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Abstract

The data set of steady and transient shear data reported by Santangelo and Roland Journal of Rheology 45: 583-594, (2001) in the
nonlinear range of shear rates of an unentangled polystyrene melt PS13K with a molar mass of 13.7 kDa is analysed by using the single
integral constitutive equation approach developed by Narimissa and Wagner Journal of Rheology 64:129—140, (2020) for elongational
and shear flow of Rouse melts. We compare model predictions with the steady-state, stress growth, and stress relaxation data after start-
up shear flows. In characterising the linear-viscoelastic relaxation behaviour, we consider that in the vicinity of the glass transition
temperature, Rouse modes and glassy modes are inseparable, and we model the terminal regime of PS13K by effective Rouse modes.
Excellent agreement is achieved between model predictions and shear viscosity data, and good agreement with first normal stress
coefficient data. In particular, the shear viscosity data of PS13K as well as of two polystyrene melts with M =10.5 kDa and M =
9.8 kDa investigated by Stratton Macromolecules 5 (3): 304-310, (1972) agree quantitatively with the universal mastercurve predicted
by Narimissa and Wagner for unentangled melts, and approach a scaling of Wi~ "at sufficiently high Weissenberg numbers Wi. Some
deviations between model predictions and data are seen for stress growth and stress relaxation of shear stress and first normal stress
difference, which may be attributed to limitations of the experimental data, and may also indicate limitations of the model due to the
complex interactions of Rouse modes and glassy modes in the vicinity of the glass transition temperature.

Keywords Unentangled polymer melt - Single integral constitutive equation - Rouse relaxation spectrum - Universal viscosity
master curve - Polystyrene

Introduction

The scarcity of reliable shear flow data of unentangled poly-
mers in the nonlinear-viscoelastic regime has made the
understanding and modelling of shear flow behaviour of
unentangled polymers challenging. A set of rare transient
data reported by Santangelo and Roland et al. (2001) in the
nonlinear range of shear rates on a monodisperse unentangled
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polystyrene melt (PS13K) was recently modelled by
Ianniruberto and Marrucci (2020) using Brownian dynamics
simulation of Fraenkel chains representing the Rouse modes,
and empirically adding the effect of the glassy modes (Inoue
et al. 1991). Ianniruberto and Marrucci (2020) based their
model on the assumption of flow-induced reduction of the
monomeric friction coefficient in continuation of earlier
modelling of elongational flow of unentangled and entangled
polymers (lanniruberto 2015; lanniruberto et al. 2019;
Matsumiya et al. 2018; Park and Ianniruberto 2017). As in
the case of elongational flow, they fitted the functional expres-
sion of the monomeric friction coefficient reduction to the
steady-state viscosity data, albeit in the case of shear flow, a
different functional expression had to be used in order to
achieve an agreement with the shear data.

To separate Rouse modes and glassy modes, Ianniruberto
and Marrucci relied on the mastercurves of storage and loss
modulus as reported by Santangelo and Roland (2001) over a
frequency range from 10°* to 107 rad/s, despite the
thermorheological complexity and the breakdown of time-
temperature superposition in the vicinity of the glass transition
temperature. Polymers exhibit distinct temperature
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dependencies for the segmental relaxation (x-relaxation) time
and the terminal flow relaxation time (Ngai and Plazek 1995;
Plazek 1965; Roland et al. 2001; Santangelo and Roland
1998). Plazek et al. (1993) showed the breakdown of the con-
ventional Rouse model for low molecular weight polymers
near the glass transition temperature when there is a stronger
temperature dependence of the segmental relaxation time
compared to the terminal relaxation time. The rationalisation
of deviations in thermorheological simplicity can be achieved
through the use of the coupling model (CM) (Ngai and Plazek
1995; Robertson and Rademacher 2004). The CM (Ngai
1979, Ngai and White 1979) is an approach to relate the dy-
namical relationship between systems, and it was used to ex-
press correlations between different segmental chain dynam-
ics processes with different temperature-dependent shift fac-
tors. Plazek and Ngai (1991) showed that the coupling param-
eter n,, increases with the steepness index, S. The steepness
index or fragility index m of a polymer is the characterisation
of the temperature-dependent gradient of viscosity or structur-
al relaxation time near the glass transition temperature 7, and
the degree to which the system is non-Arrhenius (Angell
1985; Dalle-Ferrier et al. 2016). Santangelo and Roland
(1998) demonstrated through a series of dynamic mechanical
and calorimetric measurements of polystyrene that 7, and the
fragility of PS increase with increasing molecular weight.

