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Abstract
The errors on rheological measurements due to overfilling of Newtonian fluids using parallel plate and cone-plate setups
in rotational rheometry are quantified. Overfilled sample causes an additional drag force, thereby increasing the measured
viscosity, especially when the sample wets the geometry rim. This can cause errors up to 30% in standard experimental
setups such as parallel plates with a gap height of 1 mm. This viscosity error increases proportionally with the ratio of gap
height to radius of the geometry. By developing a scaling relation that captures the main effects of the geometrical parameters
on the viscosity error due to overfilling, a master curve was constructed for the viscosity error as a function of the amount
of overfilling. Our systematic analysis of the viscosity error due to overfilling can be utilized to correct for this error during
rheological measurements in which overfilling is known but unavoidable or desired.

Keywords Overfilling · Edge effects · Rotational rheometry · Shear viscosity

Introduction

Rotational rheometers are ubiquitous in both academia
and industry. In soft matter research, rotational rheometers
are frequently used to characterize the flow behavior and
moduli of complex materials. Using structure-rheology
relations that are well-established for a wide range
of material classes, rheology can also provide in situ
and time-resolved microstructural information (Larson
1999). In industrial production units, rotational rheometers
are commonly present for monitoring the quality of
the produced materials. The most common measuring
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geometries in rotational rheometers are the parallel plate
and cone-plate geometries with the bottom plate in many
configurations being larger than the top plate (Macosko
1994). The analysis to extract rheological parameters
from measurements with these geometries is based on
the assumption of a cylindrical (for parallel plate setup)
or spherical (for cone-plate setup) shape of the free
surface of the sample (Macosko 1994). It is common
knowledge in experimental rheology that it is essential
to trim the sample edge carefully after sample loading
and to maintain the spherical or cylindrical surface shape
during actual measurements. Kalika et al. (1986) state that
“the need to monitor the edge is part of the folklore of
rheometry.” In spite of the above statement, overfilling
and underfilling scenarios are encountered quite frequently,
sometimes due to experimenter’s inexperience, and also as
an unavoidable result of the design of the measurement
setup or the sample properties, or as a means to resolve
other measurement complications. Some examples in which
overfilling is unavoidable are rotational rheometers with
upper geometries that inhibit sample trimming due to the
presence of a large solvent reservoir on top of the geometry,
measurements of samples with large contact angles (Choi
and Kim 2006; Srinivasan et al. 2013) or linear motion
micro-rheometers (Clasen and McKinley 2004; Clasen et al.
2006). Furthermore, overfilling is frequently used to avoid
evaporation in volatile samples for which an excess amount
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of fluid is loaded in the rheometer or for which the sample
edge is covered with a non-volatile second fluid. Overfilling
also provides an effective means to avoid edge fracture
(Quinzani and Vallés 1986; Vrentas et al. 1991; Snijkers and
Vlassopoulos 2011; Schweizer and Schmidheiny 2013).

When considering the fluid mechanics problem of flow
in a rotational rheometer, inertia, gravity, surface tension
and edge effects at the air-liquid interface are commonly
neglected (Walters 1975; Macosko 1994). For the typical
rotational speeds used in rotational rheometers (< 500 s−1),
the Reynolds number is low, justifying the assumption
of Stokes flow. It is then the balance between surface
tension and gravity that determines the shape of the free
sample surface (Shipman et al. 1991). Shipman et al. (1991)
show that the deviation from the theoretical cylindrical
surface shape in parallel plate rheometers generally remains
rather limited. Although this small shape deviation has
implications for the measured normal stresses, torque
measurements for medium to high viscous samples are
normally insensitive to the shape of the free sample surface,
provided that the correct volume of liquid is present.
However, a recent study by Johnston and Ewoldt (2013)
has shown that for low viscous samples, the effect of
surface tension via contact line tension can be large, already
for a slight rotational asymmetry of the sample edge. In
the presence of surface-active components, also interfacial
rheology of the free sample surface can contribute to the
measured torque signal, even with a perfectly cylindrical or
spherical edge shape (Sharma et al. 2011). Obviously, when
large deviations from the theoretical surface shape occur,
such as edge fracture, the obtained rheological parameters
will no longer be correct, even in the absence of surface-
active components (Walters 1975; Macosko 1994; Tanner
and Keentok 1983).

The effects of overfilling on rheological measurements
have been studied both experimentally and theoretically for
cases in which the rotating plate or cone is inserted in
a large container of fluid (Griffiths et al. 1969; Griffiths
and Walters 1970; Paddon and Walters 1979; Quinzani
and Vallés 1986; Vrentas et al. 1991; Khaliullin and
Schieber 2009). Quinzani and Vallés (1986) performed
both experiments and modeling on a modified cone-plate
measuring device that was designed to avoid edge fracture,
as shown in Fig. 1a. They determined the effect on the
measured torque and normal force due to the presence of
the stationary closed cup around the rotating cone. They
found that the presence of sample in the gap between the
rotating cone and the top lid of the stationary container
contributes substantially to the measured torque, but does
not affect the normal force. Vrentas et al. (1991) studied the
case in which a sample reservoir is used in a parallel plate
setup. Their setup is depicted in Fig. 1b. They demonstrate
that the ratio of the diameter of the container to that of

Fig. 1 Schematics of modified setups used for avoiding edge effects: a
modified cone-plate fixture with closed side walls studied by Quinzani
and Vallés (1986), b parallel plate setup with a sample reservoir studied
by Vrentas et al. (1991), c typical overfilling scenario studied in the
present work

the upper plate has a large effect on the measured torque,
mainly when the container is not much larger than the plate.
Similarly, Pieper and Schmid (2016) show that a guard ring
around the sample affects both the velocity profile as well
as the measured torque values. Other studies on overfilling
consider a setup in which the fluid is filled in a large bath
such that it also covers the top part of the measuring plate
or cone, this is sometimes refereed to as the “sea of fluid
configuration” (Paddon and Walters 1979; Griffiths et al.
1969; Griffiths and Walters 1970; Walters 1975).

