Rheol Acta (2016) 55:649—-656
DOI 10.1007/500397-016-0938-3

@ CrossMark

ORIGINAL CONTRIBUTION

Determination of the first normal stress difference
from viscometric data for shear flows of polymer liquids

Ryszard Steller'

Received: 8 December 2015 /Revised: 29 February 2016 / Accepted: 13 March 2016 /Published online: 11 May 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract New equation for determination of the primary nor-
mal stress difference from viscosity curve is proposed, and the
methods of calculations with the use of adequate viscosity
models are discussed. Comparison of calculated and measured
values of primary normal stress difference has shown that the
proposed equation describes quite well experimental data but
the calculations are not stable. For this reason, the proposed
equation along with other equations of this type known from
the literature was transformed into shear stress-dependent
form. It was shown that such transformation makes it possible
to represent the normal stress-to-shear stress ratio
(Weissenberg number) as a unique function of the local slope
of'the flow curve, which is simultaneously temperature invari-
ant. Such representation was confirmed using experimental
data for eight systems comprising linear polymers and various
measurement temperatures. It was found that new equation in
the shear stress-dependent form is numerically stable and pro-
vides excellent description of experimental data. The general
structure of expressions, which may be used for description of
the elasticity of polymer liquids based on the flow curve
shape, was discussed from the point of view of dimensional
analysis. Obtained results made it possible to modify other
expressions known from the literature in such way that they
also provide an excellent fit to experimental data.
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Introduction

For many years, a lot of effort has been put to find a way of
quantitative prediction of the elasticity of polymer liquids
from measurements of non-Newtonian viscosity during the
shear flow. The elasticity of polymer melts and solutions in
shear flows manifests itself through the existence of two non-
zero normal stress differences, first of all of the primary nor-
mal stress difference. Though the shear viscosity and the first
normal stress coefficient are different material functions, it
does not mean that they are quite independent of each other.
This is a result of the fact that both functions can be formally
treated as different moments of the relaxation spectrum of a
polymer liquid (Malkin 2006). Moreover, the appearance of
non-zero normal stress differences is accompanied by some
viscosity lowering with a rise of the shear intensity. It is also
true in the case of highly elastic Boger fluids, which are gen-
erally treated as fluids with a constant (Newtonian) viscosity
but really show a very weak pseudoplastic behavior (e.g.
James 2009). On the other hand, purely Newtonian, low mo-
lecular liquids demonstrate no elastic properties. However,
there exist also many non-polymeric liquid systems (e.g. dif-
ferent suspensions) with strong pseudoplasticity but negligible
elasticity. For typical polymeric fluids, both features are well
balanced that give rise to the looking for methods of elasticity
determination based on the shape of viscosity or flow curves,
which can be experimentally determined much easier than the
normal stress differences.
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At least several expressions making possible the calcula-
tion of the primary normal stress difference (normal stress
coefficient) from the viscosity function were presented in the
literature. They can be divided into two general groups. The
first one contains integral models, while the second one can be
referred to as differential models.

One of the oldest integral models was derived by Malkin
(1971). It makes use of the above-mentioned fact that viscous
and elastic properties of polymers result from the same relax-
ation time spectrum. This statement for relative small shear
rates leads to the expression

4 0 ./
men =27 [y (1)

where N, is the first normal stress difference, 1) is the viscosity
and +y is the shear rate.

The next expression of similar type was proposed by
Abdel-Khalik et al. (1974). It is derived from the Goddard-
Miller constitutive equation (Goddard and Miller 1966) with
the use of Kramers-Kronig relations and has the form

win =" T ay @

where K is the empirical constant; K = 2 for solutions and
K =3 for melts.

The last well-known equation of integral type was derived
by Gleissle (1980) from his two empirical “mirror relations”
comparing the viscosity and elasticity in transient and steady
shear flows. For this reason, it is sometimes referred to as the
“third mirror relation”

Ni(7) =27 / jk(v")' a’gj) d+ (3)

where (2 < k < 3) is the empirical constant.