A different and novel approach for modelling the nonlinear
rheology of unentangled polymers, which does not rely on the
hypothesis of friction coefficient reduction, was recently de-
veloped by Narimissa and Wagner (2020). The model is based
on a single integral constitutive equation, a Rouse-type relax-
ation modulus, and it considers the orientation and stretch of
polymer strands representing the relaxation modes of Rouse
chains. The use of a history integral avoids pre-averaging of
orientation and stretch. Stretch is limited by a finite
conformational stretch parameter. Narimissa and Wagner
(2020) found good agreement between model predictions
and experimental data for start-up and steady-state
elongational flow of monodisperse unentangled polystyrene
PS27K and poly(p-tert-butylstyrene) PtBS53 melts as investi-
gated by Matsumiya et al. (2018) and qualitative agreement
with stress relaxation after the stop of elongation. The exten-
sion thickening and extension thinning observed are caused
by a finite stretch in combination with strand orientation. The
model features a scaling exponent for high Weissenberg num-
ber (Wi = eTr) elongational flows with elongation rate ¢ and
Rouse time 7 of 7z « Wi~ in agreement with experimental
evidence. The scaling is a consequence of the specific struc-
ture of the Rouse relaxation modulus with G(¢) « ¢ 2 for ¢
< T in combination with strand orientation and finite stretch.
The same scaling exponent was predicted by Colby et al.
(2007) for high Weissenberg number (Wi = ’};TR ) shear flows

with shear rate 7 Furthermore, Narimissa and Wagner (2020)
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demonstrated that the shear viscosity data of two unentangled
polystyrene melts investigated by Stratton (1972) are in nearly
quantitative agreement with model prediction assuming only
orientation of strands in shear flow with no stretch.

The objective of this paper is to analyse the set of steady
and transient data reported by Santangelo and Roland (2001)
in the nonlinear range of shear rates of an unentangled PS melt
(PS13K) by using the single integral constitutive equation
approach developed by Narimissa and Wagner (2020) for
Rouse melts. We compare model predictions with the
steady-state, stress growth (start-up), and stress relaxation data
after start-up shear flow of PS13K and assess the universality
of steady shear flow of Rouse melts.

Experimental
Materials

The shear rheological modelling of this study was conducted
on previous data released by Santangelo and Roland (2001)
on a linear atactic polystyrene (PS13K) melt with a molar
mass of 13.7 kDa and polydispersity index of 1.1. PS13K melt
is considered unentangled because its molar mass is less than
the critical molar mass for entanglements M < M, = 2M,, with
M, =31.2 kDa (Fetters et al. 2007).

Rheological measurements

The linear viscoelastic oscillatory shear measurements were
conducted on PS13K by an ARES (TA Instrument) shear
rheometer using parallel-pate geometry fixture at several tem-
peratures ranging from 5 to 45 °C above its glass transition
temperatures with a reference temperature of 104.7 °C. The
samples were raised to approximately 130 °C and pre-sheared
at 0.01 rad/s before being relaxed for 1 h at each of the mea-
surement temperatures. Steady-state, stress growth, and stress
relaxation measurements after start-up shear flow were also
performed with the same rheometer and with parallel-plate
fixture at a temperature of 104.7 °C. For further details about
the measurements, please refer to Santangelo and Roland
(2001).

Modelling approach

Narimissa and Wagner (2020) presented a novel modelling ap-
proach for the elongational flow of unentangled polymer melts
based on a single integral constitutive equation and a Rouse-type
relaxation modulus. They made use of the fact, as shown by
Lodge and Wu (1971), that the modes of Rouse chains can be
considered an ensemble of virtual viscoelastic “strands” with
relaxation times ;= 7x/i° and creation rates G,/7;, where 7% is



Rheol Acta (2020) 59:755-763

757

the Rouse stress relaxation time, i the mode index, and G, = nkgT

a modulus depending on the number density of chains, », and
kpT the thermal energy. Each Rouse chain can be represented by
ng viscoelastic strands, where ny is the number of Kuhn steps per
chain, and at any time, there exist » times 7y strands per volume.
Creation rates and relaxation times are not affected by the flow,
and, at the instance of strand creation (at time ¢’), strands possess
an isotropic distribution function. In the following, we present the
main equations of our novel single integral constitutive equation
approach for shear flow of unentangled polymer melts (for more
details, see Narimissa and Wagner 2020).