To our knowledge, no systematic studies have been
carried out on the situation in which a small amount of
overfilling is present symmetrically around the measuring
plate or cone in a regular rheometer as depicted in
Fig. 1c. This is surprising as this represents the most
common case of overfilling encountered. Giles and Hooper
(1999) presented results showing that the effects of
overfilling on the generated torque values in a rotational
rheometer depend on the amount of overfilling, as well
as on the ratio of gap spacing to plate diameter. Davies
(2015) demonstrates that the viscosity measured with a
cone-plate rheometer is less sensitive to overfilling as
compared to underfilling. Nevertheless, this source of
experimental error cannot just be taken for granted or
ignored. We therefore present in this work a systematic
study of the effects of overfilling for Newtonian fluids
in rotational rheometry. Experiments are performed using
both parallel plate and cone and plate geometries in
a standard rotational rheometer with the bottom plate
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being much larger than the top geometry. The amount of
overfilling is varied in a controlled way and correlated
to the errors on the measured viscosity. Furthermore, the
experimental results are compared with those of numerical
simulations. The simulations provide insight into the origin
of the measurement errors due to overfilling and allow
to systematically study the effects of several geometrical
parameters on the measurement errors due to overfilling.
Finally, suggestions to minimize these errors are formulated
from the perspectives of instrument design and execution of
experiments.

Materials andmethods

Materials

As Newtonian fluids, polydimethylsiloxanes (PDMS,
Brookfield) with viscosities of 0.99, 12.4, and 101 Pa s at
25 ◦C were used. For the fluid with the highest viscosity,
a slight shear thinning sets in at shear rates above 10 s−1.
In the present work, only shear rates in the range where
the Brookfield oils have a constant viscosity are consid-
ered. The surface tension of polydimethylsiloxane at 25 ◦C
is approximately 20 mN/m (Wu 1982). Combined with the
relatively high viscosity values, this ensures that the mea-
sured torque values will not be affected by surface tension
effects (Johnston and Ewoldt 2013).

Rheometry

Rheological experiments were carried out using a stress-
controlled rheometer (Physica MCR 501 from Anton
Paar) and a strain-controlled rheometer (ARES-LS from
Rheometrics). Measurements were performed using a large
bottom plate combined with a 25- or 50-mm-diameter top
plate or cone (cone angles of 2◦ (0.035 rad) and 5.7◦
(0.1 rad)). The parallel plate and cone-plate setups will
be referred to in this work as the PP and CP setups. All
geometries had smooth stainless steel surfaces as supplied
by the manufacturer. The temperature was kept constant
at 25 ◦C using a Peltier element integrated in the lower
plate. An externally calibrated thermocouple (hypodermic
needle, type T Copper-Constantan, Omega, Stamford, CT)
was used to verify that the temperature in the sample was
within ± 0.1◦ of the set temperature. Steady-state flow
experiments were carried out over a range of shear rates
from 0.1 to 10 s−1 with a measurement time of 120 s at
each shear rate. A minimum of two experiments with a new
sample loading was performed for each overfilling case. The
reported values are averages with the data precision of each
point indicated by means of the standard deviation over the
repeat measurements.

Definition of viscosity error and amount
of overfilling

To quantify the effects of overfilling, the relative error in
viscosity was determined. This error is defined as:

�η = η − η0%

η0%
(1)

where η is the measured viscosity with sample overfilling
and η0% is the sample viscosity and thus the measured
viscosity for an exact filling.

The amount of overfilling �OF is defined as the ratio
of the overfilled (=extra) volume to the volume required to
exactly fill the geometry:

�OF = Vex

Vgeometry
(2)

with:

Vex = Vsample − Vgeometry (3)

wherein Vsample is the sample volume and Vgeometry is the
volume required to exactly fill the geometry. The volume
required to exactly fill the geometry Vgeometry depends on
the type of geometry, being equivalent to HπR2 for the PP
geometry, with H the gap height and R the plate radius. For
the CP geometry, Vgeometry becomes:

Vgeometry,CP = 2

3
πR3 tan(θ) + 1

3
π

H 3
trun

tan2(θ)
(4)

withR the cone radius, θ the cone angle andHtrun the height
of the truncated part of the cone tip. In this expression, the
first term accounts for the volume around the cone whereas
the second term accounts for the volume of the truncated
part of the cone. The latter quantity is usually negligible due
to the small value of Htrun.

Loading procedures

Specific loading procedures were used to obtain the required
amounts of overfilling in a reproducible way. For all measure-
ments, the sample under investigation was initially loaded
onto the bottom plate. The upper geometry was then slowly
moved down to the required gap. Samples with viscosity
12.4 Pa s were allowed to rest for 300 s before any measure-
ment. In the case of no overfilling, it was ensured that the
sample was precisely pinned to the edge of the geometry
and did not touch the outer rim of the upper geometry
during sample loading. For experiments using the PP setup,
care was taken to avoid air bubble formation while bringing
the upper plate to the required gap, as even low volume
fractions of bubbles will affect the measurements (Joh et al.
2010; Tran-Duc et al. 2013). Air bubbles were avoided by
placing a small amount of the sample to be measured in the
center of the upper plate so as to induce a forced wetting
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from a single point. The presence of air bubbles during
normal sample loading and their absence after using the
forced wetting method were confirmed by visualization of
the sample loading in an MCR301 rheometer equipped with
a transparent bottom plate (Reddy 2019).

