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Abstract This paper presents the use of a state of the art damp-
er for high-precision motion stages as a sliding plate rheometer
for measuring linear viscoelastic properties in the frequency
range of 10 Hz–10 kHz. This device is relatively cheap and
enables to obtain linear viscoelastic (LVE) fluid models for
practical use in precision mechanics applications. This is an
example of reversed engineering, i.e., turning a machine part
into a material characterization device. Results are shown for a
high-viscosity fluid. The first part of this paper describes the
damper design that is based on a high-viscosity fluid. This
design is flexure-based to minimize parasitic nonlinear forces
such as hysteresis and stick-slip. In the second part of the paper,
LVE fluid characterization by means of the damper setup is
presented. Measurements are performed and model parameters
are fitted by a non-convex optimization algorithm in order to
obtain the frequency-dependent behavior of the fluid. The
resulting fluid model is validated by comparison with a second
measurement with a different damper geometry. This paper
shows that LVE fluid characterization between 10 Hz and
10 kHz for elastic high-viscosity fluids is possible with a mo-
tion stage damper for which the undamped behavior is known.
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Introduction

A motion stage, as used for the illumination process of inte-
grated circuits for instance, exists of a mechanical structure
with force actuators to position the stage. This position is
measured by sensors, which are connected to the feedback
control system in order to stabilize the system and obtain the
desired position. In addition, it guarantees performance in
terms of position accuracy. The controller uses the difference
between the actual position and the desired position—the po-
sition error—as input and transforms this information into an
actuator force to minimize the position error as fast as possi-
ble. Such a controller acts as a frequency-dependent gain,
which has to be designed as high as possible to prevent large
position errors; the higher the controller gain, the stronger the
motion stage reacts on a position error. Frommechanical point
of view, the motion stage can be assumed as a rigid body for
low frequencies; the stage follows a set point or reference
signal without showing internal deformation. At higher fre-
quencies however, the stage structure shows flexible behavior
(Gawronski 2004). This flexible behavior is a result of the
limited stiffness of materials in combination with the mechan-
ical design of the motion stage and results in specific reso-
nance frequencies, also called natural frequencies, that corre-
spond to deformation shapes, called mode shapes. Ultimately,
the controller gain is limited by these natural frequencies and,
therefore, the reaction speed of the motion system is restricted.

Influence of damping

Complex control approaches can be used to deal with this
behavior and to increase the bandwidth as far as possible
(Onishi et al. 1996; Balas and Doyle 1994), while retaining
robustness (Bin 2010; Ho and Tomizuka 1996). In addition,
optimization methods can be applied to improve the controller
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performance (Swevers et al. 2010). The extent to which the
resonances limit the controller gain depends on (1) the struc-
tural design of the stage (Book 1993), (2) the position of
actuators and sensors (Van de Wal and De Jager 2010), and
(3) the damping present in the mechanical structure (Crandall
1970). In general, it can be stated that high natural frequencies
and high modal damping values enable high controller gains.
Current motion stage designs are designed to have high natu-
ral frequencies (Pedersen 2000) and, therefore, are based on
materials (i.e., ceramics) with a high specific stiffness. These
materials, however, usually contain low material damping.
Stiffness and damping are sometimes combined to formulate
optimization problems (Bodden and Junkins 1985). Another
way to improve a systems’ behavior is by increasing the
damping of the mode shapes, which is called modal damping.
A drawback of low modal damping is that vibrations in the
stage, show large amplification factors and continue for a long
time. This is detrimental to the transient response of the mo-
tion system. These observations lead to a continuous research
effort to increase damping in mechanical designs (Soovere
and Drake 1985; Johnson 1995). One method to add damping
to a range of resonance frequencies is by adding separate
dampers (Verbaan et al. 2013), which shows a method in
which the damping of the resonant modes is increased by
adding mechanical damping units to the motion stages’ cor-
ners. These units consist of a mass, mounted on a parallel
spring-damper configuration. The frequency range in which
the damping has to be increased for the type of application
aimed for is typically between 1 and 10 kHz. First of all, the
damper behavior has to be linear in order to damp small as
well as large amplitudes. This property is also beneficial dur-
ing system analyses and design; nonlinear analyses are more
difficult and time-consuming. In addition, most controller de-
sign strategies are based on linear theory (Skogestad and
Poslethwaite, 2005). The next challenge is the small volume
in which the damping mechanism has to fit. The third chal-
lenge is the relatively high damping value that has to be real-
ized in that small volume. As solution to these problems, a
fluid damper design based on an ultra-high-viscosity
Newtonian fluid is proposed in (Verbaan et al. 2013).