We express the relaxation modulus G(f) of unentangled
Rouse melts by the sum over the number of Kuhn steps 7,

ng

ng

G(t) = A;Gi(t) =G, ;exp(—t/ﬂ) (1)

As shown by Lodge and Wu (1971) (see their eq. 5.17) and

widely overlooked ever since, the constitutive equation of the

Rouse model is fully equivalent to the rubberlike-liquid equa-
tion,

o(t) = m(t)C

o(?) is the extra stress tensor, and Cfl(t, ') the relative
Finger strain tensor. The memory function is obtained from
Eq. (1) by

Y1, ¢)dl (2)

i) = 5 2O = 5 Grexpic(e-t) i o)

At the instant of strand creation (at time ¢'), strands are
characterised by an isotropic distribution function of normal-
ised end-to-end vectors u(#'). At the observation time ¢, the unit
vectors u are deformed to vectors u', which follow from the
affine deformation hypothesis (with F~'(z, ) being the relative
deformation gradient tensor) as,

u'(t,¢) = F ' (t,¢)u(?) (4)

The Finger strain tensor C (¢, #)can then be expressed by

cl?) = 3<u’(t, ) (t, t’)> (5)

The bracket denotes an average over an isotropic distribu-
tion of unit vectors u(#) at time ¢’ and can be obtained by a
surface integral over the unit sphere,

(=g S0 ] sin6 do (6)

It is important to note that the stress tensor of the Rouse
model can be expressed in terms of a history integral of the
Rouse modes as given by Eq. (2) while for the stress tensor,
the one-to-one correlation of the Rouse modes or viscoelastic

strands to a specific location along the polymer chain is irrel-
evant. The modelling approach of Narimissa and Wagner
(2020) is based on this mesoscopic level of coarse-graining.
In order to find a more realistic nonlinear viscoelastic consti-
tutive equation, they retained the linear-viscoelastic spectrum
of the Rouse model but consider a different nonlinear strain
measure. Instead of the affine deformation hypothesis of
Lodge and Wu (1971), they assumed that strands are oriented
(“affine rotation”, orientation tensor S) and stretched from the
time of their creation (at time #') up to time ¢ of observation,
when the stress is measured. Stretch ratios f; are independent
of orientation, yet dependent on relaxation times. Only strands
which still exist at time ¢ and have not yet relaxed contribute to
the stress. The use of history integral avoids pre-averaging of
orientation and stretch; i.e. both are relative quantities depend-
ing on observation time ¢, and time ¢ of creation of viscoelas-
tic strands. Therefore, the multi-mode extra stress tensor of the
model is given as,

O 20,80,y )

oty =53,

Equation (7) is formally equivalent to the stress tensor of
the HMMSF model (Narimissa and Wagner 2016), and the
decoupling of stretch and orientation has also been success-
fully applied in the rheological modelling of entangled melts
(see e.g. Narimissa and Wagner (2019)). S is the relative
second-order orientation tensor with dependence on ¢ and ¢’
understood,

u'v’
sz<uﬂ> ®)
and u' =|u'| indicating the length of the vector u'. The orien-
tation tensor S requires a normalisation factor of 5 in Eq. (7)
instead of 3 as in Eq. (5).

Narimissa and Wagner (2020) showed that quantitative
agreement with the shear viscosity curves presented by
Stratton (1972) and Colby et al. (2007) for two unentangled
polystyrene melts can be achieved by assuming f;=1. This
means that due to the rotational component of shear flow,
strands are only oriented but not stretched in shear flow, and
the extra stress tensor in shear flow depends exclusively on the
relaxation spectrum and the orientation tensor S,

)—SZL 6G - t)

———=S(t,¢)dl 9)

We remark that although according to Eq. (9) strands
are not stretched in shear flow, this does not exclude that
the length of the end-to-end vector of chains may increase
due to conformational rearrangements of strands during
flow, as e.g. seen in nonequilibrium molecular dynamics
(NEMD) simulations of unentangled or mildly entangled
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polymers in shear flow (see e.g. Baig et al. (2010) and Kim
et al. (2010)). We also note that a frame-indifferent formu-
lation of the constitutive Egs. (7) and (9) can be obtained
by considering the “flow strength” or “rotationality” of
deformation as e.g. discussed recently by Narimissa and
co-workers (Narimissa et al. (2020), but as the focus of
this contribution is on shear flow, we refrain from doing
so here.