For measurements with the PP setup with varying gap
height, the upper plate was initially brought to a gap of
1 mm. The excess sample was then removed with a spatula.
After this sample trimming, the exact sample volume
Vsample with a cylindrical surface was left underneath the
plate. Subsequently, the plate was lowered to the smaller
gap height H . A first set of experiments was performed at
different gap heights for a fixed Vsample, resulting in �OF
values between 0.05 and 1. A second set of measurements
with the PP setup was performed with a constant gap height
of 0.5 mm. In these experiments, the sample loading and
trimming were performed at varying larger gaps, which
were chosen as such that the loaded sample volume at the
final height led to a �OF between 0.05 and 1. In the CP
setup, the procedure was similar to that for the PP setup
with constant gap height. In this case, the measurement gap
was determined and fixed by the cone truncation. For the
CP geometry, the correct sample edge shape in the absence
of overfilling is spherical. To achieve this, the sample is
trimmed at a slightly higher height before the upper cone
geometry is brought to the desired measuring height Htrun

so that the sample at the edge of the CP geometry has the
required spherical shape. The trimming height Htrim in the
cone-plate geometry can be obtained by determining the
volume needed to provide a spherical sample edge, resulting

in:

Htrim = R(θ − sin θ) + Htrun (5)

For larger degrees of overfilling, the sample will eventually
not remain pinned to the lower edge of the geometry,
but will also wet the outer rim and will pin to the upper
edge of the rim. The occurrence of such a wetting was
monitored, and in that case, a homogeneous wetting of
the rim was assured. The occurrence of rim wetting was
in particular taken into account for comparison with the
numerical simulations.

Numerical simulations

Numerical simulations of the flow in parallel plate and
cone-plate rotational rheometry setups were performed with
the finite element package COMSOL Multiphysics. The
simulation domain is shown in Fig. 2a. Due to the symmetry
around the central axis, simulations in a 2D axisymmetric
domain are sufficient to describe the full 3D flow. The
boundary conditions consist of axial symmetry on the left
boundary, a stationary wall with no slip at the bottom, a
top wall with only a non-zero velocity component in the φ-
direction (uφ(r) = �r , with � the rotation speed and r

the radial distance from the center) and zero viscous stress
on the right boundary that is in contact with air. The values
of the angular velocity are chosen to provide shear rates
that correspond to the experimental values. A zero pressure
constraint is applied at the contact point between the bottom
plate and the sample edge. The diameter of the top plate or

Fig. 2 a Schematic
representation of simulation
boundary conditions. b Four
different configurations of the
sample edge at the plate rim (not
to scale). c Velocity distribution
in the sheared sample with the
two torque contributions
indicated, where M1 is due to
the sample underneath the upper
plate and M2 is due to the
sample in contact with the outer
rim of the upper plate
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cone and the gap height are chosen equal to the experimental
values. To study the effect of the shape of the sample edge
on the outcome of rheological measurements, different edge
shapes were imposed in the simulations, as illustrated in
Fig. 2b. Two types of edge shapes are considered, each
with and without including contact between the sample
and the rim of the upper geometry. The first type is a
straight boundary, starting from the edge of the upper plate
and extending a certain distance along the lower plate,
depending on the amount of overfilling. The second type
of edge is a curved shape defined by a quadratic Bézier
curve through the edge point of the upper plate (point
1), the sample contact point on the lower plate (point 3)
and an intermediate point (point 2) for which the r and z

coordinates obey the following relations:

r2 = r1 + c(r3 − r1) (6)

z2 = dz1 (7)

whereby c and d determine the edge shape. The radial
distance r3 along the lower plate that is covered with
sample is varied to obtain different amounts of overfilling.
For Newtonian fluids and under stationary conditions,
the following momentum and mass balance equations are
solved in the fluid domain, with the boundary conditions as
shown in Fig. 2a:

ρ [(u · ∇)u] = ∇ ·
[
−pI + η

(
∇u + (∇u)T

)]
+ F (8)

∇ · u = 0 (9)

in which η is the viscosity, p the pressure, u the velocity,
I the identity tensor and F the external body force per
unit volume. The viscosity is chosen equal to that of
the polydimethylsiloxanes used in the experiments. The
external body force consists of a gravitational force in
the negative z-direction. The flow is assumed to be
incompressible. The equations are discretized by means
of a finite element method in the package COMSOL
Multiphysics. A built-in predefined mesh type with
triangular mesh elements calibrated for fluid dynamics is
used, combined with 2 layers of quadrilateral boundary
elements along the solid boundaries. It was verified that
further refinement of the mesh did not significantly affect
the obtained results. Piecewise linear functions are used
to represent the pressure and the velocity is described
by means of piecewise quadratic functions. The direct
linear PARDISO solver is used, and in each simulation
run, typically around 20,000 degrees of freedom are
solved for in the PP setup and around 60,000 in the CP
setup. Since the Reynolds number remains well below 1,
numerical stabilization techniques were not necessary in the
simulations.

From the simulated velocity fields, the torque M on the
upper plate can be obtained as:

M=
∫ R

0
2πη0%γ̇φz(r,H)r2dr+

∫ H+Hr

H

2πη0%γ̇φr (R, h)r2dh

(10)

in which R is the radius of the upper plate, H is the gap
height, Hr is the rim thickness of the upper plate, γ̇φz(r, H)

and γ̇φr (R, h) are the shear rates at the lower boundary of
the upper geometry and at the geometry rim respectively,
with the subscripts φz and φr indicating the components
of the rate of deformation tensor that correspond to the
derivative of the φ direction velocity in either the z or
the r direction (direction perpendicular to the respective
wall), and η0% is the sample viscosity. The first term on
the right-hand side of Eq. 10 is the contribution from the
lower surface of the upper plate (M1 in Fig. 2c) whereas
the second term is the contribution of the side rim of the
upper plate (M2 in Fig. 2c). The measured viscosity is then
obtained from the standard relation between shear stress σ

and torque M that is valid for a precisely filled rotational
geometry (Macosko 1994):

M = σπR3

a
(11)

where σ is the shear stress of the fluid at the rim and a = 2
for PP geometries and a = 3/2 for CP geometries (Macosko
1994). It was verified that this protocol leads to simulated
viscosity values in the absence of overfilling that agree with
the inserted sample viscosities. Moreover, since the main
component of the rate of deformation tensor in the fluid
inside the gap is the φz component, whereas in the region
against the edge of the upper geometry the φr component
dominates, the shear rates in Eq. 10 can be represented by
the magnitude of the rate of deformation tensor.