It should be noted that practical calculations with the use of
integral models are not simple due to the specific structure of
Egs. (1-3). For this reason, such models are rather seldom
applied for calculations in contrast to various differential
models discussed below, which are much more simple.

The existing differential models represent the primary nor-
mal stress difference as a function of viscosity or its shear rate
derivatives. They contain expressions resulting not only from
the steady shear flow but also from the oscillatory shear flow.

The first expression of this type was derived by Wagner
(1977), with the use of his own, well-known constitutive
equation (Wagner 1976), and has the form

M) = @
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where the constant m is connected to the Wagner damping
function for a given polymer.

The next model proposed recently by Sharma and
McKinley (2012) has a form

win=2nf -1 1 [ g

It is based on three empirical rules connecting the material
functions in steady and oscillatory shear flows of polymer

liquids, i.e.
the Laun rule (Laun 1986)
0,7
G'(w)]?
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where G'(w) and G'(w) are the storage and loss moduli as
functions of the frequency w
and the two Cox-Merz rules (Cox and Merz 1958)

V) =y (7a)
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where 7, () is the consistency (tangent viscosity), () is the
apparent (secant) viscosity, "(w) and 7 (w) are the complex
viscosity and the real part of complex viscosity and 7 is the
shear stress.

Equation (7a) is widely known and applied, while Eq. (7b)
is somewhat forgotten.

Another empirical formula for calculation of the first nor-
mal stress difference from the data of oscillatory measure-
ments was also proposed by Al-Hadithi et al. (1992).

There are also several works which compare various
formulas for prediction of the first normal stress difference
from viscosity measurements (Stastna and De Kee 1982) or
propose new methods for calculation of the melt elasticity
from viscometric data based on the Wagner model
(Youngwook and Yongsok 2012). The interesting general
method for calculation of the primary normal stress coef-
ficient with the use of the theory of linear operators was
also presented (Friedrich and Heymann 1988).

The aim of this paper is to present a new model for
calculation of the primary normal stress difference from a
generalized viscosity function. Moreover, the proposed
model along with other differential models discussed
above is further transformed into the shear stress-
dependent and simultaneously temperature-invariant form.
It enables a simple determination of the elasticity of poly-
mer liquids from their flow curve.
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Calculation of the first normal stress difference
from generalized viscosity curve

For further considerations, it is convenient to introduce the
definition of the generalized viscosity function of the power-
law type in the following form:

=) (8)

where v is any real number, and the case v = 1 corresponds to
the ordinary viscosity curve.

The analysis of experimental results on the shear viscosity
and the first normal stress difference for various polymer lig-
uids leads to the conclusion that these results can be very well
correlated by means of the following empirical equation:

d(i7) d1n<n2>r
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It is based on the generalized viscosity function corre-
sponding to v = 2 in Eq. (8) and the results of dimensional
analysis presented later. Such form reflects the theoretical fact
that the viscosity as an even function should be dependent
only on even powers of the shear rate. The calculated values
of N; are very sensitive to the changes in values of corre-
sponding derivatives of the viscosity function. Hence, the
practical use of Eq. (9) for calculations requires, as a rule,
the smoothing of experimental data by means of an adequate
viscosity equation in generalized form and non-linear regres-
sion. In this case, calculations were performed using the own
four-parameter viscosity equation discussed in details else-
where (Steller 2013; Steller 2015)

n o

L [14+809) + ()] (10)
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where 79, A, 8 and n < 1 are positive material constants.

Equation (10) can be treated as an extension of the well-
known three-parameter Carreau model (Carreau 1972) cor-
responding to 3 = 2. It has the properties similar to another
four-parameter extension of the Carreau model, i.e.
Carreau-Yasuda Eq. (11) (Yasuda et al. 1981), which, in
some cases, was also used for comparison.

77% — 1+ (M) (11)

where 1y, A\, « and n < 1 are positive material constants (for
« = 2, the Carreau equation is obtained).