We will now compare predictions of Eq. (9) with the data
set of Santangelo and Roland (2001) on the monodisperse
unentangled polystyrene melt PS13K.

Comparison between model predictions
and data

Linear-viscoelastic characterisation

Figure 1 shows the master curves of storage (G') and loss (G")
modulus at a reference temperature of 104.7 °C as reported by
Santangelo and Roland (2001). In order to test the credibility
of'the reported LVE master curve, one must consider the glass
transition temperature (7,) of PS13K and carefully investigate
the difference between the 7, and the testing temperature (i.e.
Trer=104.7 °C). According to an earlier publication of

o [rad/s]

Fig.1 Storage (G') and loss (G”) moduli of PS13K at 104.7 °C (symbols)
as reported by Santangelo and Roland (2001). Segmental relaxation fitted
by a stretched exponential function (dotted lines), Eq. (10). Terminal
relaxation fitted by effective Rouse relaxation (continuous lines), Eq.
(1), with G, =8.1 x 10°Pa and 7= 125
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Santangelo and Roland (1998), T, of PS13K can be estimated
as 93 °C (see eq. 2 of Santangelo and Roland (1998)).
However, Santangelo and Roland (2001) reported a different
T, for their PS13K when they noted that their measurements
were conducted at 17.1° above the T, of their samples; hence,
T, of PS13K=104.7 °C-17.1 K=87.6 °C. Both reported
values of 7, indicate that the testing temperature is consider-
ably close to the glass transition temperature of PS13K.
According to Ngai and co-workers (Ngai 2011; Ngai and
Plazek 2007; Ngai et al. 1997), at temperatures sufficient-
ly higher than T, the steady-state recoverable compliance
J, of unentangled polymers is well predicted by the con-
ventional Rouse model; however, J; shows significant de-
crease as the test temperatures approach 7,. This drop in
recoverable compliance is even more accentuated in the
case of low molecular weight unentangled polymers when
e.g. Plazek and O'Rourke (1971) and Gray et al. (1977)
reported a 30-fold drop in J; for a polystyrene with M =
3400 Da within 30 K of its glass transition temperature.
Therefore, in both entangled and unentangled systems, the
thermorheological simplicity (TRS) of the polymeric sys-
tems becomes invalid when the test temperature is in the
vicinity of T, of samples. In the case of PS13K, whether
the test temperature is 17.1 K (Santangelo and Roland
(2001)) or 11.7 K (Santangelo and Roland 1998) above
the glass transition temperature, the TRS of the dynamic
shear tests is highly questionable, and it is likely that
thermorheological complexity (TRC) (Ngai et al. 1997)
is the governing scenario in these measurements.
Therefore, we conclude that the credibility of the reported
master curves of G’ and G” over 6 decades in frequency is
questionable. We also note that Matsumiya et al. (2018)
reported considerable scatter in their master curves for G
and G” of PS27K with a molar mass of 27 kDa when their
testing temperature (115 °C) was in the vicinity of the
glass transition temperature (94 °C). Furthermore, the ter-
minal slope of G’ in the experimental data of Santangelo
and Roland (2001) is less than 2 which as explained be-
fore could be due to the shifting errors caused by TRC.
Based on creep-compliance measurements, Santangelo
and Roland (2001) rule out the alternative explanation
that this effect may be caused by a small high molar mass
fraction in PS13K.

According to the coupling model (CM) of Ngai et al.
(1997), the glassy and Rouse modes cannot be separated
in the vicinity of glass transition temperature as they are
combined; hence, the molecular units are densely packed
together and the understanding of their interactions would
require the solution of a “many-body” problem at differ-
ent length scales and in several viscoelastic relaxation
zones. The occurrence of these many-body interactions
at temperatures in the vicinity of T, causes the insepara-
bility of the Rouse and glassy modes.
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The many-body interactions lead to a slowdown in the
relaxation process, which can be described by a “stretched
exponential” relaxation function,

G(1) = Goexp {f(t/ra)“’"“)} (10)