Experimental and numerical results

The error on viscosity measurements in rotational rheom-
etry due to overfilling of Newtonian liquids will be pre-
sented here. The experimental results for overfilling in
various plate-plate and cone-plate setups will be presented
in the “Experimental observations of viscosity error due to
overfilling” section. Subsequently, the origins of the over-
filling effects will be studied in more detail by means of
numerical simulations in the “Origins of viscosity errors
due to overfilling” section. Based on the insights gained in
the “Origins of viscosity errors due to overfilling” section,
all parameters playing a role in viscosity errors due to over-
filling are captured in a single scaling relation in the “Master
curves for viscosity error” section.
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Fig. 3 Images of the edge of the
overfilled sample for silicone oil
with a viscosity of 12.4 Pa s in a
plate-plate setup with plate
diameter D = 25 mm and gap
height H = 0.5 mm. a �OF =
0.05. b �OF = 0.10. c �OF =
0.20. d �OF = 0.40. e �OF =
0.70

Experimental observations of viscosity error due
to overfilling

In this section, the errors on the measured viscosity in
rotational rheometers are studied for various amounts of
overfilling. Figure 3 provides representative images of the
sample edge in a plate-plate setup with increasing amounts
of overfilling. The excess sample is not only present around
the sample within the actual gap, but also wets the side walls
of the upper geometry. It was observed that, for the PDMS
samples, starting from an amount of overfilling�OF = 0.20,
the complete side rim of the upper geometry is wetted.
This has been the case in all experiments performed in
this work, a pinning of the sample to only the lower edge
of the upper geometry was not possible for any degree
of overfilling above 0.2. For all samples, sufficient time
was allowed for the sample edge to reach its equilibrium
shape, which is determined by the pinning of the sample as
well as its contact angle with the geometry and its surface
tension. Due to the dominant contribution of viscous forces
as compared with surface tension effects in the azimuthal
direction, small asymmetries in the sample edge shape in
this direction disappear due to the presence of the shear
flow. It was verified that, once a symmetric surface shape
was attained, the shear flow did no longer affect the shape
of the sample edge, at least within the range of shear rates
studied. This is expected to remain the case as long as inertia
and elastic stresses are absent, since the viscous shear stress
has no component in the direction of the edge curvature
between top and bottom plate (Shipman et al. 1991).

Experimental viscosity errors obtained in plate-plate
setups with a plate diameter of 25 mm are presented in
Fig. 4. In all cases, the viscosity error is positive, indicating
that the presence of extra, overfilled material around the
geometry causes an additional torque exhibited on the
upper geometry. When the measurements are performed at

a constant final gap height, the viscosity error gradually
increases and eventually plateaus. The data in Fig. 4 clearly
show that overfilling can have a substantial effect on the
measured viscosity values, with the plateau level of the
viscosity error reaching up to 30%. A comparison of the
different datasets in Fig. 4 allows to conclude that the
viscosity error substantially increases with both the gap
height H as well as the rim height Hr. This can be
rationalized by the fact that higher values of the gap height
as well as the rim height result in a larger ratio of surface
area in contact with overfilled sample as compared to the
bottom surface area of the upper geometry. Since the later
is the only surface on which the sample exhibits a torque

Fig. 4 Experimental data for the viscosity error due to overfilling
of silicone oil with a viscosity of 12.4 Pa s in plate-plate setups
with plate diameter D = 25 mm and various gap and rim heights
H and Hr . The error bars indicate the standard deviation over the
repeat measurements
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in absence of overfilling whereas the former will generate
extra torque contributions, increasing this ratio increases
the viscosity error. When experiments are performed by
gradually reducing the gap height, the viscosity error versus
the amount of overfilling in Fig. 4 shows a small overshoot
with increasing amount of overfilling. This can be attributed
to the presence of two competing effects. While the amount
of overfilling is increasing, the gap is simultaneously
decreasing. For clarity, the gap height used in the variable
gap experiments is shown on the top axis in Fig. 4. It
can be seen that for a gap height of 0.5 mm, exactly the
same viscosity error is obtained whether this gap height is
obtained via a direct reduction of the gap height from 1 to
0.5 mm or via the variable gap experiments. This is caused
by the fact that in both cases the same shape of the overfilled
sample was obtained.

Figure 5 shows the effect of plate diameter, whereby a
larger plate diameter (50 mm versus 25 mm) results in a
significantly smaller effect of overfilling on the viscosity
measurements. Similar to the effects of gap height, this can
be attributed to the relative contributions of surface area
in contact with overfilled sample versus bottom surface
of the upper geometry. Figure 5 also shows the effects
of overfilling for cone-plate setups with a diameter of
25 mm. To allow a direct comparison with the results for
the plate-plate setups, the gap under the cone at the edge
of the geometry is indicated as gap height in the figure.
It can be seen that a cone-plate geometry with a similar
diameter and gap height exhibits a smaller viscosity error as
compared to the corresponding plate geometry. To estimate
the significance of the viscosity error due to overfilling, it

Fig. 5 Experimental data for the viscosity error due to overfilling of
silicone oil with viscosity 12.4 Pa s in plate-plate setups with plate
diameter D = 25 mm and D = 50 mm as well as cone-plate setups with
cone diameter D = 25 mm and various cone angles θ . The error bars
indicate the standard deviation over the repeat measurements

can be compared with the typical precision and accuracy of
a viscosity measurement, which is within ± 1.5 % for these
Newtonian oils and when using a well-calibrated rheometer.
The precision of the data is indicated by the error bars in
Figs. 4 and 5 that indicate the standard deviation obtained
from repeat measurements.

