing the applied strain amplitude, the 
relative complex viscosity of all three investigated suspen-
sions first decreases towards a minimum at about γ0 = 100%, 
and then it increases again. Contemporaneously, by increas-
ing the applied strain amplitude, first η″r is not measurable at 
the smallest strain amplitudes, then from γ0 = 2–5%, which 
corresponds to the value at which η*r starts to decrease, 
it monotonically increases suggesting that the elasticity 
due to collisions increases monotonically with the applied 
strain amplitude. Let us underline that η″r is always at least 
one order of magnitude smaller than η*r, this means that 
the system is mainly viscous, but few collisions between 
particles are always present. At a fixed angular frequency, 
the hysteresis loop is performed by stopping increas-
ing the applied strain amplitude, at any chosen value, and 
from there, γ0 is decreased at the same rate of the preced-
ing “forth” branch. This “back” branch is started from two 
strain amplitudes: 500% and 100%. In the first case, the com-
plex viscosity follows the “forth” branch until its minimum 
value reached at γ0 ~ 100%; from there on, it remains more 
or less constant and a hysteresis shows up. In the second 
case, when the applied strain amplitude is decreased start-
ing from γ0 = 100%, the complex viscosity remains practi-
cally constant and not significantly different from the value 
at γ0 = 100%. This holds at all the volume fractions. η″r also 
shows the hysteresis (Fig. 14c) and, similarly to the com-
plex viscosity, the “back” branch of η″r detaches from the 

Fig. 14   Forth and two back 
strain sweep experiments at 
1 rad/s (a, c); Forth, back and 
forth strain sweep experiments 
at 10 rad/s, compared with the 
data at 1 rad/s (b, d). (Data 
taken with ARES G2 rheom-
eter)
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“forth” branch at γ0 ~ 100%, from where it rapidly drops to 
a very small value that is in the limit of measurability of 
the instrument. This suggests that in the “back” branch, for 
γ0 ≤ 100%, there are no more collisions between particles 
during the oscillatory shear and thus the microstructure does 
not change much anymore. This is in agreement with the 
numerical predictions of particle declustering induced by 
the oscillatory shear which led to a final configuration with 
particles distributed in a such way that they were no longer 
prone to collide or interact. To fortify this interpretation, we 
experimentally showed that the “back” branch is reversible; 
indeed, starting from any point of it, we increased again the 
strain amplitude and the “back” branch was retraced by both 
η*r and η″r (Fig. 14b, d). We also checked that the angular 
frequency had no effects on this phenomenon by running the 
same experiments at 10 rad/s and obtaining results perfectly 
superimposable to those at 1 rad/s (Fig. 14b, d).

To validate the observations of Fig. 14, we run a hyster-
esis loop for the 35% suspension also numerically (Fig. 15). 
The data of the “forth” branch are those of Fig. 8, while 
those of the “back” branch are obtained using as initial con-
ditions for the simulations the configurations reached after 
the oscillatory shear at strain amplitude of 100%. Only three 
strain amplitudes are investigated: 100%, 20% and 5% and 
the qualitative agreement with the experimental data of η*r 
is excellent, though the quantitative agreement is not perfect. 
This does not surprise since we simulated configurations 
with only nine particles, and this allows catching the physics 
of the problem but makes a quantitative comparison diffi-
cult. The out-of-phase component of the complex viscosity, 
Fig. 15b, is rather small and difficult to be predicted; how-
ever, it also shows the hysteresis: In the “forth” branch, an 
increase of η″r with the strain amplitude is detected, while in 
the “back” branch, it immediately falls down towards values 
too small to be accurately numerically predicted. The numer-
ical data clearly show that in the “back” branch, the elastic-
ity, given by the particle interactions, is much smaller than 
that of the “forth” branch; thus, the particles are oriented by 
the oscillatory flow so to minimise their interactions.

What happens in the first cycles is then in agreement with 
the first steps of the structure evolution dictated by the short-
term dynamics, that is however not yet completed as dem-
onstrated in Fig. 14 where the data of the “back” branch still 
show an evolution of the complex viscosity. Indeed, the con-
stant value attained in “back” branch is always smaller than 
the minimum found in the “forth” one. These results suggest 
that in the first two or three cycles, the microstructure evolu-
tion is very fast and pronounced leading always to a decrease 
of viscosity. This holds regardless the strain amplitude and 
the long-term regime complex viscosity, which can be larger 
or smaller than the steady-state viscosity. This fast micro-
structure reorganization is followed by evolutions with much 

slower dynamics leading to the short-term regime, eventu-
ally followed by the long-term one.