Linear viscoelastic fluid

This solution is suitable to fulfill the three requirements, but it
has to be taken into account that the properties of the damper,
as function of frequency, might depend on the linear visco-
elastic behavior of the applied fluid. Therefore, the linear vis-
coelastic behavior of the applied fluid has to be determined.
Only linear viscoelastic (LVE) behavior is considered since
the strains will be small. Different types of instruments are
available to measure the LVE characteristics of a fluid, de-
pending on the samples’ viscosity and the frequency range
of interest. In the low-frequency range (less than 10 Hz),

different types of dynamic viscometers are applied (Ferry
1969; Oakley and Giacomin 1994). In the high-frequency
range (10–200 kHz), generally used for the investigating of
microstructures and their interactions, a number of instru-
ments based on quartz crystals and nickel tube resonators are
available (Oosterbroek et al. 1980; Stokich et al. 1994). These
instruments however measure fluid characteristics at discrete
frequencies. Extended setups are available to obtain data at
multiple discrete frequencies (Fritz et al. 2003; Schrag and
Johnson 1971; Pechold 1959). The choice of instruments in
the intermediate range is limited (Benzing and Russel 1981;
Sittel et al. 1954; Konno et al. 1968). Although the frequency
range of some instruments is close to the required range for
this application, the range of applicable viscosities is often too
low (Blom and Mellema 1984; Crassous et al. 2005).

The device as described in this paper combines a number of
advantages for LVE characterization of ultra-high-viscosity
fluids: (1) the frequency range that can be measured is rela-
tively large and (2) the frequency range matches the frequency
range of interest for practical applications, which avoids the
necessity to change the temperature during the measurement.
It enables to measure the LVE properties of ultra-high-
viscosity fluids (>100 Pa·s) in the frequency range between
10 Hz and 10 kHz, which (3) results in a relatively low pro-
duction cost of this device (~$2500).

The fluid used is a commercial synthetic hydrocarbon fluid
(Rocol Kilopoise 0868) with a zero shear viscosity (ZSV) of
220 Pa·s and a density ρ of 880 kg/m3. No information about
the viscoelastic properties is provided by the manufacturer.

Outline

A mechanical damper design for broad-banded damping
based on the application of a high-viscosity fluid is presented
in “Damper design,” including its limits and assumptions. The
dynamical model of the damper is described in “Damper dy-
namic model and mechanism characterization,” as well as the
characterization of the mainmechanical part, which provides a
point of departure for the LVE fluid measurements. “Linear
viscoelastic damping” presents the linear viscoelastic theory
of the Maxwell fluid model. “Results” presents measurements
and discusses the linear viscoelastic fluid characterization ap-
proach. Parameters for the full damper model are determined
by fitting the model on the experimental data. “Fluid model
calculation and validation” represents the resulting LVE spec-
tra, i.e., relaxation times and moduli, for different numbers of
Maxwell modes. The best result is elaborated and the fluid
model is shown. The model is validated by calculating the
behavior of the damper setup with a different damping mech-
anism inserted and comparing the results with measured data.
In addition, the fluid is measured with a different device and
these results are compared with our findings. Conclusions and
a discussion regarding the field of application and the
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elaboration of the damper setup are given in “Concluding
remarks.” Improvements regarding the damper design are ad-
dressed in order to improve the LVE model quality further.

Damper design

Hardware configuration

Figure 1a shows a photograph of the setup while the mechan-
ical parts are shown in Fig. 1b, c. The damper assembly con-
sists of a mass, mounted on a spring, and a damper in a parallel
configuration. The mass can move in one direction over a
relatively small stroke and is fixed in the other directions.
The spring is a double-leaf spring guide. The ratio between
the mass and the stiffness of the leaf springs determines the
natural frequency of the dampermechanism. To test the damp-
er, a force actuator is added, indicated by F tð Þ. The position of
the mass x tð Þ is measured optically. All these parts are indi-
cated in Fig. 1a. The space between the leaf springs is used to
locate the damping mechanism in. The fluid is applied in a
sliding plate configuration to create a velocity-dependent
force. It sits between two slot plates and a fin, positioned
between the two plates, see Fig. 2. The fin moving relatively
to the plates induces a shear flow. A flexible encapsulation is
used to hold the fluid between fin and slot part. To study
different damping values with the same fluid, two damper
designs are used. Cross-sectional views of both damper mech-
anisms are given in Fig. 3. The left damper contains one fin,
the right one two. In addition, the gap width is different in both
cases. The dimensions are listed in Table 1. After assembling
the slot and fin parts, the tolerances are less than 4 × 10−6 m
with respect to the gap width and less than 2 × 10−6 m with
respect to parallelism between the fin and the slot part.