Origins of viscosity errors due to overfilling

Numerical simulations of the flow of Newtonian fluids in
rotational rheometry have been performed to study the local
effects of sample overfilling on the flow field. This in
turn allows to shed light on the implications of the flow
field alteration on the measured rheological parameters. The
actual sample shape of the overfilled sample will depend
on a balance between the surface forces and gravity (Bond
number). However, our aim is to unravel the origin of the
viscosity error due to overfilling and to provide insights
in the dependence of this viscosity error on the relevant
geometrical parameters. Therefore, we did not attempt to
numerically solve the free-surface problem. Hence, the
actual transient shaping process during which the sample
shape evolves under the driving forces of gravity and
surface forces resisted by the viscoelastic stresses inside the
sample is beyond the scope of the present work. Rather,
we fixed various steady state shapes of the overfilled
volume and imposed a zero stress boundary condition on
the sample edge to provide relevant insights. Figure 6 shows
a comparison between the viscosity error obtained from
numerical simulations and the experimentally determined
one in a plate-plate setup with plate diameter D = 25 mm.
The simulation data correspond to the different overfill
scenarios defined in Fig. 2b. When the excess amount of
sample wetting the upper plate rim is not taken into account,
the predicted viscosity error in Fig. 6 is much smaller than
in reality (5 % versus approximately 20 % error), thereby
indicating that the extra fluid wetting the upper geometry
rim has a large contribution to the viscosity error. The
upper four simulated curves all include the fluid against
the plate rim, but with a different shape corresponding to
different values of c and d in Eqs. 6 and 7. It can clearly
be seen that changing the shape of the sample edge results
in moderate effects on the viscosity error as compared to
the difference between the situations with and without rim.
The simulation results in Fig. 6a and the selection of edge
shapes at �OF = 0.50 in Fig. 6b clearly demonstrate that the
straight edge scenario, that carries more fluid close to the
rim for the same �OF as compared with the scenario with
the curved edge, leads to a slightly higher viscosity error in
Fig. 6a. This can be attributed to the fact that the extra fluid
on the bottom plate that extends far from the actual sample
does not contribute significantly to the measured torque.
From Fig. 6a, it can be concluded that when the sample
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Fig. 6 aComparison between experimental data and simulation results
of viscosity error for 12.4 Pa s silicone oil in a PP setup with D =
25 mm, H = 0.5 mm and Hr = 1.1 mm. The error bars indicate the

standard deviation on the data obtained from repeat measurements.
b Edge shapes and velocity distributions at �OF = 0.5

shape is taken into account, the numerical and experimental
results correspond very well.

Since Fig. 6 shows that the applied approach provides a
relatively good prediction of the measured viscosity error,
the numerical simulations are subsequently used to obtain
the flow field in the sample. First, it should be mentioned
that for all the cases investigated here, the only non-zero
component of the velocity field was that in the angular
direction. Hence, no secondary flows were present. The
origin of the increase of the measured torque values with
overfilling can then be explored from plots of the shear rate
throughout the gap. As long as Stokes flow is present in
the gap, the flow profiles in the gap are similar, irrespective
of the applied shear rate. Hence, only results for a shear
rate of 1.0 s−1 will be shown here. Figure 7 shows the
shear rate in the parallel plate setup for a gap of 1.0 mm.
The shear rates are multiplied with the square of the radius
to allow assessing the relevant torque contributions as the
area underneath the curves, according to Eq. 10. Figure 7a
provides the rescaled shear rates as a function of the radial

position r . For exact sample filling, the shear rate increases
linearly, i.e., from 0.0 s−1 at the center to 1.0 s−1 at the edge,
as expected for a parallel plate setup. When overfilling is
present, the shear rate in the fluid at radial distances close
to the plate radius increases rapidly to values larger than
1 s−1. This clearly shows that the presence of excess fluid
due to overfilling affects the flow profile inside the gap. The
increased shear rates at the measuring plate will increase
the local shear stress and hence have a significant effect
on the measured viscosity values, as can be seen in Figs. 4
and 5. In the range of studied amounts of overfilling, the
distance over which the flow profile is affected does not
depend on the amount of overfilling, but rather on the gap
between the plates. This is illustrated in Fig. 7a, where the
shear rate starts to deviate from the applied value of 1.0 s−1

at radial distances about 1 mm inwards from the plate edge,
which roughly corresponds to the gap between the plates
(H = 1.0 mm). This observation confirms the generally
accepted statement that edge effects in a finite geometry
extend over a distance that corresponds to the gap height
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Fig. 7 Simulation results of the shear rate between the plates for an
applied shear rate of 1.0 s−1, D = 25 mm, H = 1 mm and Hr = 1 mm,
straight sample edge. a Shear rate at the bottom surface of the top plate.

b Shear rate at a radial distance equal to the plate radius. Shear rates
are rescaled to reflect the torque contributions (Eq. 10). The shear rate
is taken as the magnitude of the rate of deformation tensor

(Tanner and Keentok 1983; Vrentas et al. 1991). Edge effects
on the measured viscosity values can thus be minimized by
using geometries with a large diameter to gap ratio. This is
confirmed in Figs. 4 and 5, from which it clearly follows
that the viscosity error is smaller for the plate with a larger
diameter or when the gap height is smaller. A more detailed
analysis of the effect of the diameter to gap ratio will be
presented in the “Master curves for viscosity error” section.

Figure 7a also shows that, besides increasing with the
amount of overfilling, the shear rate also increases more
substantially when there is no rim wetting of the fluid.
Hence, the corresponding torque contribution from the fluid
underneath the upper plate is higher in absence of rim
wetting. However, when the sample wets the rim, this also
provides an extra torque contribution. This is shown in
Fig. 7b, where the rescaled shear rates are provided as a
function of the height at a radial distance that equals the
plate radius. For an exact filling, the shear rate is equal to
the applied shear rate of 1.0 s−1 across the complete gap
height. If the simulations are run with overfilling, the shear
rate across the gap at a radial distance that equals to the plate
radius is not constant. It is lower than the applied value close
to the bottom plate where the fluid extends further out of
the gap and higher at the top plate where there is less excess
fluid around the gap. The increase of the shear rate across
the gap is slightly higher when the sample does not wet the
plate rim. When the sample wets the rim, the stress along
the plate rim is not zero and an extra torque contribution
is generated by the presence of sheared sample along the
rim. As can be seen from Fig. 7b, this torque contribution
is significant and substantially increases in value and in the
extent of the rim region over which it acts when the amount
of overfilling is increased.

