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Abstract Interfaces of fluid-fluid systems play an impor-
tant role in the stability of foams and emulsions in chem-
istry, biology, consumer products, and foods. For most
applications, surface active agents are added and adsorbed
onto the interface to enhance stability, making the rheolog-
ical behavior of the interface more complex. To understand
the phenomena of these complex interfaces, various tech-
niques are used to determine the interfacial properties. One
of the most popular methods is the pendant drop technique.
From the equilibrium state of the pendant drop, the inter-
facial tension of a system can be obtained quite easily in
the absence of surface active agents. But when complex
viscoelastic interfacial characteristics are considered, in par-
ticular in oscillatory measurements, interfacial constitutive
relations need to be defined. Interfaces containing proteins,
particles or Langmuir monolayers formed by insoluble low
weight surfactants appear to act like viscoelastic solid mem-
branes. In this work, a two-dimensional axisymmetric finite
element model is designed to study the behavior of com-
plex interfaces in pendant drop experiments. The bulk fluid
consists of a Newtonian fluid, while the interface behaves
according to the Kelvin-Voigt model as elastic interfacial
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forces dominate. To be able to capture large deformations,
the Kelvin-Voigt constitutive model is made quasi-linear
by using a combination of two non-linear strain tensors. A
parameter study is performed to investigate the influence of
the five model parameters of the quasi-linear Kelvin-Voigt
equation. To demonstrate the applicability of the numeri-
cal model, a small amplitude oscillatory measurement is
simulated.

Keywords Interface - Numerical - Pendant drop

Introduction

Complex fluid-fluid interfaces are found everywhere among
us even though we are not always aware of them. One
of the most important characteristics of an interface is the
interfacial tension. The interfacial tension is defined as the
interfacial free energy per unit area, which is the minimum
amount of work required to create or expand the interface
by a unit area. The interfacial tension, which can be seen as
a material parameter of the fluid-fluid system, is dependent
on temperature, but also on miscibility of the components,
added particles, or surfactants. The recent review by Fuller
and Vermant (2011) summarizes different examples and
applications in daily life and industry and outlines the rel-
evance of understanding the dynamics and physics of these
complex interfacial transport phenomena. For example,
interfacial stabilizers, surfactant molecules, proteins, or par-
ticles preferentially residing within the interfacial region are
often used to lower the interfacial energy yielding, for exam-
ple, stability to foams and emulsions, with applications for
consumer care products, foods, paints, and other chemical
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products. Furthermore, these systems are found in living
organisms as well.

Surface active agents, or “surfactants”, are molecules
that can adsorb onto the interface of a fluid-fluid system
and alter the interfacial free energy. Rosen (2004) writes
that they have a characteristic amphipathic structure, i.e., a
molecular structure containing both a lyophilic group and a
lyophobic group. The lyophilic group has strong attraction
for the solvent, while the lyophobic group has little attrac-
tion for the solvent. At the interface, the surfactants orientate
themselves such that the lyophobic groups have minimal
contact with the solvent. Usually, this reduces the amount
of work required to create or expand the interface and thus
decreases the interfacial tension.

Besides classification of surface active agents based on
the properties of the hydrophilic group, they can be charac-
terized by the difference in measurable dynamic properties.
Roughly, three groups can be distinguished: low molecular
weight surfactants, proteins, and particles. The dilatational
response dominates the weaker shear phenomena for all
three groups. Bos and Van Vliet (2001) concluded that in
dilatational rheology, the elasticity is lower if the molecules
are present in the solvent as well, compared with insolu-
ble surfactants, because the exchange of molecules between
the surface layer and the solvent causes the surfactant layer
to behave more viscous. Kotula and Anna (2015) found
that the behavior of the interface in the presence of soluble
surfactants depends on the surfactant isotherm parameters,
transport parameters, and the geometry of the interface. In
general, it holds that for more condensed, interacting, or
solid-like interfaces, a more explicit viscoelastic response in
shear is expected, according to Erni et al. (2012). In particu-
lar, the research within the field of interfacial rheology aims
at quantifying the mechanical properties of complex fluid-
fluid interfaces. More specifically, the relation between
deformation and induced stresses is examined.

A variety of experimental techniques are developed to
measure several interfacial properties of systems with fluid-
fluid interfaces. Most procedures to measure the interfa-
cial tension are based on a thermodynamical equilibrium
state. An overview of these methods is given by Drelich
et al. (2002). To measure other rheological characteristics
of interfacial layers, the techniques are of a more dynamic
nature. Derkach et al. (2009) wrote a review on methods of
measuring rheological properties of interfacial layers. One
technique used for both static and dynamic experiments is
the pendant drop method and is widely used to measure the
interfacial properties of a system. In particular, the radius of
curvature at the apex is the key property of pendant drops
together with the droplet volume that is then used to obtain
the surface tension (Yeow et al. 2008). During static exper-
iments, the equilibrium state between the surface tension
forces and gravitational forces is considered. The dynamic
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interface characteristics are tested under small amplitude
oscillatory conditions. By introducing surface active agents
to the system, the interface properties alter, i.e., the behavior
of the interface may become more viscoelastic.

To analyze most interfacial rheological experiments, two-
dimensional surface constitutive models are used, which
are generalized bulk constitutive models. For purely vis-
cous interfaces, the Boussinesq-Scriven model is the two-
dimensional analogue of the Newtonian fluid, described by
Scriven (1960). On the other hand, for purely elastic inter-
faces, a generalization of Hooke’s law is often used, as done
by Barthes-Biesel and Rallison (1981). Since interfaces with
surface active agents behave viscoelastic, constitutive rela-
tions like the generalized Maxwell model for interfaces, the
Kelvin-Voigt model revised for interfaces, and more elab-
orate spring-dashpot models can be used to describe these
characteristics even more effectively. An extensive review
is written by Sagis (2011) on interfacial rheological exper-
iments and the constitutive models used to analyze the
behavior of the interfaces.