To excite the damper mass, a voice coil (Akribis AVM24-
5) is used which is driven by a current amplifier (custom-
made). The damper position is measured by a laser vibrometer
(Polytech OFV-5000), and the data acquisition is done by a
Siglab system that samples the laser vibrometer at 51.2 kHz

and provides also the signal for the amplifier. This input signal
is also measured to calculate a frequency response.

Limits and assumptions

A sliding plate damper for high frequencies introduces side
effects which can be divided into two groups: (1) geometry-
related effects and (2) frequency-dependent effects. A first
geometrical effect is due to the finite length of the plates.
From Table 1, it can be seen that the length-gap ratio amounts
133 for the single fin and 320 for the double fin. This ratio is
so high that this effect can be neglected. A second geometrical
effect is due to the difficulty to get the plates parallel to each
other, especially with the normal forces acting on the moving
fin. This design counteracts this problem in two ways; the
damper part is symmetrical, which implies that the fin normal
forces cancel each other. In addition, the double-leaf spring
mechanism has a very high lateral stiffness, which prevents
lateral displacements. A third geometrical effect is pumping of
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Fig. 1 a Damper hardware with
the functional components
indicated. b Isometric view and c
side view of the main mechanical
parts: base, leaf springs, and mass

Slot part 

Fin part 

Fig. 2 Exploded view of the damper fin and slot parts
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the fluid, which appears in the case of closed ends and intro-
duces a flow opposite to the fin velocity, and therefore intro-
duces a parasitic damping force. This problem is avoided by
letting the gaps’ ends open. The fin is shorter than the slot to
have the same damping area over the full damper stroke. To
avoid problems with the fluid running out, a flexible encapsu-
lation is used which keeps the fluid inside. These effects all
arise at low frequencies, at which the flow can be assumed
homogeneous. The inertial effects determine to which fre-
quency the flow can be assumed homogeneous.

A simple criterion for the time to establish homogenous,
shear flow is given by (Schrag 1977).

tce 1

ωc
¼ 10ρh2

η
ð1Þ

The maximum displacement amounts 10 × 10−6 m. In
addition, measurements are performed with different input
force amplitudes in order to validate the linear region of the
fluid. The gap width h, as provided in Table 1, results in an
estimated critical frequency of 250 kHz for the largest gap
width. This shows that a high fluid viscosity and small gap
widths enable high frequencies without losing homoge-
nous flow conditions.

Damper dynamic model and mechanism
characterization

Damper dynamic model

Figure 4a shows a dynamic model that represents the be-
havior of the damper setup as shown in Fig. 1. Mass md

represents the effective damper mass, mounted on stiff-
ness cd and damper dd. Mass mm represents the mounting
mass, which contains also the slot part and part of the
connection of the moving mass. The spring with stiffness
cm and dashpot with damping dm represents the connec-
tion to the fixed world or to a motion stage. The LVE
damper behavior is included by an arbitrary number of
Maxwell elements. The springs and dashpots in the LVE
damper model generate forces as a result of the position
and velocity differences between moving and mounting
mass. Finally, in between the springs and dampers of the
LVE damper model, additional degrees of freedom—with
their corresponding masses (m1...mn)—are added. These
masses balance the force equilibria between the springs
and the dashpots and can be considered as the mass of
the fluid.

Undamped characterization

The dynamical behavior of the setup can be mainly character-
ized by two features:

& the mechanical design (mass and stiffness) and
& the high-viscosity fluid damper

In order to enable to calculate the behavior of the LVE fluid
damper independently, the dynamic behavior of the mechan-
ical part is characterized in advance. The corresponding model
is shown in Fig. 4b and is a simplification of the model as
shown in Fig. 4a. The natural frequency of the simplified
model is determined by stiffness cd and mass md. Undamped
measurements are performed with two different moving
masses md, i.e., with and without the fin part. This changes
the natural frequency of the mechanism. The two correspond-
ing frequency response functions are shown in Fig. 5.