As mentioned before, the sample edge shape only
depends on the surface forces and gravity and is independent

of the viscous stresses in the material. Hence, the sample
shape is expected to be independent of the sample viscosity.
Moreover, in case of Stokes flow, the flow field in the
sample also remains the same, irrespective of the sample
viscosity. Hence, numerical simulations performed with
different viscosity values, but with a fixed edge shape,
revealed no effect of the sample viscosity on the viscosity
error. Moreover, a selection of experiments performed with
silicone oils of 0.99 Pa s and 101 Pa s also revealed
no effect of the sample viscosity on the viscosity error.
However, since the shape evolution towards steady state is
much slower when the viscosity is higher, a longer waiting
time should be implemented before the experimental
measurement in case of high viscous liquids in order to
obtain the steady state viscosity error.

Master curves for viscosity error

The viscosity error is caused by an extra torque Mex

originating from the excess sample. To provide a uniform
description of the overfilling error that is independent of
the geometrical parameters, we derive a scaling relation.
At first, we neglect the effect of rim wetting for our
considerations. Thereto, we approximate the extra torque
as proportional to an average additional stress σout acting
tangentially on the cylindrical area 2πRH of the sample
at a distance R from the geometry center. This stress is
assumed to be caused by the drag of the extra sample
surrounding the cylindrical sample surface. It should be
recognized that this stress and thus the extra torque is not
so much determined by the overfilled volume but rather
by the cross-sectional shape of the overfilled volume that
surrounds the geometry. To capture the effect of overfilling
shape rather than volume, the amount of overfilling, �OF,
is rescaled to an effective �OFeff that reflects the shape and
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can thus be related to the relative extra torque Mex/M . For
a certain overfilling volume, the overfilled shape depends
on the geometry dimensions namely the gap height at the
rim H and the plate radius R. Keeping the same overfill
shape, and hence the same �OFeff, corresponds then to
maintaining a constant ratio of radial to vertical dimension
of the cross section, which can be written as Aex/H

2,
with Aex being the cross-sectional area of the overfilled
volume. Since the cross-sectional area of the overfilled
volume Aex � Vex/(2πR), the ratio of the radial to vertical
dimension of the overfilled volume can be expressed in
terms of the excess volume, Aex/H

2 = Vex/(2πRH 2).
Inserting the expression from the “Definition of viscosity
error and amount of overfilling” section for Vgeometry for a
PP or CP setup results in:

�OFeff = R

bH

Vex

Vgeometry
= R

bH
�OF (12)

in which b = 2 for a PP setup and b = 3 for a CP setup.
Further, the viscosity error can be calculated from the

ratio of the extra torque Mex due to the overfilling to the
sample torque at correct sample filling M of Eq. 11:

�η ∼ Mex

M
= 2πR2H

a−1πR3

σout

σ
= 2aH

R

σout

σ
(13)

in which σ is the sample shear stress for correct sample
filling and σout is the additional average shear stress
resulting from the drag of the overfilled sample volume that
should be a function of the overfilled shape and therefore
a function of �OF. Both stresses σ and σout scale linearly
with the sample viscosity η0% and the shear rate at radius
R, γ̇ = �R/H . However, σout will also exhibit a (non-
linear) dependency on the shape of the overfilled volume.
Simple geometrical arguments show that for the same shape
(expressed by a constant ratio Aex/H

2 as shown for the
derivation of Eq. 12) a single relative stress σout/σ will be
observed, independent of the absolute magnitude of Aex or
H . This means that we can describe the shape dependency
of the relative stress σout/σ with a single function fshape that

depends solely on the effective overfilling of Eq. 12. Hence,
the viscosity error can be expressed as:

�η = 2aH

R
fshape

(
R

bH
�OF

)
(14)

Based on this derivation, plotting a rescaled viscosity error
�ηR
2aH

as a function of the effective overfilling R
bH

�OF
should collapse all curves of viscosity error onto a single
master curve. First, this scaling is performed for numerical
simulation results in which PP and CP setups are used
with various diameters, gap heights and cone angles. The
numerical results , using the straight edge configuration of
Fig. 2b, are shown in Fig. 8a. Similar to the experimental
data, the overfilling error is shown to increase with
increasing gap height at the edge and with decreasing plate
diameter. After rescaling with the scaling factors proposed
in Eq. 14, Fig. 8b demonstrates that the curves of the
different overfilling scenario’s in PP and CP setups without
rim wetting collapse relatively well. The master curve in
Fig. 8b follows an exponential rise profile given by:

fshape = 0.4(1 − exp(−2.5
R

bH
�OF)) (15)

This also allows to approximate a maximum viscosity
error that can be expected for a certain geometry. From
the observed plateau of �ηR

2aH
at higher overfilling one can

read off the maximum fshape that correlates the maximum
viscosity error �ηmax and the geometry parameters 2aH/R

so that:

�ηmax = fshape,max
2aH

R
(16)

From Fig. 8 and Eq. 15, it is clear that fshape,max ≈ 0.4
so that �ηmax = 0.8aH/R for cases without rim wetting.
This scaling relation clearly demonstrates the previously
mentioned increase of the viscosity error with gap height
and decrease with geometry radius. Moreover, it also clearly
shows that when the radius is the same, the viscosity error
in a plate-plate setup will in general be higher than that in
a cone-plate setup due to two effects. First, the prefactor a

is higher for a PP than for a CP setup, which reflects that

Fig. 8 a Simulation results of
the viscosity error versus the
amount of overfilling in various
plate-plate and cone-plate setups
without rim wetting and with a
straight sample edge. b Rescaled
simulation results
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for the same geometry radius R a PP geometry creates less
sample torque than a CP geometry at the same height H , so
that the additional torque from overfilling weighs stronger.
Second, the gap heightH at the edge is in general also larger
for a PP setup than for a CP setup. It can be concluded that
the presented scaling approach captures the effects of the
(known) dimensions of the geometry and allows to compare
the effects of effective overfillings (and the shape of the
extra volume) for geometries of different types, radii, and
gap heights. It should be noted that, as can be expected
from Fig. 6, edge shapes with a higher curvature result in
a slightly lower value of fshape,max. However, superposition
of the data for different geometries remains valid as long as
the edge shape, as presented in Eqs. 6 and 7, is kept constant
(data not shown).