To computationally describe interfaces and transport on
interfaces, different types of models can be used. In par-
ticular, the case of highly viscous drops with Newtonian
components is studied extensively using the boundary inte-
gral model. Research groups of Pozrikis, Zinchenko, and
Loewenberg have pioneered the field and demonstrated for
a wide variety of flow conditions the complexity introduced
by an interface even with a constant interfacial tension
(Pozrikidis 1992; Zinchenko and Davis 2006; Zinchenko
et al. 1997; Loewenberg and Hinch 1997). Stebe showed
by boundary integral modeling that the addition of a surfac-
tant molecule has a large effect on the modes of breakup
in extensional flow (Eggleton et al. 2001). Bazhlekov et al.
(2006) studied the effect of surfactants on true three-
dimensional drop deformation in shear flow, and the authors
introduced a morphology diagram that links breakup modes
to surfactant coverage. Although boundary integral mod-
eling is very rich and powerful, it is limited to linear
systems. Several groups have applied interface capturing
techniques that in principle are more general, but they do
not provide an explicit description of the interface. Exam-
ples are the front capturing work of James and Lowengrub
(2004) who developed a surfactant-conserving volume-of-
fluid method for interfacial flows with insoluble surfactant.
Other approaches are by Voigt and co-workers, and these
authors developed a Navier-Stokes-Cahn-Hilliard model for
the macroscopic two-phase flow system that is combined
with a surface phase-field-crystal model for the microscopic
colloidal system along the interface (Aland et al. 2011).

In this work, an axisymmetric finite element interface
tracking model is designed to investigate the behavior of
complex viscoelastic interfaces for pendant drop experi-
ments.
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Fig. 1 Geometry Q;—¢ of the

pendant drop, where the outer
radius R, = 0.35 mm, the inner
radius R; = 0.225 mm, and the
length of the capillary

L =0.8mm

Problem description and governing equations

The geometry 2,—¢ of the initial state of the pendant drop
is shown in Fig. 1. It is the axisymmetric equivalent of the
geometry used in the work of Dieter-Kissling et al. (2014).
The axial coordinate is given by z and the radial coordi-
nate by r, using the convention (z, r). The capillary of the
simulation setup is represented by a cylindrical tube with
an outer radius of R, = 0.35mm and an inner radius of
R;i = 0.225mm. The length of the capillary is not given
in the study of Dieter-Kissling et al. (2014) and is set to
L = 0.8 mm. The bulk material consists of water with den-
sity p = 1000kg/m>, dynamic viscosity n = 0.001 Pas,
and surface tension coefficient y = 0.072 N/m. The contact
line of the interface I" is computationally fixed at the outer
edge of the capillary.

Balance equations and constitutive model

In this work, an isothermal flow of an incompressible fluid
is assumed and the system is described by the following set
of equations for the momentum balance and mass balance,
respectively,

D
p— V.o =f

D1 in Q (1
V-u=20

in Q, 2

where p is the density, u the velocity, and f an external
volume force acting on the fluid, which is assumed to be
a gravitational force f = pg applied in z-direction in this
work. The Cauchy stress tensor o is defined as

o :—pI+T, (3)

with pressure p and extra stress tensor . It is assumed that
the bulk fluid is Newtonian; therefore, the extra stress tensor
T is given by

T =2nD, (€]

where D = 1/2(Vu + (Vu)") is the symmetric part of
the velocity gradient tensor and 7 is the viscosity. These
equations hold in geometry €2, as shown in Fig. 1.

r z

symmetry

Boundary, symmetry, and interface conditions

At the inlet of the capillary T'j,, two types of boundary
conditions are applied: either a parabolic velocity profile is
applied instantaneously by prescribing a certain flow rate Q
or a certain pressure p is imposed

on [y 5)
on [,. (6)

U = Uprescribed
0 - R = Iprescribed = — Pprescribed/?

A no-slip boundary condition is prescribed at the capil-
lary wall T'yap

u=>0 on yai. (7)

To imply symmetry, the velocity in radial direction at the
symmetry axis ['symmetry 1S set to zero

ur =0 on Tsymmetry- )]

The boundary condition at the interface I" is a Neumann
boundary condition

o-n =V ¢ — pouht on I', ©)]

where Vj is the surface gradient operator, ¢ is the interfacial
stress tensor, n is the outwardly directed unit normal vec-
tor, and the outside pressure poy = 0. The surface gradient
operator is defined as Vg = I - V and Iy = I — nn is the
second order unit surface dyadic tensor.

Depending on the rheology of the interface, different
constitutive models for the interfacial stress tensor ¢ can be
used. In the case of linear behavior, a constant interfacial
stress can be assumed

s =yl;, (10)

where y is the static equilibrium value of the interfacial
tension. The surface tension y is kept constant over the
interface in time.

For complex interfaces with non-linear behavior, elastic
and viscous terms need to be included into the interfacial
stress tensor g, for example by using a generalized Maxwell
model for interfaces or a Kelvin-Voigt interface model.
Insoluble low weight surfactants forming Langmuir mono-
layers, proteins, and particles typically have the response of
a viscoelastic solid. The Kelvin-Voigt model is a suitable
model for these systems with dominating elasticity and is a
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sum of the Boussinesq-Scriven constitutive model for purely
viscous fluids (Scriven 1960) and the generalized Hooke’s
law for purely elastic solids (Barthes-Biesel and Rallison
1981). The model can be made quasi-linear by using a finite
strain tensor which can describe the stress response for arbi-
trary large deformations. Verwijlen et al. (2014) used the
Green-Lagrange finite strain tensor E; = 1/2(Cs — I)
for one formulation of the quasi-linear two-dimensional
Kelvin-Voigt model and the Hencky strain tensor Hy =
1/21n(Cs) for a second formulation. Herein, Cs = F qT - Fy
is the Cauchy-Green deformation tensor of the interface
with Fy = (VS,er)T is the surface deformation gradi-
ent tensor, expressing the deformation of a certain material
point xr on the interface with respect to the initial unde-
formed state, indicated by subscript 0. From application of
these two formulations of the model to both pure dilatation
and simple shear, the formulation using the Hencky strain
tensor appears to be more appropriate for dilatational defor-
mation, whereas the formulation using the Green-Lagrange
strain tensor is more suitable for shear deformation. In
both formulations, the shear and dilatational contributions
are separated. Combining the dilatational contribution using
the Hencky strain tensor with the shear contribution using
the Green-Lagrange strain tensor, the quasi-linear two-
dimensional Kelvin-Voigt viscoelastic constitutive equation
becomes

§ = I+ (Vs s+t [Vou + (Vo) = (V5 -w) L]

+KIn(J DI+ G 2C, —I.) (11)

Herein, « is the surface dilatational viscosity, u the sur-
face shear viscosity, K the surface dilatational elasticity, G
the surface shear elasticity, and J = det (C;). Furthermore,
Jz represents the change in interfacial area A/Ay.

Particle laden interfaces may exhibit bending moduli that
are not marginal, as shown by Yunker et al. (2012). These
bending stresses arise when the thickness of the interface
is nonzero. In this work, however, the influence of bending
stresses is assumed to be negligible compared to the sur-
face tension, dilatational, and shear stresses. Therefore, the
interfaces are modeled with a zero thickness.