Both equations describe very well viscosity curves of poly-
mers with a wide transition region between Newtonian and
power-law behavior. However, Eq. (10) depends only on even
powers of the shear rate in contrast to Eq. (11), which contains
the fractional powers of the shear rate. For this reason,
Eq. (10) seems to be theoretically more proper.

The generalized form of Eq. (10) for any value of v can be
expressed as

(n—1)v

N =g [1 + BN 4 N | (12)

where x = 4” and v =2 in this case.

Equation (12) makes it possible to calculate the deriva-
tives in expression (9) for known values of the four mate-
rial constants, which, in turn, are estimated from experi-
mental data 77 = f(+¥*) by means of a non-linear regres-
sion. The results are not stable in the sense that the esti-
mated parameters depend strongly on how function (12) is
expressed, e.g. as given by formula (12) or as (n/n,)" or as
vin(n/ne) This is also true for the generalized form of the
Carreau-Yasuda equation. It seems that the logarithmic
form is generally most appropriate, as shown below.
Moreover, the results depend also on the viscosity model
used for calculations.

The calculation results will be presented, taking as an ex-
ample the numerical data on shear viscosity and the first nor-
mal stress difference measurements for 11.4 %
polyisobutylene solution in 2,6,10,14-tetramethylpentadecane
(Pristan) at 0 °C (Schultheisz and Leigh 2002).

The estimated parameters of the generalized viscosity
function expressed in form (12) or as (1/n,)* are almost
the same and equal to 7y = 382.2 Pa's, A = 3.168 s,
£ = 8.64 and n = 0.490. The logarithmic form 2 In (7)/7)
leads to quite different estimates: 1o = 379.9 Pa-s,
A =1.064 s, §=2575and n = 0.290. It can be easily
checked that the first set of parameters gives the theoretical
function 7> = f(5?), which overestimates strongly the ex-
perimental values in the region of high 4* > 100; e.g. for
4% = 10, 000, the predicted value of 7> =410 instead of 82
resulting from the measurement. The second set of param-
eters obtained from the logarithmic form provides a very
good fit of data shown in Fig. 1. The parameters
no = 411.3 Pa's, A = 0.744 s, a« = 0704 and n = 0.136
estimated for the Carreau-Yasuda equation in the logarith-
mic form give also a very good data fit. The corresponding
curve coincides practically with that in Fig. 1, and for this
reason, it was not shown. The relative viscosity differences
resulting from both models do not exceed 3 %. Similarly,
the estimates 79 = 388.6 Pa's, A = 2766 s, o« = 1116 and
n = 0.452 obtained for the other forms mentioned earlier
lead to similar discrepancies as in the case of Eq. (12); e.g.
for 4% = 10,000, the predicted n*=320 instead of 82. It
should be also noted that such behavior is observed for the
least-squares method as the estimation criterion.

Figure 2 presents the experimental data for the first normal
stress difference compared with values predicted by Eq. (9)
with the use of generalized expressions (10) and (11) for cal-
culations of both derivatives. It can be seen that a general
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Fig. 1 Comparison of experimental data (full squares) with predictions
(solid line) of generalized viscosity function (12) for v =2

agreement of measured and calculated data is quite well in
both cases. However, small quantitative differences in the
course of the curves 77> = f(7?) resulting from Egs. (10)
and (11) have a visible effect on the course of corresponding
normal stress curves N = g(+), which are very sensitive to
the change of the viscous characteristics. The relative differ-
ences in N; calculated from both models may exceed 30 %;
i.e. they are ca. ten times larger than the corresponding viscos-
ity differences. A similar behavior testifying to the low
stability of normal stress calculations based on the viscosity
curve was also observed for other systems. It should be also
noted that both the viscosity and its square are quantities cal-
culated from the primary measurements data, i.e. the shear
stress and the shear rate. The primary measurement errors
are, as a rule, increased during mathematical operations such
as division or exponentiation. This can be treated as an addi-
tional source of uncertainty affecting negatively the stability
of normal stress calculations based on the viscosity curve. For
this reason, a more efficient method for the normal stress
calculations based on the flow curve was developed and is
discussed below.
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Fig. 2 Comparison of experimental values (fill triangles) of the first
normal stress difference with theoretical values calculated from Eq. (9)
with the use of generalized Eq. (10) (solid line) and generalized Eq. (11)
(dotted line)
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Calculation of the first normal stress difference
from the flow curve