During the experiments, it was observed that, when
loading a sample to an overfilled condition, the sample
was forced to break the pinning to the lower edge of the
upper geometry and to wet the geometry’s outer rim. This
rim wetting upon overfilling is generally taking place when
applying the trimming procedure, during which already the
scraping of the edge leads to a partial wetting of the rim.
During the approach of the final measuring gap, the sample
is then fully wetting the rim and pinning to the upper edge,
as shown in Fig. 3. In the case of a wetting of the outer rim
and pinning to the upper edge, Eq. 14 needs to be adjusted
accordingly. The vertical dimension of the cross-sectional
area Aex of the overfilled volume Vex is in the case of rim
wetting the sum of the sample height H and the height
or “thickness” of the rim Hr. Hence, the definition of the
effective overfilling that enters the shape function fshape
should be adapted. Since the conservation of the overfilled
shape requires now Aex/(H + Hr)

2 to be constant, Eq. 14
will contain a correction factorH/(H +Hr)

2, so that it takes
on the form:

�η = 2aH

R
fshape

(
RH

b(H + Hr)2
�OF

)
(17)

Moreover, the tangential stress exerting a drag force on the
sample due to the overfilled sample now acts over a height

H +Hr rather than H . However, also the average additional
stress τout scales now with a shear rate that depends on
H + Hr , so that the height in the prefactor of the right-hand
side of Eq. 14 does not change. Equation 17 thus presents
a scaling relation that should take into account rim wetting.
This scaling was applied to results of numerical simulations
for plate-plate setups with various gap and rim heights, as
shown in Fig. 9. It can be seen that this scaling indeed
provides a rather good collapse of data obtained at various
total heights H + Hr . However, a pronounced effect of the
ratio of gap height to total height x = H/(H +Hr) remains.
This can be rationalized by the fact that the velocity field
in the overfilled volume will depend on how much fluid is
in contact with the rim height Hr, and how much with the
sample over the height H . Without rescaling of the viscosity
error according to Eq. 17, the viscosity error shows a non-
monotonous dependence on the ratio x = H/(H + Hr).
However, after rescaling with H , as shown in Fig. 9a, the
viscosity error shows a monotonous dependence on x. As a
matter of fact, it turns out that weighing the shape function
fshape with a correction factor x + (1−x)k that incorporates
the ratio x = H/(H + Hr) and a weighing coefficient k

allows to take into account the relative contributions of both
parts of the overfilled volume. Hence, Eq. 17 is corrected to
read as:

�η = 2aH

R
[x + (1− x)k]fshape

(
RH

b(H + Hr)2
�OF

)
(18)

Determining the unknown k as a fit parameter from a set
of simulation data with H + Hr = 1 mm leads to k = 4.3.
Subsequently, simulation data with a straight edge shape
and various gap heights can be overlapped rather well on
a master curve by plotting �ηR

2aH [x+(1−x)k] as a function of
RH

b(H+Hr)2
�OF in Fig. 9b. It should be noted that this scaling

only holds for x ≥ 0.3 whereas for lower values of x, the
linear scaling of the overfilling error with x breaks down.
However, for typical experimental geometrical parameters

Fig. 9 Simulation results of
the viscosity error versus the
amount of overfilling in a
plate-plate setup with D = 25
mm with rim wetting and with
a straight sample edge. a
Rescaled according to Eq. 17.
b Rescaled according to Eq. 18
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Fig. 10 Experimental results of the viscosity error versus the
amount of overfilling in various plate-plate and cone-plate setups
after rescaling according to Eq. 18

H and Hr as given in Figs. 4 and 5, the requirement of
x ≥ 0.3 is maintained and the master curve of Fig. 9 holds.

Based on the scaling arguments presented here, a
rescaling of the experimental data in Figs. 4 and 5 can
be performed. The result is shown in Fig. 10. From this
figure, it can be concluded that the proposed scaling
approach allows to capture the main trends of the effects
of the geometrical parameters on the overfilling error in
rotational rheometry. However, since the model is based on
a representation of the overfill shape by its ratio of vertical
to horizontal dimension, which does not uniquely capture
shape effects due to the possibility of different curvatures
of the edge shape as a function of the amount of overfilling,
the description is not exact. To capture these secondary
effects, it is expected that more details of the sample shape
should be taken into account, which could possibly be done
by applying an additional scaling with the Bond number
(Bo = ρgL2

c/α, with ρ the fluid density, g the gravitational
constant, Lc the characteristic length scale and α the fluid
surface tension). When taking the sum of the gap height
H and rim height Hr as the relevant length scale in the
Bond number, it varies between 1.1 and 4.1 for the different
cases presented in Fig. 10. Hence, differences in sample
edge shape are expected between the different samples due
to different amounts of sagging under the effect of gravity.
This more detailed analysis of the edge shape is, however,
beyond the scope of the present work, in which we focus
on the primary effects of the geometrical parameters on
the viscosity error due to overfilling. It should be noted
that from Fig. 6 it becomes clear that differences in the
sample edge shape will only provide minor corrections to
the proposed scaling model, at least for Newtonian samples.