If a complex interface is assumed, the quasi-linear
Kelvin-Voigt model of Eq. (11) is prescribed to the inter-
face. The value of the surface tension y may be different
from the value of pure water. All parameters of the vis-
coelastic interface are constants. Furthermore, other inter-
facial dynamics like Marangoni flows at the interface and
diffusion of material between the bulk and the interface are
neglected.

@ Springer

Evolution of the pendant drop in time

The motion of the interface I' is determined using a FEM-
based interface tracking method. A moving curvilinear
coordinate system describes the interface according to

xr =xr(, 1), (12)

where xr is the function that maps the curvilinear coor-
dinates ¢ = (£!, &%) onto the spatial coordinates xr of
the interface. The interface is tracked in a Lagrangian way.
Therefore, the velocity of the interface is defined as

dxr ( 1 3)
— =u.
dt
Herein, u is the material velocity at the interface.
Surface strain

To quantify the deformation of the interface, the strain is
calculated in tangential and circumferential direction, using
the stretch ratio of the interface. The stretch ratio in the
tangential direction is given by

A =/t (Fs-FY)-t. (14)

Herein, ¢ is the unit tangential vector.
The stretch ratio in circumferential direction is deter-
mined by

e = \/eee - (Fs - FY) - ego
r
= —, (15)
ro
where ey is the unit vector in circumferential direction, r is
the current radius, and ry is the initial radius of the interface,
respectively.
The stretch ratios are used to calculate the linear strain,
defined as

both in tangential and circumferential direction.

Numerical method
Weak form

As stated in the introduction, the finite element method is
applied to solve the governing equations with appropriate
boundary conditions as discussed in the previous section. In
order to derive the weak form, the momentum balance and
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mass balance are multiplied with the test functions v and ¢
in the appropriate function spaces
Du
v,o— —V.o | =(,
< oy ) .f)
(¢.V-u)y =0

on 2 (17)
on 2. (18)

Note that (-, -) defines the inner product on €2 in the usual
manner by

(a,c) :/ach, (a,c):/a-ch,
Q Q

A,C) = /A:CdV (19)
Q

for scalars a and ¢, vectors a and ¢, and tensors A and C. For
atensor A and vector a, the product rule holds

Vi-(A-a) =a-(Vs-A)+ (Vaa)T : A (20)

and the surface divergence theorem, as described by
Weatherburn (1955), is given by

/Vs-adSz/(Vs-n)n-adS—i-f b-ads, 21
r r ar

where b = ¢ x n is the binormal and dI" the boundary of the
interface. In our geometry, the boundary of the interface oT°
is the connection of interface I" to the capillary wall ['yqy.
Using these two theorems, the boundary condition on the
interface in the weak formulation can be written as

r r

—/(st)rzgdS+/Vs~(g-v) ds
r r

—/(st)ngdS+/(Vs~n)n~ (¢-v)dS
T T

+ b-(c-v)ds. (22)
ar
The interfacial stress tensor ¢ is always tangential to the
surface, as a result of which n - ¢ = 0 and the second term
of the right hand side is zero.
The complete weak form including the boundary terms
becomes: Find u# and p such that

v, p(&_u +u-Vu)
at

+ (Dy, 2nD)
—(V-v.p) =—((Vov)". g);
+ (b, - v)yr
+ (v, pg) on Q2 (23)
(g, V -u =0 onQ (24)

for all possible test functions v and ¢ and where D, =
1/2 (Vv + (VV)T), (-, )r is an inner product defined on
interface I' and (-, -)yr is an inner product defined on the
boundary of the interface dI". Due to the kinematic bound-
ary condition on dI" at the adhesion of interface I' to the

capillary wall, the test function v = 0, and due to the
lack of area at the tip of the drop on the other side of aT’,
(b,5-v)yr =0.

The solution of the instationary term of the momentum
balance for the first time step is found using a backwards
Euler integration scheme, which is of first order,
du un+1 —u"

= 25
dt At (25)

using the solutions of the velocity # at time #"*! and
1", respectively. The solution for all subsequent time steps
will be of second order, using the second order backwards
differencing method (BDF2)

du  Suth—2u" 4 Sy

= . 26
dt At (26)

Herein, the solutions of the velocity u at time g
and "~ are used. The convection term is solved iteratively.
For the first iteration step, the Picard fix point iteration
is used, and Newton’s method is used for the following
iteration steps.

Semi-implicit time integration of the surface tension

Assuming an equilibrium between the viscous and inter-
facial forces, a characteristic capillary time scale can be
defined as fcapillary = 1nR/y. Herein, 7 is the bulk viscos-
ity, R is a characteristic length scale, and y is the interfacial
tension. On element level, the capillary time scale of the
problem is fcapillary = NR/YNelem = 0107 7s), where
R = R, and nejem 18 the number of elements on the inter-
face. The explicit numerical scheme is stable for time steps
smaller than the capillary time scale. In order to be able
to use larger time steps, the problem is written to a semi-
implicit time integration scheme, as presented by Hysing
(2006). Taking the contribution of the constant interfacial
stress from Eq. (10) and using definitions from differential
geometry, this equation can be rewritten to

Vi =y Vi, @7

where xr is the interface position. By writing the new inter-
face position as a function of the old position, proposed in
the work of Binsch (2001), the time discretization can be
made semi-implicit

X = x4 Aru (28)

Herein, At is the time step and u"T! is the velocity
field at the new time. The interfacial stress tensor for the
contribution of the surface tension becomes

V¢ = Vs (yI) + yAtViu. (29)

Thus, the second term of the right hand side of Eq. (29)
is added to the left hand side of the system.

@ Springer
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Movement of the mesh
Interface mesh

The movement of the interface is Lagrange based
dxr
dr
where dxr/dt is the velocity of the interface and u is the

material velocity at the interface. The discretization is done
using a first order scheme

=u, (30)

1
dxr  xpth—xl
I = v =u. 31
Herein, x'liH and x’ll are the coordinates of the interface

at times "1 and 1", respectively.
Bulk mesh

Since the problem has moving boundaries, the mesh is
not stationary. To take the motion of the mesh into
account, an Arbitrary Lagrangian Eulerian (ALE) method is
applied. The material derivative of the momentum balance
is changed by subtracting the grid velocity from the flow
velocity in the convective term

Su .
p—+p(U—ugia) Vu—V-o =f inQ (32)

8t
V.u=0 in 2, (33)

where §(-)/8t is the grid derivative and ugq is the grid
velocity.

The grid velocity ugig for time "1 is calculated using a
time discretization based on an Euler backwards differenc-
ing scheme for the first time step

n+1 X —

grid — At
and based on a BDF2 scheme for all subsequent time steps
3.,.n+1 n 1.n—1
wpl _ 2T 2T+
grid — At .