Very interesting results are obtained if viscosity-dependent
expressions (4), (5) and (9) for calculations of the first normal
stress difference are transformed into the shear stress-
dependent forms. It can be easily done using the general equa-
tion of the flow curve

T=n(7)7 (13)

Denoting for convenience the local slope of the flow curve

as
dint

n= din~ (14)
one obtains

—  Wagner Eq. (4)

Ni(3) = -l (1n) (15)

=— -n

1y m T

—  Sharma-McKinley Eq. (5)

Ni(§) =2|7|V1-n2 n'4 (16)

— OwnEq. (9)

Ni(9) = 1217 V1-n (1 +n)"* (17)

It can be easily seen from expressions (15—17) that the ratio
of the normal and shear stresses (@) sometimes referred to as
the Weissenberg number is a unique function of the local slope
(n) of the flow curve. Moreover, the ratio is most probably
independent of temperature.

To check this theoretical result, the local slopes and the
corresponding Weissenberg numbers were determined from
experimental data for eight systems of linear polymers, i.e.
polyisobutylene (PIB) solution at 0, 25 and 50 °C
(Schultheisz and Leigh 2002); polydimethylsiloxane
(PDMS) at 0, 25 and 50 °C (Schultheisz et al. 2003); and
high-density polyethylene (HDPE) and polypropylene (PP)
melts at 200 °C. The data for both melts were recalculated
from quantitative material functions resulting from an integral
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constitutive equation, which was presented much earlier
(Steller 1985).

The obtained data are shown in Fig. 3, where, for conve-
nience as an independent variable, the values of 1 — » instead
of n were applied. It is clearly seen that all experimental points
for various polymers and temperatures create a common mas-
ter curve (despite small data scattering). It is an excellent con-
firmation of qualitative predictions resulting from Eqs. (15—
17) independent of their adequacy.

The temperature invariance of the stress ratio results also
indirectly from other studies. In many cases, the correlation of
power-law type between normal and shear stresses was ob-
served, e.g. (Carreau et al. 1997)

Ny =K|r|" (18)

It was found (Jomha and Reynolds 1993) that for poly-
ethylene melt and water solution of polyacrylamide, for-
mula (18), which can be also expressed as the stress ratio,
is independent of temperature. A similar behavior was also
observed in various EPDM compounds (Markovic et al.
2000).

It should be also noted that the determination of the
slope of the flow curve given by Eq. (14) from the exper-
imental data can be done as a rule without using any spe-
cial function as in the case of the viscosity curve. This is
due to the fact that the flow curve in the logarithmic form
In7 = f(In-) can be easily described by means of polyno-
mial regression in contrast to the viscosity curve
Inn = g(In), which tends to have a constant value Iny,
if Invy tends to —oo. To describe adequately such an asymp-
totic behavior, a suitable viscosity model must be used.

Figure 4 presents the comparison of theoretical values of
the stress ratio provided by Egs. (15—-17) with the experimen-
tal data from Fig. 3. In Wagner Eq. (15), the mean value of
m = 1/3 was assumed according to the data quoted in Wagner
(1977)). It can be seen that the Wagner formula works quite
well for n > 0.5, while Sharma-McKinley Eq. (16) strongly
overestimates the experimental values of stress ratio. Equation
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Fig. 3 Temperature-invariant representation of stress ratio for various
linear polymers
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Fig. 4 Comparison between experimental stress ratio values and
predictions of Egs. (15, Wagner), (16, Sharma) and (17, the author)

(17) provides an excellent fit of data. The correlation quality is
better seen on a linear graph obtained from Fig. 4 by substitut-
ing for 1 — n the values of function (17) on the x-axis. It is
shown in Fig. 5.