In this figure, different frequency ranges are indicated:

a) low-frequency range, determined by the static stiffness of
the leaf springs.

b) resonant behavior around the natural frequencies, clearly
visible as peaks in the frequency responses.

c) higher frequencies behavior dominated by the moving
mass.

d) at even higher frequencies, higher order dynamics is
observed.

slot part 

(static) 

fin part 

(moving) 

encapsulation 

Fig. 3 Cross-sectional views of the two different damping mechanisms.
Left, the single fin—as depicted in Fig. 2, right, the double fin

Table 1 Parameters of
both fin parts Dimension Size [mm]

Single fin length—l 16

width—w 8.5

gap—h 120 × 10−3

Double fin length—l 16

width—w 8.5

gap—h 50 × 10−3
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The value of the coherence of this measurement is close to
1 in the frequency region between 25 Hz and 15 kHz, which
indicates that the measurement quality is rather good over this
frequency range.

The two resonance frequencies, f 1 and f 2, can be deter-
mined with high precision. These two frequencies, combined
with the mass difference between the two measurements δm,
contain enough information to calculate the stiffness and mass
of the undamped setup with:

1
�
ω2
1

−1
1
�
ω2
2

−1

" #
k
m2

� �
¼ δm

0

� �
ð2Þ

m1 ¼ m2 þ δm ð3Þ

Subsequently, the modal damping can be determined by
calculating the amplification factor at the resonance frequen-
cy. This data is used in the subsequent steps as the model is
extended. The modal damping can be estimated by the ampli-
fication factor at the resonance frequency, which is called the
Q factor. This equation reads:

Q ¼ 1

2ς
ð4Þ

The amplification in both cases amounts 36 dB; this indi-
cates that the modal damping of the systems amounts 0.79 %.
This damping is transformed into a system parameter in Ns/m
and included in the damper model as parameter dd. Table 2
represents the data as calculated from the measurements.

Linear viscoelastic damping

The linear viscoelastic (LVE) damping behavior of the fluid
damper is represented by a multi-mode Maxwell model, see

LVE damper 
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moving 
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mounting 
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(a)  (b)Fig. 4 a Damper model with the
LVE fluid behavior included. b
Simplified damper model without
the LVE fluid
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Fig. 5 Measured frequency responses of the undamped mechanism, with
(solid line) andwithout fin (dashed line). Natural frequencies indicated by
f1 and f2. Top: magnitude, middle: phase, lower: coherence (indicator for
measurement quality). Ranges where specific system properties are
dominant are indicated in the top figure; a stiffness, b resonance, c
mass, and d high-order dynamics

Table 2 Parameter values of the undamped mechanism with the
double-fin damper applied

Without fin With fin

Nat. freq ω 1212 Hz 989 Hz

Stiffness c 1,67e6 N/m 1,67e6 N/m

Mass m 28,8 g 43,3 g

Damping ζ 0015 - 0015 -
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Fig. 4a, which gives a relation between stress, strain, and
strain rate (Macosko 1994). The model requires material pa-
rameters: the elastic modulus G0 [Pa] and the viscosity η0 [Pa·
s]. The model as shown in Fig. 4a, however, describes dis-
placements and velocities of moving masses, and the corre-
sponding parameters are the system properties stiffness c in
N/m and damping d in Ns/m. Therefore, the Maxwell material
parameters have to be transformed in system parameters be-
fore they can be used in the dynamic model. This relation can
be found in the damper geometrical properties. In order to
obtain the fluid material parameters, these geometrical prop-
erties should be excluded from the solution. For that purpose,
firstly, the rheological expressions storage (G′) and loss mod-
ulus (G″) have to be introduced.

The strain γ and strain rate γ in a fluid under harmonic
excitation with frequency ω is described by

γ ¼ γ0sin ωtð Þ ð5Þ
γ ̇ ¼ ωγ0cos ωtð Þ ð6Þ
in which γ0 is the strain amplitude. The shear stress is given
by

τ ¼ τ0sin ωtþ δð Þ ð7Þ
in which δ is the phase lag of the stress w.r.t. the strain. This
equation can be rewritten as

τ ¼ τ0
0
sin ωtð Þ þ τ0

0 0
cos ωtð Þ ð8Þ

Storage and loss moduli are defined by

G
0 ¼ τ0

0

γ0
ð9Þ

G″ ¼ τ0
0 0

γ0
ð10Þ

For the multi-mode Maxwell model, these moduli can be
calculated as function of frequency using