Herein, x"*1, x*, and x"~! are the mesh coordinates on
time "1, /", and 1", respectively.

The displacement of the mesh coordinates Ax is neces-
sary to find the new mesh coordinates x"*! = x" + Ax and
is calculated by solving a Laplace equation on the mesh.
The displacement of the interface Axr = x’li‘H — X[ is
used as a boundary condition for interface I, while the other
boundary conditions are set to zero, as shown in Fig. 1. The
following set of equations is solved

u (34)

(35)

Vi (@Ax) =0  inQ (36)
Ax =0 on [y, Twan, and [ symmetry (37)
Ax = Axr onl (38)

@ Springer

for both z- and r-direction separately. Coefficient o is a
constant coefficient per element with the value o« = 1/AS,
where A€ is the area of the element (Hulsen 2015).

Remeshing, refining, and projection

When the geometry is highly deformed, the mesh may
become too distorted to produce accurate solutions. To
quantify the quality of the mesh, the deformation of each
element is monitored, using the following equations

It = llog (A%/A}) | (39)
fy = 1log (5°/55) |, (40)

where A® and A are the element areas of the current
mesh and undeformed mesh and $° and S§ are the ele-
ment aspect ratios of the current mesh and undeformed
mesh, respectively. The aspect ratio of an element is defined
as

§¢ = (L%, )%/ AC. 1)

max

Herein, L{,, is the maximum length of the sides of an

element. Remeshing is performed if either f{ > 0.2 or
f5 > 0.2 (Hulsen 2015).

Furthermore, the elongation of the side of each ele-
ment on the interface I' and symmetry axis is monitored
by

f3 =L°/Lg, (42)

where L¢ and L{ are the length of the sides of an element
at these two curves of the current mesh and undeformed
mesh, respectively. An element is refined if f5 > 1.4.
The refinement is performed by adding a new node on the
curve, exactly in the center between the nodes in the ref-
erence element. Subsequently, the geometry of the bulk is
remeshed.

The solutions #” and #”~! on the new mesh are necessary
to solve the implicit time integration of the Navier-Stokes
equation. A projection problem is solved to acquire these
solutions on the new mesh. For this projection problem,

Table 1 Refined meshes used in the mesh-convergence study

hcoarse [Mmm] hfine [mm] Final number of nodes
M1 0.1 0.01 6039
M2 0.05 0.005 9335
M3 0.025 0.0025 30823
M4 0.015 0.0015 81609
M5 0.01 0.001 181488
M6* 0.006 0.0006 515895
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Fig.2 Mesh M1 of the mesh-convergence study, where line A is given
in red

field u on the old mesh is defined as u®d = Z @4l
k

where (p,?]d are the shape functions on the old mesh and uzld
are the nodal values. On the new mesh, field u is defined as

u"v = E opVul™, where i€V are the shape functions
m

on the new mesh and u™V are the unknown nodal values on

m
the new mesh. To find u])’", the following problem is solved
Do (A )™ = (o, w), “3)
m
old

where the values of #°'¢ are found in the integration points
defined on the new mesh.
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Fig. 3 Mesh-convergence of u (a) and p (b)

Validation
Convergence

To investigate the accuracy and stability of the simulations,
a mesh convergence test is performed. The velocity and
pressure field are calculated until 1 = 2.5 - 1072 s with a
time step Az = 2.5 - 10™%s. A parabolic inflow with flow
rate Q = 42mm?/s is prescribed. The starting mesh with
mesh size hgoarse = 0.1 mm far away from the interface and
htine = 0.01 mm on the interface boundary T is refined to

E
E
<
=
=2}
c
K
x
[}
Q
<
0.5 —— Simulation (current study)
* Experiment (Dieter-Kissling et al.)
 _Simulation (Dieter—Kissling et al.)
0.0 . . . T T )
0.0 20 4.0 6.0 8.0 10.0 12.0
(a) Drop volume [mms]
E
E
<
=
=)
c
2
x
()
o
<
0.5 —— Simulation (current study)
* Experiment (Dieter-Kissling et al.)
* Simulation (Dieter—Kissling et al.)
0.0 . . . T T )
0.0 20 4.0 6.0 8.0 10.0 12.0
(b) Drop volume [mma]
E
E
<
=
=2}
c
o
x
)
Q
<
0.5 —— Simulation (current study)
« Experiment (Dieter-Kissling et al.)
 _Simulation (Dieter-Kissling et al.)
0.0 . . . T T )
(C) 0.0 20 4.0 6.0 8.0 10.0 12.0

Drop volume [mm3]

Fig. 4 Drop formation at Q = 10mm?/s (a), Q = 25mm?/s (b), and
0 =42mm3/s (c)
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Fig. 5 Geometry ;- of the
pendant drop, where the gray
part 4 is the volume of the drop

acquire meshes with an increasing number of nodes, which
can be found in Table 1. The mesh is subject to remeshing
and refining during the calculations.

The relative L2-errors are calculated on line A, given by
(z,r) = (s5,0.1), where s is a coordinate along A, as shown
in Fig. 2. The relative L2-error €, and €p for the velocities
and pressures respectively are defined as

h _ %2 %
o (fy Nl —u*|? ds) 44)

(f, eI ds)?
. (fA (Ph — l’*)2 ds)§ 45)
(i)t

where u" and p” are the solutions on one of the meshes
given in Table 1 and ™ and p* are reference solutions com-
puted on mesh M6*. The integrals of Egs. (44) and (45) are
computed by dividing line A into 10,000 intervals and using
a midpoint rule on each interval. The mesh-convergence
plots are shown in Fig. 3 and show that both the velocity and
pressure converge with at least order two.

Fig. 6 Drop formation at 45
0 = 10mm?/s,
Q=25 mm3/s, and 4.0+
0 = 42 mm?/s, respectively

3.5

25

Apex length [mm]

1.5F

S0 z
(00) apex length |
| |

Comparison with recent results from literature

To validate the results in the case of an interface with con-
stant surface tension, the results of this study are compared
with the results of Dieter-Kissling et al. (2014). In their
study, the applicability limit of the pendant drop measur-
ing method at high inflow rates is studied. For high flow
rates, the results of the Profile Analysis Tensiometry instru-
ment appear to be invalid. Using their geometry, as shown
in Fig. 1, and equal boundary conditions and parameters
(as stated in the problem description), the same problems
are solved to compare the results of the two computational
methods. The only interface characteristic is the constant
surface tension y .