Figure 6 presents for comparison the data for PIB solution
from Fig. 2 described by means of Eq. (17). In this case, a
smooth, monotonic curve is obtained, which fits to the exper-
imental data very well.

For further generalization or improvement of the above
results, dimensional analysis was performed. It has the goal
to show that, in the general case, the stress ratio can be repre-
sented as a unique function of the local slope of the viscosity
or flow curve. It makes also possible to find the admissible
forms of (simple) functions which may define the first normal
stress coefficient ¥, expressed in Pa-s® or the first normal
stress difference N; expressed in pascals.

There are, in principle, two linearly independent quantities
of the dimension of Pa-s* connecting the viscosity 7 and the
shear rate . The first one has the form of a quotient

12 =% (19)

N,/t

y=

0 2 4 6 8
x=12 (1-n)°5/ (1+n)*

Fig. 5 Correlation between experimental and theoretical stress ratio
values calculated from Eq. (17, 26, 28, 29)
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© i Using the equation of the flow curve (Eq. (13)), expression
z; (23) can be easily transformed into the shear stress-dependent
8 form
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Fig. 6 Comparison of experimental values (fill triangles) of the first
normal stress difference with theoretical values (solid line) calculated
from Eq. (17)

while the second one can be represented by the following
expression resulting from the definition of generalized viscos-
ity function (8):

e (2

It contains the first derivative of generalized power-law-
type viscosity function (8). From various linear combinations
of Egs. (19) and (20) raised to the same power, a new quantity
can be created and then transformed into an expression with
the dimension of Pa's” corresponding to 1, () or to Ny ()
after multiplying by 2. In the most simple case, one obtains
the formula

|A(Q>“+B
5

which has the dimension of Pa's® (4 and B are dimensionless
constants).

In Eq. (21), the following property of generalized viscosity
function (8) was used:

1
m

dinn
din~

1
:i,’A+B
|71

d(n")
(")

(21)

dinn*  dinn
diny"  diny

(22)

Expression (21) with different values of 4, B and ;2 makes it
possible to create various products and/or linear combinations
with the dimension of Pa's” or pascals. Therefore, the general
expression for the primary normal stress difference resulting
from the dimensional analysis and expressed in terms of the
viscosity curve can be formulated in the following way:

Vij

dinn

At B Gy

Ny =153 O, (23)
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fulfil the condition N; = 0, which determines the choice of
constants 4, B and C. Assuming for simplicity j = 1, 4;; =0,
By; =1 and vy, > 0, Eq. (24) can be rearranged to the form
satisfying the above condition

]IVTII = Ci(1=n)"" 1|4 + Bir (n=1)|™ (25)

It can be easily seen that Eqgs. (15-17) have exactly the
form of expression (25). In Eq. (16), the identity 1—n*=(1
—n)(1+n) should only be taken into account.

Equations of type (24) comprising the sums of two or more
terms may have a much more complicated structure, which
also fulfil the condition N; = 0 for n = 1. Some examples of
such functions describing correctly the stress ratio will be
given below (Egs. (28) and (29)).

Based on the results of dimensional analysis and, in partic-
ular, on the use of simple functions of power-law type sug-
gested by formula (25), the equations of Wagner and Sharma-
McKinley can be modified to provide a very good agreement
of predicted and measured values of the stress ratio. The char-
acteristic terms in Wagner and Sharma equations are (1 — n)
and (1 — n*)°?, respectively. Using the trial-and-error method
supported by the non-linear regression, it was found that the
simplest extension of the Wagner equation corresponding to
formula (25), which quantitatively describes the data from
Fig. 3, has the form

% = 14(1-n)(1 + 6n)"" (26)

The approximation exactness of Eq. (26) is shown in Fig. 7
(similar to Fig. 5).