As indicated in Fig. 1 by dotted lines, the segmental relax-
ation regime of the master curves of storage (G') and loss (G")
modulus of PS13K can be fitted by the Fourier transforms of
Eq. (10) with modulus Gy =4.6 x 10%Pa, characteristic time
7,=6.6x 105, and interaction parameter n, =0.5. At the
reference temperature of 104.7 °C, the segmental relaxation
considerably affects the terminal relaxation regime. As seg-
mental relaxation and Rouse relaxation are coupled with non-
linear effects, they cannot be separated by assuming simple
additive superposition. In characterising the linear-
viscoelastic terminal behaviour of PS13K, we therefore use
the strategy of fitting the terminal regime of G' and G” by a so-
called effective Rouse relaxation modulus. In other words, we
assume that in the vicinity of 7}, (at the occurrence of TRC),
the terminal behaviour of the melt is determined by effective
Rouse modes which are influenced by many-body interactions
as described by Ngai et al. (Ngai et al. 1987; Ngai et al. 1997),
and not by “free” Rouse modes. These effective Rouse modes
in the terminal regime result from the interactions between
free Rouse modes and glassy modes, and indubitably, those
effective Rouse modes cannot describe the intermediate/high-
frequency behaviour. Figure 1 (continuous lines) shows the
best fit of the effective Rouse relaxation modulus to the ter-
minal behaviour of loss and storage modulus of PS13K at
104.7 °C by IRIS software (Winter and Mours 2006) accord-
ing to Eq. (1) with the material parameters G, = 8.1 x 10°Pa
and 7R =12s. (ng is taken as 40 as conventionally used by
IRIS.) It is important to note that these parameter values define
the zero-shear values of viscosity (1) and the first normal
stress coefficient (¢;o) of PS13K according to the following
relations,

2
. " " T
lim,0G = Gy =nyw = 3 G, Trw=1,

4
=253 MPa s° (12)

Both obtained values in Egs. (11) and (12) agree very well
with the zero-shear data (1, and ¢;) of PS13K in steady shear
flow as depicted in Fig. 2. It must be reiterated that the differ-
ence between the calculated parameters of effective Rouse
modes in this study (i.e. G,=8.1 x 10°Pa and 7 = 12s) and
the “free” Rouse modes assumed by lanniruberto and
Marrucci (2020) for the same PS13K samples (i.e. G,=

<
B
o
N
<
&
= 108
5 _
Ll L ol L Lol L
10 102 107!
s

Fig. 2 Modelling (blue lines) of shear viscosity 7 (top) and first normal
stress coefficient 11 (bottom) data of PS13K (open symbols) as reported
by Santangelo and Roland (2001)

2.3 % 10°Pa and 7 =24s) is due to the many-body interac-
tions in the vicinity of 7.

Shear viscosity and 1st normal stress coefficient

Figure 2 shows the modelling (blue lines) of shear viscosity 7
and first normal stress coefficient ; data of PS13K (open
symbols) through constitutive Eq. (9) with the relaxation mod-
ulus according to Eq. (1) and the material parameters G, =
8.1 x 10°Pa and 7 = 125 as obtained from fitting the terminal
behaviour of G' and G”. An Excellent agreement is achieved
between model prediction and steady shear viscosity data as
reported by Santangelo and Roland (2001). Considering the
difficulties involved with the measurement of the first normal
stress difference N;, the model shows quite reasonable agree-
ment with the first normal stress coefficient (1) data. It
should be noted that although the measurements were made
in parallel-plate geometry with inhomogeneous shear flow,
the steady-state data were corrected in Santangelo and
Roland (2001) by using the Weissenberg—Rabinowitsch
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(Bird et al. 1987) procedure that transforms the parallel disk
data into the true material functions.

As shown by Narimissa and Wagner (2020), the shear vis-
cosity 7 of unentangled melts is given through Eq. (9) as,

5 "8G (11
g 223 5 oGt)

Sia(t,t)dt (13)
ry 'y j=1—% at/

with oy, as shear stress and S, as the 12-component of the
orientation tensor. If scaled by the zero-shear viscosity and

represented as a function of Weissenberg number Wi = ’};TR

(with shear strain v = ’y t ), the normalised shear viscosity is
universal for unentangled melts, i.e. independent of G,, and 7,

nKg +oo

n 30 ; ; .
= e 2 Pexe [ () Wil Sialry) @ (14)
o =17

and approaches a scaling of Wi '’ at sufficiently high Wi.