Three different flow rates are examined: Q = 10 mm3 /S,
Q = 25mm3/s, and Q = 42mm?3/s. The corresponding
Reynolds numbers are Re = 28.29, Re = 70.73, and Re =
118.84, respectively.

To compare the data of the work of Dieter-Kissling et al.
(2014) with this study, the drop formation for different flow
rates is investigated. The apex length is plotted versus the
drop volume, as shown in Fig. 4. Both the experimental data
and the data generated by the simulation of Dieter-Kissling
et al. (2014) are displayed along the results of this study.

— 10 mm%s
---25mm%s
== 42 mm%s

1

J
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(a)

(b)

)

(d)

Fig. 7 Necking process for Q = 42 mm3/s at V = 12.85mm> (a),
V = 13.27mm? (b), V = 13.69mm?> (¢), and V = 13.82mm? (b)
respectively

The volume of the drop, as depicted in Fig. 5 in gray, is
calculated by

/ldV

24

1

—f V.-xdV
3 Ja,

1
= —% n-xdS
3 Jooq

1/ 27y (n-x)ds. (46)
3J)r

1%

The apex length is the z-coordinate of the apex of the
drop measured from the origin. As shown in Fig. 4, the

Table 2 Parameter range where the filled values denote the reference
values

¥ [UN/mm] 10 20 100
« [UNs/mm] 10 50 100
1 [UNs/mm] 0.01 0.1
K [UN/mm] 10 100
G [uUN/mm] 0.01 0.1

drop formation of this work matches very well with both
the experimental results and computational data of Dieter-
Kissling et al. (2014). Our results even exceed the range of
deformation of their numerical simulation.

Results
Necking

The simulations as described in the previous section are per-
formed up until necking and the detachment of the drop. The
results for the three different flow rates are shown in Fig. 6.

From approximately V = 13mm?> onward, the curves
become more steep. This is where the necking occurs. In
Fig. 7, the deformation of the mesh during the necking
process is depicted.

For a better understanding of the necking process, the
radius of the neck is plotted in time, as shown in Fig. 8§,
where t = O's is the onset of the necking process.

Detachment of the drop occurs theoretically according to
the following force balance (Garandet et al. 1994)

TR?p + Vpg =27 Ry, (47)

where p is the pressure, R is the wetted radius of the cap-
illary, V is the volume of the drop, p is the density, g is

Fig. 8 Necking radius in time 035 —
for Q = IOmm?’/s, =
Q0 =25mm?>/s, and
0 = 42mm?/s, respectively 0.30f
0.251
€
£ 0.20f
»
2
B o0.15F
o
0.101
0.05] —Q=10mm%s
---Q=25mm’s .
- - Q=42mm’s .

0.00 :
8.000 0.005

T Il Il Il Il Il Il J
0.010 0015 0.020 0025 0.030 0.035 0040 0.045
Time [s]
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Fig. 9 Mesh and velocity for the reference state system at time + = 0.01s (a), t = 0.50s (b), r = 1.00s (¢), t = 1.01s (d), t = 1.045s (e),

t =1.05s (f), s =2.00s (g), and r = 2.01 s (h), the velocity is in mm/s

the gravitational acceleration, and y is the surface tension.
The pressure at the end of the capillary is p = 68Pa.
From this follows that the theoretical volume for detachment
of the drop is equal to V = 13.47 mm?>, which is simi-
lar to the volume at which the necking occurs in the three
simulations.

Viscoelastic interface

To investigate the influence of the five parameters of the vis-
coelastic constitutive model of Eq. (11), a parameter study
is performed (Table 2). The ranges of the dilatational and
shear viscosities and elasticities are taken from Cantat et al.
(2013) and experiments performed by the group of Vermant
(Verwijlen 2013). The dilatational viscosity is typically one
or two orders of magnitude larger than the shear viscosity.

@ Springer

For an ideal elastic interface, the surface dilatational elas-
ticity and surface shear elasticity are related to the surface
Young’s modulus Y according to

K=t (48)
20 =)
Y
b En) )

where vg is the surface Poisson’s ratio (Sagis 2011). The-
oretically, the surface Poisson’s ratio can vary between
—1 < vy < 1. However, for conventional materials, it
holds that 0 < vy < 1. The ratio of the shear elastic-
ity G and the dilatational elasticity K will therefore be
0<G/K <1.
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Fig. 10 Velocity in the z-direction for the reference state system at time t = 0.01s, 7 = 0.50s,r = 1.00s, ¢ = 1.01s, ¢t = 1.04s,r = 1.05s,

t =2.00s, and t = 2.01 s, the velocity is in mm/s

The parameters in the gray boxes in Table 2 are cho-
sen to be the reference state, where the ratios u/k =
1 and G/K = 1 are upper limits. For every sim-
ulation, one parameter is changed from its reference
state.

For 0 < r < 1s, a parabolic velocity field with flow
rate 0 = 2mm?>/s is given as input. The corresponding
Reynolds number is Re = 5.66. Subsequently, for 1 < ¢ <
25, a flow rate Q = Omm?>/s is given as input, enabling
relaxation of the system. Finally, for + > 2s, a pressure
p = 0Pa is set at the inlet of the capillary T, facilitat-
ing outflow of the fluid. For the calculations, the time step
At = 110735 and gravitational forces are taken into
account.

The mesh and the flow field of the reference state at
different times are shown in Fig. 9.

In pictures (a), (b), and (c) of Fig. 9, the inflow profile
is shown. In the picture (d), a vortex flowing counterclock-
wise can be found. This is a result of the inertial forces
in the fluid. In pictures (e) and (f), a flow along the inter-
face towards the apex is shown, resulting in a second vortex
close to the apex flowing clockwise. The first vortex van-
ishes and the second vortex dominates the flow. During the
relaxation regime, the absolute velocity decreases rapidly.
In picture (h), the outflow from I'j, due to the pressure dif-
ference is visible. In Figs 10, 11, and 12, the velocity in z-
and r-direction, and the pressure is shown.

From simulations with the same volume using different
inflow rates, the occurrence of the clockwise vortex around
the apex during the relaxation regime turns out to depend
on the initial flow rate; for smaller flow rates, the vortex
flowing clockwise appears sooner.
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Fig. 11 Velocity in r-direction for the reference state system at time ¢t = 0.01s, t = 0.50s, 7 = 1.00s,r = 1.0ls,7 = 1.04s,t = 1.05s,

t =2.00s, and t = 2.01 s, the velocity is in mm/s

Surface tension

From the Young-Laplace equation it is known that the shape
of a drop depends on the equilibrium between the gravita-
tional forces and the surface tension. The shape of a drop
should be more spherical for higher values of the surface
tension, i.e., the apex length should be smaller. This behav-
ior is found for both the inflation and relaxation of the drop
as shown in Fig. 13, where the apex length in time is given
for different values of the surface tension y.