G
0
ωð Þ ¼

Xn

k¼1

Gk
ω2λ2

k

1þ ω2λ2
k

ð11Þ

G
0
ωð Þ ¼

Xn

k¼1

Gk
ωλk

1þ ω2λ2
k

ð12Þ

in which λk presents the characteristic times correspond-
ing to the Maxwell modes. The magnitude and the phase
are given by

G ωð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

0
ωð Þ2 þ G″ ωð Þ2

q
ð13Þ

angle G ωð Þð Þ ¼ tan−1
G″ ωð Þ
G

0
ωð Þ

� �
ð14Þ

The viscosity values ηi corresponding to the Maxwell
modes are given by

ηi ¼ Giλi ð15Þ

Figure 6 shows the geometrical parameters (l, w, h ) of the
damping mechanism (see Table 1).

The relation between the stiffness and damping values in
Fig. 4a and the fluid parameters modulus and dynamic viscos-
ity are, respectively,

ci ¼ 2lw

h
Gi ð16Þ

di ¼ 2lw

h
ηi ð17Þ

in which the factor 2 comes from the double-sided fin. Finally,
the zero shear viscosity of the fluid can be calculated by

ηZS ¼
Xn

i¼1

ηi ð18Þ

i.e., the zero shear viscosity equals the sum of the mode
viscosities.

Results

Figure 7 shows three measured frequency responses. The sol-
id line represents the undamped behavior with the fin mass
added, as presented in Fig. 5. The other two curves show
results corresponding to the two different damping mecha-
nisms (see Fig. 3). Stiffness cm represents the coupling be-
tween the measurement table and the damper setup which is
very high by mechanical design and, therefore, a relatively
large value is implemented in the dynamic model.
Subsequently, the frequency response of the Maxwell model
is fitted to the measurement data. This results in system pa-
rameters, i.e., the stiffness and damping values, for every
Maxwell model. To calculate the fluid behavior, model param-
eters have to be fitted on the measurement data and this is
executed using an optimization algorithm. The complex re-
sponse as function of the input frequency is measured and
represented by the magnitude and the phase diagram. The

(a) (b) 

Fig. 6 a Fin and b gap and corresponding geometrical parameters
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magnitude information is used in the optimization algorithm
to avoid time delay estimates in case of using the phase data.

The cost function is defined as

min
x

J xð Þ ð19Þ

in which parameter vector x contains the parameters included
in the LVE damping model

x ¼ c1…cnjd1…dn½ �T ð20Þ

The parameter space is defined as

lb≤x≤ub ð21Þ
which defines the upper and lower bounds of the components
of vector x. Further equality and inequality constraints are not
included. In the definition above, the cost function is defined as

J xð Þ ¼ max abs Rmeask k2− Rmod xð Þk k2
� 	� 	

ð22Þ

In this equation, Rmeas and Rmod(x) describe the vectors
with complex response data of respectively the measurement
and the model as function of the frequency. The maximum
value of the absolute error between the vectors with model
data and measurement data is used for cost function evalua-
tion. The stiffness and damping values are included for every
single mode, which defines the length of parameter vector x as
two times the number of Maxwell modes. In this optimization
criterion, all spring stiffness values in N/m and damper values
in Ns/m can be chosen freely which implies that the time
constants of the fluid modes are not determined on before-
hand. Although the best fit for a fixed number of Maxwell
modes is guaranteed by this approach, it does not necessarily
result in an equally spaced distribution of the time constants of
the modes. This optimization calculates c1…cn and d1…dn to
minimize the magnitude difference between the dynamic
model and the measurement. Masses m1…mn are determined
beforehand and are not included in the optimization proce-
dure. These amounts of mass are very low: it can be seen as
the fluid mass itself and, due to the small gap width, amounts
less than 0.1 g. For calculation reasons, these masses should
be chosen non-zero. Therefore, the masses are determined to
be 10−2 g, which enables a stable optimization procedure.

Optimization approach

Figure 8a shows the difference between the magnitude plots
for a single Maxwell mode applied as LVE damper model.
The horizontal axes are scaled logarithmically and show the
damper values and the stiffness values, respectively. The ver-
tical axis shows the maximum value of the error between the
response magnitudes, see (22). Fig. 8b shows a contour plot of
the landscape of Fig. 8a, in which three gradient-based opti-
mization paths are indicated with slightly different starting
points. These optimizations prove that more local minima ex-
ist and that this problem has a non-convex character, even in
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are plotted in order to show the non-convex behavior within the
optimization field. The three lines start at slightly different points
(indicated by the arrow) and end in three different minima
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case of a single-mode Maxwell description. Therefore, non-
convexity is assumed in general for this optimization problem.
In addition, discontinuous behavior is visible. These proper-
ties, non-convexity and discontinuity, require a non-convex
optimization algorithm in order to try to find the global
minimum.