Conclusions

The error on the measured viscosity due to overfilling of
Newtonian liquids in rotational rheometry has systemat-
ically been investigated. The error in viscosity increases
steeply for small amounts of overfilling before reaching a
plateau value at high amounts of overfilling. Overfilling
simulations revealed that there is a large torque contribu-
tion from the overfilled sample that is pinned to the rim
of the upper geometry. The plateau value of the measure-
ment error is determined by the ratio between the gap height
and the plate or cone radius. Moreover, with the same gap
height at the edge, the viscosity error in a cone-plate setup
is only 75% of that obtained with a parallel plate setup. By
rescaling the amount of overfilling to a fixed shape of the
overfilled volume and deriving the extra torque due to over-
filling from scaling arguments, a universal relation for the
evolution of the viscosity error with the amount of overfill-
ing was derived. This relation captures the main effects of
the geometrical parameters on the viscosity error and allows
to predict viscosity errors a priori for a certain geometrical
setup. Thereby, our work will allow to correct for viscosity
errors due to overfilling, allowing to introduce overfilling
as a solution for problems such as edge fracture or solvent
evaporation without loss of measurement accuracy.

Recommendations

In general, several recommendations can be made to avoid
or minimize the errors due to sample overfilling:

1. For parallel plate setups, a measuring geometry with
a large diameter should be used at a small measuring
gap. For cone-plate setups, a small measuring gap at
the geometry edge is realized by using a small cone
angle. At small gaps, parallelism will become important
and therefore care must be taken to align the geometry
properly. Moreover, during sample loading in parallel
plate geometries, air bubbles might be formed (Reddy
2019). To avoid formation of air bubbles, the center of
the upper plate should be wetted with a small amount of
sample before sample loading so as to induce a forced
wetting from the center.

2. During sample loading, wetting of the outer rim of
the measuring plate should be avoided. This alone will
reduce the measurement error to a large extent. If this
cannot be avoided, then measuring geometries with a
thin edge should be used.

3. In cone-plate setups, the sample should be scraped at a
correct trimming height, as defined in Eq. 5, to result
in a spherical sample edge shape, when lowered to
the correct measurement height. With low viscous and
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low surface tension fluids, care should be taken not to
remove too much sample during scraping as this will
cause underfilling. Alternatively, the required sample
volume can be calculated and directly added with an
accurate volumetric pipette, thereby avoiding the need
for sample trimming.

4. When using a bottom plate with dimensions equal to
that of the top plate, lower amounts of overfilling can
be reached, as the sample will flow out at high amounts
of overfilling. Therefore, the effects of overfilling can
be reduced with such a setup. It is expected that due to
the different shapes of the sample surface, the overall
scaling presented in Eq. 18 will remain valid, but the
exact value of the viscosity error, determined by the
fitting parameter k, will be different.

5. The analysis performed here is applicable for sample
overfilling. However, it is known that sample under-
filling leads to a viscosity value that is lower than the
true value (Davies 2015; Hellström et al. 2015). In the
case of symmetric underfilling, the correct viscosity
value can be obtained by taking into account that the
generated torque only originates from the part of the
geometry that is wetted by the sample. By taking the
wetted radius Rw as the radius of the sample edge and
defining the amount of underfilling �UF as in Eq. 2,
the viscosity error due to underfilling in a plate-plate
geometry as derived by Hellström et al. (2015) can be
rewritten as:

�η = (
Rw

R
)4 − 1 = �UF(1 + (

Rw

R
)2) (19)

This relation was experimentally verified by Hellström
et al. (2015) for small amounts of underfilling. From
this analysis, it can be seen that, contrary to overfilling
effects, underfilling effects are not dependent on the
ratio of the gap height to geometry radius. Hence, for
certain geometries, underfilling effects can be more
severe than overfilling effects. However, since the
viscosity errors due to underfilling are not expected
to level off at a certain amount of underfilling, they
will always become larger than errors due to overfilling
when deviations from the correct amount of filling are
substantial.

6. In principle, any extra fluid in contact with the
geometry or the sample will result in an additional
torque contribution. For instance, using a low viscous
fluid around the sample to avoid evaporation will also
cause overfilling effects, be it much less severe than
overfilling with the actual sample due to the lower
viscosity and thus lower extra torque contribution.
Moreover, the use of an evaporation blocker with a
vapor lock connected to the geometry will increase
the measured torque. However, when keeping in mind

that the solvent in the solvent reservoir in general has
a much lower viscosity as compared with the sample
and that both the immersed surface area and the radial
distance from the centerline are much smaller for the
vapor lock as compared with the measuring geometry,
this contribution can most often be neglected. If not, this
torque contribution can be measured a priori and can
subsequently be subtracted from the measured torque of
the sample.

Outlook

In the present work, the effects of overfilling on viscosity
measurements of Newtonian fluids are studied. In that case,
the relative error in viscosity is independent of the sample
viscosity and thus plays an equal role for low and high
viscous materials. However, for fluids that exhibit shear
thinning/thickening or viscoelasticity, additional effects
may come into play. Qualitatively, it is expected that
the increase of the shear rate at the geometry edge due
to overfilling will reduce the viscosity error due to the
overfilling for shear thinning fluids. However, preliminary
experiments on viscoelastic fluids also revealed that
viscoelasticity affects the sample edge shape, which also
contributes to the overfilling effects. Moreover, Shipman
et al. (1991) have shown that the surface shape contributes
more strongly to normal force measurements as compared
with shear stress measurements in rotational rheometry.
Unravelling these additional effects is beyond the scope of
the present work, but it is clear that, in addition to the effects
for Newtonian fluids, the viscoelastic sample properties
will further affect the measured viscosity error due to
overfilling.

Traditionally, rheological measurements required the
generation of rheometric flows, i.e., pure shear or exten-
sional flows with a homogeneous shear or extension rate
throughout the sample. However, ongoing developments
concerning localized characterizations of deformation fields
as well as combined experimental-numerical approaches
expand the possibilities for performing material charac-
terization in non-model flow conditions. This will allow
in situ material characterization or characterization of
small quantities of materials that do not allow loading of
standard geometry setups. Our work is a simple exam-
ple of how scaling and combination of experiments with
numerical simulations can allow to extract accurate mea-
surement data even in absence of a well-defined sample
geometry.
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