For values of the surface tension y > 20 uN/mm, the
shape of the drop remains constant during relaxation, while
the drop with surface tension y = 10uN/mm becomes
more elongated and the onset of necking of the drop is vis-
ible in the relaxation time from ¢ = 1.80s. According to
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Eq. (47), using a pressure p = 14.6 Pa at the end of the cap-
illary, the drop will start to detach at a theoretical volume of
V = 1.67 mm?. The volume of the drop during relaxation is
2.09 mm?.

Once the pressure at the inlet is set to p = OPa, an
outflow is generated due to the pressure difference. As
shown in Fig. 13, the entire volume of the drop flows back
into the capillary. For higher values of the surface ten-
sion y, this occurs faster. The velocity of the decrease in
apex length is approximately proportional to the surface
tension y.

The clockwise vortex around the apex, as described
during the relaxation regime in the simulation of the refer-
ence state, occurs sooner for higher values of the surface
tension y.
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Fig. 13 Apex length in time for
different values of the surface
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Table 3 Maximum surface strain for different values of the surface
tension y at the end of the inflow regime and the relaxation regime

t=1s t=2s
y [UN/mm] maxe[—] maxe.[—] maxe[—] maxec[—]
10 7.90 1.84 12.26 1.57
20 5.66 1.77 6.66 1.51
50 4.05 1.75 4.63 1.55
100 3.46 1.76 3.94 1.56

In Table 3, the maximum values of the surface strain in
both tangential and circumferential direction are given at
the end of the inflow regime + = 1s and at the end of the
relaxation regime ¢+ = 2s for different values of the sur-
face tension y . For smaller values of the surface tension, the
maximum tangential surface strain is higher. This is due to
the elongation of the drop for these small surface tension
values, driven by the gravitational forces. This is shown for
both the end of the inflow time and the end of the relaxation
time. During the relaxation regime, the maximum tangential
surface strain increases and the maximum circumferential
surface strain decreases. This is due to the vortex in the bulk,
moving the interface towards the apex. The influence of the
surface tension on the circumferential surface strain is
small.

Looking at the distribution of the surface strain, the
tangential surface strain is maximum at the attachment to
the capillary, while the circumferential strain is maximum
between the equator and the apex of the drop. This is shown
in Fig. 14.

In these calculations, the parameters for the vis-
coelastic behavior are nonzero. When only the surface

Fig. 14 Strain distribution for
the tangential surface strain and
the circumferential surface
strain for surface tension

y = 10 uN/mm (left) and = o

y = 50 uN/mm (right) at time ;0099"20‘ S*romé

t=1s e
0 7.9

Circumferential strain
2 4 6
L] |
0 7.9

()
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tension is taken into account, i.e., the parameters for the
viscoelastic behavior are set to zero, holds for a surface ten-
sion y = S0uN/mm at + = 1s a maximum tangential
surface strain of & = 4.55 and a maximum circumferential
surface strain of & = 2.13. At time ¢ = 2 s, the maximum
tangential surface strain is & = 4.52 and the maximum
circumferential surface strain is ;. = 2.13.

Surface viscosity

Viscosity is a measure of resistance to deformation. For
higher viscosity, the shape of the drop should be more
spherical, but should become equal for all different val-
ues of the viscosity after total relaxation. In Fig. 15, where
the apex length in time is depicted for different values of
the surface dilatational viscosity «, this behavior is shown
for both regimes. From Fig. 16, where the apex length in
time is depicted for different values of the surface shear
viscosity u, it can be seen that the difference in behav-
ior for the used range of values of the shear viscosity u is
negligible.

During the relaxation time, for the dilatational viscosity
k > 50 uNs/mm, the relaxation occurs fast, as can be seen
in Fig. 15.

Once the pressure at the inlet is set to p = 0Pa, an out-
flow is generated due to the pressure difference. For the
dilatational viscosity ¥ > 50 uNs/mm, the shape becomes
more elongated although the volume decreases. This is due
to a flow in negative radial direction in the region of the
drop just outside the capillary and the resistance to deforma-
tion of the interface. This radial flow initializes necking and
“collapsing” of the drop, while the interface withstands the
change in area. The flow field for x = 100 uNs/mm at the
start of the outflow regime is shown in Fig. 17. For higher

Tangential strain

Circumferential strain
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Fig. 15 Apex length in time for
different values of the surface

Apex length vs. time -k

. . . . 2.0
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1.8H = = =10 uNs/mm
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shear viscosity u, the decrease in volume is slower than for
lower shear viscosity (.

The clockwise vortex around the apex, as described
during the relaxation regime in the simulation of the
reference state, occurs later for larger values of the
dilatational viscosity «, the absolute value of the veloc-
ity is lower and originates at a larger distance from
the interface. The different values for the shear vis-
cosity u have little influence on the flow field of the
drop.

The maximum values of the surface strain in both tan-
gential and circumferential direction are given at the end of
the inflow regime t = 1s and at the end of the relaxation
regime t = 2 s for different values of the dilatational viscos-
ity « in Table 4 and for different values of the shear viscosity

Fig. 16 Apex length in time for
different values of the surface
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Time [s]

w in Table 5. The influence of the dilatational viscosity on
the tangential surface strain is small. For larger values of
the dilatational viscosity, the maximum circumferential sur-
face strain is larger. This is shown for both the end of the
inflow time and the end of the relaxation time. For higher
values of the shear viscosity, the tangential surface strain is
smaller and the circumferential surface strain is larger. This
is shown for both the end of the inflow time and the end of
the relaxation time as well. During the relaxation regime,
the vortex in the bulk moves the interface toward the apex,
resulting in an increase of the maximum tangential surface
strain and a decrease of the maximum circumferential sur-
face strain. This is observed for both the different values of
the dilatational viscosity « and the different values of the
shear viscosity u.
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Fig. 17 Flow field for k = 100 uNs/mm at time r = 2.01 s (a), a close up of the region at the end of the capillary (b), the velocity in z- (¢) and

r-direction (d), and the pressure (e)

Surface elasticity

Elasticity is the tendency of materials to return to their orig-
inal shape, i.e., their state of zero stress. In this study, this
state is given by the geometry $2;—o of Fig. 1. For higher
elasticity, the shape of the drop should be more spheri-
cal during inflation. During the relaxation time, the shape
should not change anymore. This behavior is shown in
Fig. 18, where the apex length in time for different values of

Table 4 Maximum surface strain for different values of the dilata-
tional viscosity « at the end of the inflow regime and the relaxation
regime

t=1s t=2s
k [UNs/mm] maxe[—] maxec.[—] maxe[—] maxec[—]
1 4.05 1.75 4.63 1.55
10 4.34 2.05 4.60 1.94
50 4.11 2.11 4.72 2.09
100 3.89 2.12 4.74 2.11

the surface dilatational elasticity K is displayed. In Fig. 19,
the apex length in time is shown for different values of the
surface shear elasticity G. As depicted, the difference in
behavior for the used range of values of the shear elasticity
G is negligible.