This universal master curve (continuous line) as plotted in
Fig. 3 agrees with the data of Stratton (1972) for two Rouse
melts with M = 10.5 kDa and M = 9.8 kDa (full symbols), and
it also agrees perfectly with the data of Santangelo and Roland
(2001) for PS13K (open symbols). The scaling of wi 12
(dotted line in Fig. 3) at sufficiently high Weissenberg num-
bers is a consequence of the specific structure of the Rouse
spectrum with G(?) 2 fort< 7x and the decreasing contri-
bution of the long relaxation times to the shear stress with

T T T T T T T T T T T T T T TTTT

Ll |

Ll I

1072 107! 10° 10!

Wi [-]
Fig. 3 Normalised viscosity 7/1, as a function of Weissenberg number
Wi = ’};TR. Data from Stratton (1972) for two Rouse melts M =
10,500 Da and M =19,800 Da (full symbols) and Santangelo and
Roland (2001) for PS13K (open symbols). Full continuous line is the
prediction of Eq. (14), and dotted line indicates the scaling of at high Wi

@ Springer

increasing shear deformation due to a decreasing S}, compo-
nent of the orientation tensor. Colby et al. (2007) also reported
the same scaling exponent and explained it through the con-
tribution of only shorter relaxation modes to the shear stress at
higher shear rates within shear-thinning regime.

We note that the universal master curve of the shear
viscosity can be used to determine the parameters of the
effective Rouse relaxation modulus. With the experimen-
tal value of ny=16.0MPa for PS13K, the best fit of the
normalised shear viscosity data is obtained, if the shear
rate is scaled to Weissenberg number Wi with a Rouse

time of 7z = 12s. From 7= (7°/6)G,,7x, the modulus G, is

6 o
m TR

smaller and G, is higher than the corresponding values
given by lanniruberto and Marrucci (2020) for the param-
eters of the hypothetical “free” Rouse model. This is due
to the combined effect of Rouse modes and glassy modes
in the vicinity of the glass transition temperature 7.

then given by G, = ~8.0-10°Pa. Accordingly, 7% is

Apparent stress growth coefficients for shear stress
and first normal stress difference

Figure 4 shows the comparison between model predictions
(continuous lines) with the data of the apparent shear stress
growth coefficient 77;,,(¢) and the first normal stress growth

coefficient wfapp(t) of PS13K (open symbols). Due to the
inhomogeneous nature of shear flow in parallel-plate geome-
try used by Santangelo and Roland (2001), they reported the
shear rate ’7;R = 0.14s! measured at the outer radius R of the
parallel plates for their transient measurements. To compare
predictions with the apparent stress growth data of shear stress
and first normal stress difference, we follow Ianniruberto and
Marrucci (2020). They showed that the relation between the
apparent and the true stress growth coefficients is given by

1
napp <’7R7t> :4£n(x7Rat>x3dx (15)

V1app (’7;1% t) = 4i¢1 (XW.Ra t)x3dx (16)

where x =7/R is the nondimensional radial coordinate and
both equations reduce to identities when the material quanti-
ties are shear rate independent.

Predictions of Egs. (15) and (16) for v, = 0.14s™" (continu-
ous lines) are compared with experimental data in Fig. 4.
Predictions of the stress growth coefficients by assuming homo-
geneous shear flow with ');R = 0.14s5"" (Eq. (9)) are also shown
(long-dotted lines), which due to shear thinning, they are below
the predictions of Egs. (15) and (16). We note that as a conse-
quence of the power of (//R)’ in Egs. (15) and (16), mainly the
shear rates close to the rim at 7 = Rof the parallel plates dominate
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Fig.4 Comparison between model predictions (continuous lines) and the
experimental data (open symbols) of shear stress growth coefficient 772};15
(¢) and first normal stress growth coefficient wﬁwp(t) of PS13K as
reported by Santangelo and Roland (2001). Continuous lines are predic-
tions of Egs. (15) and (16) for 'yAR = 0.14s"", while long-dotted lines are
model predictions of Eq. (9) for a homogeneous shear rate of
'y.R = 0.14s7!, respectively. Dotted lines are model predictions for the
zero-shear stress growth coefficients 7 (¢) and 17, (¢)

the stress growth coefficients. By restricting Eq. (15) to the
steady-state viscosity 77(7) and taking into account the — 1/2
scaling of the viscosity in the shear-thinning region at 'y'R =0.1
457! (Figs. 2 and 3), we find immediately from Eq. (15) that the
effective shear rate for the steady-state shear viscosity is
Wleﬁ- =0.14(3) ®s71 = 0.107s7'; i.e. the apparent shear viscosity
N ) is equal to the viscosity 77(%1;*) that would be obtained
in the case of a homogeneous shear rate 7?17. Indeed, the predic-
tion of Eq. (15) and prediction of the steady-state shear viscosity
for a homogeneous shear rate of 'yeﬁ =0.107s"" agree within
line width.