Conclusions

We have experimentally investigated the behaviour of sus-
pensions made of rigid non-Brownian spheres immersed in 
a Newtonian fluid in steady and oscillatory shear flow both 
at small and large strain amplitudes focusing on the first two 
or three cycles. We showed that if the solid volume frac-
tion is larger than 20%, the complex viscosity is systemati-
cally smaller than the steady state one, and the higher the 
concentration the larger the difference. The discrepancy 
between the steady and the complex viscosity increases with 
the applied strain amplitude at any concentrations until a 
maximum that is reached for amplitudes of about 100%, and 
for larger amplitudes, the complex viscosity increases again 
tending towards the steady one. To explain the mechanism 
at the basis of these differences, which imply the failure of 
the Cox-Merz rule, we numerically investigated the same 
kind of suspension at three different volume fractions both 
in steady simple shear and in oscillatory shear, focusing on 

Fig. 15   Numerical simulations: Relative complex viscosity (a) and 
out-of-phase component of the complex viscosity (b) vs. the applied 
strain amplitude for the suspension with ϕ = 0.35. Forth and back 
strain sweep experiments
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the first two cycles. The qualitative agreement between data 
and simulations is very good and we numerically evidenced 
that for strain amplitudes 1% < γ0 < 200%, the oscillatory flow 
induces a microstructure declustering. More precisely, if the 
oscillatory flow starts from a clustered initial configuration, 
it induces the particle declustering, while it induces the par-
ticle clustering, if the initial configuration is more dilated. On 
average, the particle declustering prevails and this leads to 
the observed complex viscosity reduction. This is proven by 
the comparison of the rdf of the microstructure as calculated 
before and after the oscillatory shear flow. Indeed, when the 
complex viscosity is significantly smaller than the steady one, 
a pronounced reduction of the probability to find couple of 
particles in contact is observed after the oscillatory shear. 
For strain amplitudes larger than 200%, the complex viscos-
ity, though still smaller than the steady one, increases back. 
In these cases, the oscillations are large enough to remix the 
microstructure so cancelling the dilation effects, but not so 
large to cancel also the angular microstructural rotations. In 
the final structure, any couple of particles, no matter the dis-
tance between the centres, have the axis passing through their 
centres rotated, thanks to the flow irreversibility met by these 
systems, with respect to the initial configuration, in such a 
way that the final viscosity becomes slightly smaller than the 
initial one. In these conditions, the oscillatory shear behaves 
similarly to a flow reversal without having, however, enough 
time to reobtain the microstructure of the steady state.

When the applied strain amplitude is extremely small, 
γ0 ≤ 1%, the oscillatory shear essentially does not modify 
the suspension microstructures, but because of the fore-aft 
asymmetry of flow, it manages to slightly rotate few cou-
ples of touching particles, and this is enough to justify the 
observed small reduction of the complex viscosity, regard-
less the values reached at regime by complex viscosity that 
in these conditions can exceed the steady one.

We showed that at intermediate strain amplitudes, 
10% ≤ γ0 ≤ 100%, in the first cycles, the microstructure 
evolves towards a configuration where the collisions between 
particles are unlikely. This agrees with the idea that in the 
first cycles of oscillation, the first steps of the structure evo-
lution dictated by the short-term dynamics are taken. The 
structure evolution is very pronounced and fast in these first 
two cycles and it will be followed by an evolution with a 
much slower dynamics that will lead the system towards the 
short-term regime, eventually followed by the long-term one.

In Fig. 16, we show the stress vs. time as numerically cal-
culated for a single characteristic initial particle configuration 
for γ0 = 100%. It is clearly shown that the vast majority of the 
stress amplitude reduction is realised already in the first cycle, 
or even in the first half cycle, while the following evolution 
appears much slower. In the first cycle, the fore-aft asymmetry 
is indeed more evident because the flow is imposed on the 
microstructure deriving from the steady state.

Appendix

In Table 2 in Appendix, the values of the mean viscosities, 
and their standard deviations, of the set of 5, 7 and 9 initial 
configurations used for the oscillatory shear simulations 
are reported for the three suspensions with volume fraction 
of 25%, 30% and 35%. As a comparison, also the mean 
viscosity and the standard deviation of the steady state 
are shown. The three different sets of initial configura-
tions have the same mean viscosity of the steady state, 
while their standard deviation tends to that of the steady 
state as the number of the initial configurations increases, 
coinciding with it only for the set of 9 configurations, at 
any volume fraction.

Fig. 16   Numerical simulations: Stress vs. time in oscillatory shear 
for a single initial particle configuration. ϕ = 0.35, 0.30 and 0.25 and 
γ0 = 100%. Horizontal lines show the amplitude of the best sinusoid 
fitting the data after the first half cycle
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In Fig.  17 in Appendix, we show the normalised 
delta viscosities, calculated for γ0 = 1% and 100%, as a 
function of the volume fraction for the different sets of 
initial configurations and we compare them with those 
of the steady state. It is clear that for both applied 
strains, the agreement between data and simulation 
improves as the standard deviation of the set of the 
initial configurations tends to that of the steady state. 
In addition, the qualitative trend of the data is well 
caught only by the set with 9 configurations for both 
applied strains.

This suggests that the set of initial configurations 
must be chosen so to share with the steady state both 
the mean value of the viscosity and the standard 
deviation.
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