Since a larger pressure is needed for higher values of the
dilatational elasticity K, the outflow velocity is higher once
the pressure is set to p = 0Pa at the inlet. This results in a
faster decrease in volume and apex length. For values of the
dilatational elasticity K < 10uN/mm, the surface tension
seems to dominate the outflow behavior, since the volume

Table 5 Maximum surface strain for different values of the shear
viscosity p at the end of the inflow regime and the relaxation regime

t=1s t=2s
p[uUNs/mm] maxe[—] maxec[—] maxe[—] maxec[—]
0.01 5.08 1.54 5.18 1.45
0.1 4.95 1.56 5.13 1.46
1 4.05 1.75 4.63 1.55
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Fig. 18 Apex length in time for
different values of the surface
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of the drop decreases to zero. For dilatational elasticity K =
100 UN/mm, an equilibrium between the elasticity and the
surface tension is reached before the volume of the drop is
decreased to zero. As shown in Fig. 19, the difference in
outflow behavior for the used range of values of the shear
elasticity G is negligible.

The clockwise vortex around the apex, as described
during the relaxation regime in the simulation of the ref-
erence state, occurs later for larger values of the dilata-
tional elasticity K and the absolute value of the velocity
is lower. For K = 100uN/mm, the velocity is already
zero before the vortex can occur. For larger values of the
shear elasticity G, the clockwise vortex around the apex
occurs sooner and the absolute value of the velocity is
higher.

Fig. 19 Apex length in time for
different values of the surface
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In Table 6, the maximum values of the surface strain in
both tangential and circumferential directions are given at
the end of the inflow regime + = 1s and at the end of
the relaxation regime + = 2s for different values of the
dilatational elasticity K and for different values of the shear
elasticity G this is shown in Table 7. The influence of both
the dilatational and shear elasticity on the tangential surface
strain is small. For larger values of the dilatational elasticity,
the maximum circumferential surface strain is larger, while
for larger values of the shear elasticity, the maximum cir-
cumferential surface strain is smaller. During the relaxation
regime, the vortex in the bulk moves the interface toward
the apex, resulting in an increase of the maximum tangential
surface strain and a decrease of the maximum circumfer-
ential surface strain. This is observed for both the different

Apex length vs. time - G

shear elasticity G

= ==0.01 uN/mm
c==-0.1 uN/mm
—— 1 uN/mm

Apex length [mm]

0.2

0.0

0.00

1 1 1 1 L J
0.50 1.00 1.50 2.00 2.50 3.00

Time [s]

@ Springer



818

Rheol Acta (2016) 55:801-822

Table 6 Maximum surface strain for different values of the dilata-
tional elasticity K at the end of the inflow regime and the relaxation
regime

t=1s t=2s
K [uUN/mm] e [—] g [—] e [—1 gc[—]
1 4.05 1.75 4.63 1.55
10 4.27 2.00 4.38 1.99
100 3.58 2.12 3.59 2.12

values of the dilatational elasticity K < 10 uN/mm and the
different values of the shear elasticity G.

Elevated values of the interface parameters

The same flow regime as described in the previous section
is carried out for elevated values of the surface dilatational
and shear viscosity and elasticity. The surface tension is
kept at y = S50uN/mm. For simulations with elevated
surface viscosities, the dilatational viscosity is set to k =
100 uNs/mm, and the shear viscosity is varied between 1 <
© < 100 uNs/mm, while the surface elasticities are kept at
K = G = 1puN/mm. Similarly, for simulations with ele-
vated surface elasticities, the dilatational elasticity is set to
K = 100 uN/mm, and the shear elasticity is varied between
1 < G < 100 uN/mm, while the surface viscosities are kept
at k = u = 1 uNs/mm. For flow situations where the drop
undergoes very large deformation, the results obtained are
limited by the quasi-linear constitutive equation, and future
work is focussed on developing more realistic interfacial
constitutive relations.

Surface viscosity

As stated in “Surface viscosity”, for higher surface viscos-
ity, the shape of the drop should be more spherical during
the inflow regime, but should become equal for all differ-
ent values of the viscosity after total relaxation. In Fig. 20,

Table 7 Maximum surface strain for different values of the shear
elasticity G at the end of the inflow regime and the relaxation regime

t=1s t=2s
G [UN/mm] &[] ec[—] e [—] e [—]
0.01 3.73 2.33 4.21 2.23
0.1 3.76 2.27 4.23 2.14
1 4.05 1.75 4.63 1.55
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where the apex length in time is depicted for different val-
ues of the surface shear viscosity u, this behavior is shown
for the inflow regime. For values of ;# > 10uNs/mm, it
can be seen that a relaxation time of 1 s is not sufficient for
the flow to fully relax. During the outflow regime, only for
@ = 1 uNs/mm, the figure shows that the shape of the drop
becomes more elongated although the volume decreases.
For more elevated values, the surface shear viscosity might
prevent the “collapsing” of the drop.

Surface elasticity

As shown in Fig. 21, where the apex length in time is
depicted for different values of the surface shear elasticity,
the drop becomes more elongated during the inflow regime
for increasing values of the elasticity. This is contradic-
tory to the expectation that the shape of the drop should
be more spherical during inflation, as stated in “Surface
elasticity”. For G = 100 uN/mm, a sharp slope transition can
be observed. In this case, the resistance of interface defor-
mation in r-direction is more profound than in z-direction,
resulting initially in a flow in z-direction only, before flow-
ing in r-direction. During the relaxation time, the shape of
the drop does not change anymore, as expected. For shear
elasticity G = 1 UN/mm, the equilibrium between the elas-
ticity and the surface tension is reached before the volume
of the drop is decreased to zero, as is seen in “Surface
elasticity” as well. For values of G > 10 uN/mm, the shape
of the drop becomes more elongated during the outflow
regime, and the simulations end before the prescribed time
is over. This is due to the numerical boundary condition
that states that the interface is fixed to the outer edge of the
capillary; the fluid layer on the wetted tip of the capillary
becomes too thin to be properly calculated.