While model predictions are in fair agreement with the
experimental data in the steady-state regime, the start-up

predictions of the shear viscosity are delayed relative to
the experimental data, while the rise of the first normal

stress growth coefficient is predicted to be faster than seen
experimentally. However, as seen in Fig. 2, significant
nonlinear effects are evident for shear rates greater than
0.05 s~', which may lead to the formation of flow insta-
bilities such as shear banding, wall slip, and most impor-
tantly edge fracture (Costanzo et al. 2016; Tanner and
Keentok 1983), while normal stress difference measure-
ments may be additionally hampered by limited compli-
ance of the rheometer (Meissner et al. 1989; Schweizer
et al. 2008). Santangelo and Roland (2001) did not ac-
count for those flow instabilities in their measurements;
hence, the accuracy of their data may be compromised.
On the other hand, these deviations between model and
data may also indicate limitations of the assumption of the
effective Rouse model due to the complex interactions of
Rouse modes and glassy modes in the vicinity of the glass
transition temperature.
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Fig. 5 Comparison between model predictions (continuous lines) and

experimental data (open symbols) of shear stress relaxation coefficient
Tapp (t) and first normal stress relaxation coefficient 1, (¢) of PSI3K

as reported by Santangelo and Roland (2001). Continuous lines are pre-

dictions of Eqgs. (15) and (16) for '};R = 0.14s7", while long-dotted lines
are model predictions of Eq. (9) for a homogeneous shear rate of
g = 0.1457!, respectively
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Apparent stress relaxation of shear stress and first
normal stress difference

Model predictions of the apparent shear stress relaxation co-
efficient n;pp(t) and the first normal stress relaxation coeffi-

cient 1, (¢) of PS13K following steady flow at a shear rate

ofv'R = 0.14s! as calculated by Egs. (15) and (16) are shown
in Fig. 5 (continuous lines) and are compared to experimental
evidence (symbols). Also, predictions of the stress relaxation
coefficients by assuming homogeneous shear flow with fy.R
= 0.14s" are shown (long-dotted lines), which due to shear
thinning, they are again below the predictions of Egs. (15) and
(16). We note that Santangelo and Roland (2001) used a log-
arithmic time scale for ¢/}, (¢), but plotted the data on a linear
time scale (Figure 5 of Santangelo and Roland (2001)), and as
explained in the previous section, they did not account for the
possible effects of flow instabilities such as edge fracture.
Nevertheless, model predictions are in reasonable qualitative
agreement with the data of both the shear stress relaxation
coefficient and the first normal stress relaxation coefficient.

Conclusions

The nonlinear shear rheology of unentangled polymer melts in
the vicinity of the glass transition temperature is determined
by an inseparable combination of Rouse and glassy modes
(Ngai etal. (Ngai et al. 1987, Ngai etal. 1997)). The molecular
units are densely packed together, and the understanding of
their interactions would require the solution of a “many-body”
problem at different length-scales. In characterising the linear-
viscoelastic terminal behaviour of PS13K at the reference tem-
perature of T,.r=104.7 °C, therefore, we have fitted the ter-
minal regime of G’ and G” by an “effective” Rouse relaxation
modulus resulting from the interactions between Rouse modes
and glassy modes. Based on this linear-viscoelastic character-
isation, the nonlinear shear rheology of PS13K was modelled
by the use of a single integral constitutive equation. As shown
by Narimissa and Wagner (2020), viscoelastic strands
representing the Rouse modes are only oriented in shear flow,
but not stretched. An excellent agreement is observed between
model predictions and the steady shear viscosity data, and
good agreement with first normal stress coefficient data is
achieved. In particular, the shear viscosity data agree
quantitatively with the universal master curve predicted by
Narimissa and Wagner (2020) for unentangled melts and ap-
proach a scaling of Wi "% at sufficiently high Weissenberg
numbers Wi. Some deviations between model predictions
and data are seen for stress growth and stress relaxation, which
can be attributed to limitations of the experiments, but may
also indicate limitations of the assumption of the effective
Rouse model due to the complex interactions of Rouse modes

@ Springer

and glassy modes in the vicinity of the glass transition
temperature.
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