It should be noted that the term 14(1+6n) " in Eq. (26) can
formally be treated as the local value of the inverse of the
damping constant m in Wagner formula (15). Assuming
n = 0.5 as the mean interval value, one obtains 3.5 as the
inverse of the mean m value. The graph for the Wagner equa-
tion in Fig. 4 was constructed, assuming 1 /m =3 for n>0.5.

In the case of the Sharma-McKinley equation, the best fit to
experimental data provides the following modification:

N oV TSR(1 4+ ) (27)

7]
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N,/T

y=

0 2 4 6 8
x=14 (1-n)/(1+6n)

Fig. 7 Correlation between experimental and theoretical stress ratio
values calculated from Eq. (17, 26, 28, 29)

It is the same equation as Eq. (17) proposed in this work but
written in another form.

It should be also noted that all numbers (except 1)
appearing in Egs. (26) and (17) or (27) were rounded to pro-
vide the simplest forms of these equations. However, the
rounding errors are less than 2-3 % and have no practical
meaning.

There are also possible other more complicated formulas,
which very well describe the data from Fig. 3 and are gener-
ally consistent with the results of dimensional analysis. Two
examples of such expressions are given below:

Ny

— = 11(1-n"%)n 03 (28)
7l

The corresponding chart is shown in Fig. 8.
Ny 5 (rmP-n+3 ’
I3 29
7| 3 " 3n (29)

It is interesting to note that logarithmic expression (29) has
only one constant (5/3) appearing in three different places.
The plot corresponding to function (29) is presented in Fig. 9.

N,/T

y=

0 2 4 6 8
x=11 (1-n%2)/n03

Fig. 8 Correlation between experimental and theoretical stress ratio
values calculated from Eq. (17, 26, 28, 29)

N,/t
N

y=

0 2 4 6 8
x=5/3In{[(n 2-n+5/3)/(5n/3)]%}

Fig. 9 Correlation between experimental and theoretical stress ratio
values calculated from Eq. (17, 26, 28, 29)

It should be also noted that Eqs. (26) and (17) or (27)
predict the finite stress ratio values for the limiting case
n = 0. They are quite similar and equal to 14 and 12, respec-
tively. On the other hand, functions (28) and (29) increase
unlimitedly if # tends to zero. The true behavior of the stress
ratio in such case is not quite clear from the theoretical point of
view. It seems that the assumption of the limited value of the
stress ratio is more proper, considering that the damping con-
stant in Wagner Eq. (15) should have, most probably, a non-
zero, positive value (m > 0). In such case, Egs. (28) and (29)
must be treated as two adequate regression formulas with no
special theoretical meaning.

It is also noteworthy that all equations proposed for deter-
mination of the first normal stress difference from the viscos-
ity curve or the flow curve are also valid for the oscillatory
shear flow, if the Cox-Merz rule given by expression (7a)
holds. In the oscillatory shear flow, the following relation is
always valid:

7 (@)|w (30)

It can be easily seen, if Eq. (7a) is fulfilled than Eq. (30) and
the equation of the flow curve (Eq. (13)) become equivalent,
i.e. n(+) may be replaced by |n"(w)| and 7(7) by |G*(w)|.

|G (w)] =

Conclusions

A comprehensive analysis of existing and newly proposed
semiempirical or empirical expressions for calculation of the
first normal stress difference from the data of viscosity mea-
surements has been performed. It was shown that most useful
results can be obtained by representing the ratio of normal and
shear stresses as a function of the local slope of the flow curve.
Such representation is unique and simultaneously temperature
invariant. The proposed expressions describe very well the
experimental data only for a limited number of 8 of various
linear polymers in the form of melts and solutions at different
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temperatures, which were used as examples in this work. For
this reason, a further experimental verification of obtained
results is necessary for a larger number of polymer systems.
Such verification should comprise not only linear polymers
but also branched polymers and polymers with a much more
complicated molecular structure, which differ in the average
molecular weight and molecular weight distribution. It makes
possible to ascertain if the proposed expressions are generally
valid or are valid only for some groups of polymer melts or
solutions.
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