Oscillatory measurements

To connect the presented model to experimental methods
for testing the interface characteristics, a small amplitude
oscillatory measurement is simulated with different inter-
facial properties. For 0 < ¢t < 0.5s, a parabolic velocity
field with flow rate Q = 2mm?/s is given as input at T'jy.
After that, a flow rate Q = Omm?/s is given as input for
0.5 < t < 1s, enabling relaxation of the system. For the
next 12w seconds, a parabolic velocity field with oscillat-
ing flow rate O = 0.1 cos(0.5¢) mm?3/s is prescribed. This
simulation is performed for the case of only a surface ten-
sion of y = 50uN/mm, the reference state as described
in “Viscoelastic interface”, the reference state with k =
100 uNs/mm as the only changed parameter, and the
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Fig. 20 Apex length in time for
different values of the surface
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reference state with K = 100 UN/mm as the only changed
parameter. The results are shown in Fig. 22, where V is the
volume of the drop, Lapex is the apex length, p is the pres-
sure at the inlet I';,, and R is the radius of curvature at the
apex. The subscript eq indicates the value of the variables at
t=1s.

Figure 22 shows that the responses of the apex length,
the pressure, and the radius of curvature to an oscil-
lating volume are nearly sinusoidal. For the cases (a),
(b), and (d), the pressure is out of phase compared to

Fig. 21 Apex length in time for
different values of the surface

1 1 1 1 1 J
0.50 1.00 1.50 2.00 2.50 3.00

Time [s]

the radius by approximately m radians. This is in accor-
dance with the findings of Kotula and Anna (2015):
for a purely elastic interface limit of k = OuNs/mm,
the phase shift goes to m radians. Furthermore, from
Kotula and Anna (2015) follows that a phase shift of /2
is the limiting case when the dilatational viscosity is much
greater than the surface tension. In case (c), where the dilata-
tional viscosity x = 100 uNs/mm is higher than the surface
tension y = 50 uN/mm, the phase shift tends towards /2
radians.

Apex length vs. time — G at K = 100 uN/mm

shear elasticity G at a surface

K = 100 uN/mm

—— 1 uN/mm
dilatational elasticity 1.8H = = =10 uN/mm

Apex length [mm]

0.2

0.0

0.00

1 1 1 1 1 J
0.50 1.00 1.50 2.00 2.50 3.00

Time [s]
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Oscillatory measurement - surface tension

Various ratios [-]

Various ratios [-]

(C) (t—to)/(2n/(n) [-]

Oscillatory measurement — reference state

12F

Various ratios [-]

(b) (t-t)(2m/o) -]

Oscillatory measurement — K = 100 uN/mm

Various ratios [-]

L L L L L L L L L \
2 21 22 23 24 25 26 27 28 29 3

(d) (t—to)/(2rc/(n) [—]

—_— VN - - -
eq

/L
apex’ apex,eq

Fig. 22 Simulated responses of the normalized volume V/Veq, the
apex length Lypex/Lapex,eq: Pressure p/peq, and radius of curvature
R/ Req, due to an oscillating flow rate Q with amplitude @ = 0.1 mm?
and angular frequency w = 0.5rad/s, for only a surface tension of

Conclusions

In this study, a two-dimensional axisymmetric model is
developed to simulate pendant drop experiments using a
finite element method. In this model, the dynamics of
the interface are described by a Lagrange-based interface
tracking model. Furthermore, the quality of the mesh is
monitored, and mesh refinement is performed if neces-
sary. A semi-implicit time integration scheme is used to
calculate the surface tension to cope with the small capil-
lary time scale of the problem. The model is verified with
the results as presented in a publication by Dieter-Kissling
et al. (2014) for a Newtonian fluid in a Navier-Stokes
flow, with gravitational forces and constant surface tension.
A quasi-linear two-dimensional Kelvin-Voigt viscoelastic
constitutive model is implemented at the interface, follow-
ing Verwijlen et al. (2014). The model is made quasi-linear
by using a combination of two finite strain tensors; the
Hencky strain tensor is used for the dilatational contribution
and the Green-Lagrange strain tensor is used to describe the
shear contribution. A computational tool is designed to cal-
culate the tangential and circumferential surface strain to
quantify the deformation of the interface.

@ Springer

y = 50uN/mm (a), the reference state (b), the reference state with
« = 100 uNs/mm (c), and the reference state with K = 100 uN/mm
(d). The results of the third oscillation cycles are plotted in the time
domain shifted by a time ) = 1's

A parameter study is performed to investigate the
influence of the five parameters of the quasi-linear two-
dimensional Kelvin-Voigt model: the surface tension y, the
surface dilatational viscosity &, the surface shear viscosity
W, the surface dilatational elasticity K, and surface shear
elasticity G. During inflation, the apex length of the drop
is significantly smaller for higher values of the surface ten-
sion and the dilatational elasticity, and is slightly smaller
for higher values of the surface dilatational viscosity. Unless
the force balance at the outlet of the capillary initiates the
onset of detachment, the shape of the drop stayed at an equi-
librium state during relaxation for different values of the
surface tension and dilatational elasticity. For all different
values of the dilatational viscosity, the shape of the drop
became equal after total relaxation. For higher values of the
surface tension, the entire volume of the drop flowed back
into the capillary faster. The decrease of the apex length
during the outflow regime was slower for higher values of
the dilatational viscosity. For values k > 50 uNs/mm, the
apex length increased at first due to a flow in negative radial
direction in the region of the drop just outside the capillary
and the resistance to deformation of the interface. The sur-
face tension seemed to dominate the outflow behavior for
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values of the dilatational elasticity K < 10 uN/mm. For
higher values of the dilatational elasticity, an equilibrium
between the elasticity and the surface tension is reached
during the outflow regime. The influence of both the shear
viscosity and the shear elasticity on the apex length is
negligible for the used parameter range.

For elevated values of the surface viscosities and elas-
ticities, the higher values of the surface shear viscosity
delay the relaxation and prevent the drop to “collapse”,
while increasing surface shear elasticities give rise to a more
elongated shape during both the inflow and outflow regime.

A small amplitude oscillatory measurement is simulated.
The phase shift between the response of the radius of
curvature and the pressure for more elastic interfaces is
approximately m radians, while for dominant dilatational
viscosity the phase shift tends towards /2 radians.

The simulations should be compared with experimen-
tal results. A relevant example of surface active agent with
viscoelastic behavior is the protein hydrophobin (HFBII)
(Alexandrov et al. 2012; Danov et al. 2015; Knoche et al.
2013); it forms a film of high mechanical strength when
adsorbed to the interface. Furthermore, the geometry from
the numerical computations could be used as input for the
experimental software, to compare the input parameters of
the model with the solutions from the experimental setup.
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