A hybrid optimization procedure is applied, which starts
with a genetic algorithm (GA) (Bäck 1996) to deal with the
problem of multiple local minima. Although, in general, this
type of algorithms do not guarantee that the global optimum is
found, its efficiency can be influenced by choosing the correct
algorithm parameters and initial population size (Diaz-Gomez
and Hougen 2007). The solution of the GA is assumed to be in
the vicinity of the global minimum and is used as starting
point for a gradient-based optimization procedure (Rao and
Rao, 2009). For this specific problem the parameter space is
completely feasible, which is advantageous for the optimiza-
tion speed, just as the absence of equality constraints.

Fluid model calculation and validation

Parameter fit procedure

Firstly, a single-mode Maxwell was fitted, see Fig. 9a. The
maximum value of the error, after optimization, amounts
3.35 dB. It appears that a part of the frequency range, between
2200 and 3400 Hz, is excluded from the cost function due to
parasitic dynamics in this frequency range. To decrease the
error, a three-mode Maxwell model is fitted on the measure-
ment data. The result is shown in Fig. 9b. The error has de-
creased to 0.40 dB, a reduction of a factor 8 with respect to the
one-mode Maxwell model. The error as function of the num-
ber of Maxwell elements is shown in Table 3, which shows
that the error saturates for three Maxwell elements, i.e., more
elements do not improve the solution further and show that a
certain noise level is present in the measurement data.

Fluid parameters (three-mode model)

The fluid parameters Gi and ηi can be calculated using the
damping mechanism’s geometrical parameters l, w, and h,
see Eqs. (16) and (17). The time constants λi of the different
modes are calculated using (15). The resulting fluid parame-
ters are listed in Table 4. The zero shear viscosity amounts
209.7 Pa·s, see (18). This value underestimates the specified
value of the manufacturer by 4.7 %. Figure 10 shows the
storage and the loss moduli as function of the frequency.
The compound behavior is represented by the solid lines, the
separate modes by the dashed lines. The frequency range in
which the measurement is taken with good quality is indicated
in the figure. At low frequencies, the loss modulus is substan-
tially higher than the storage modulus, which implies domi-
nant viscous behavior.

Model validation

In the previous section, the double-fin measurement was used
to derive a fluid model. In order to validate this fluid model,
the reverse approach is applied; the resulting fluid model is
used to predict the behavior of the damper with the single-fin
mechanism, the result is compared with the corresponding
measurement, see Fig 11. The magnitude (top) shows that
the model provides a very good estimate of the measured
behavior of the damper. The maximum error amounts
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Fig. 9 a Measured results (solid line) and a single Maxwell mode fit
(dash-dotted line) of the damped behavior with the double-fin setup.
The upper plot shows the magnitude. The lower plot shows the error

with the maximal error value of 3.35 dB. b Three-mode Maxwell fit on
the same measurement as in the left figure. The maximal absolute error
amounts 0.40 dB

Table 3 Convergence of
the error as function of
increasing number of
Maxwell elements

# Modes Error [dB]

1 3.322

2 0.938

3 0.404

4 0.414

6 0.415

7 0.416
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1.7 dB, see lower plot. This relatively small error indicates that
the fluid model is good enough to predict the damper behavior
over this frequency range.

Single-fin fit and validation

The fitting procedure is repeated on the single-fin measure-
ments. The resulting fluid model parameter values are
listed in Table 5. These values differ significantly from
the values that are listed in Table 4. The explanation of
these differences can be found in the differences of the
fin geometry: if the damping value is too low, the damping
behavior cannot be extracted with enough accuracy. In this
case, a single mode can describe the main characteristics of
the damping behavior. The remaining two modes are diffi-
cult to place for the algorithm due to the low sensitivity of
the displacement measurement. This phenomenon is elab-
orated upon in more detail in the discussion section in
order to obtain an improved setup.

The zero shear viscosity in this case amounts 140.4 Pa·s,
which is 36% lower than specified. This model is validated by
calculating the behavior of the double-fin setup and compared
with the measurement of the double fin. In this case, the max-
imal error between the predicted behavior and the measure-
ment amounts 2.3 dB which is larger than the error shown in
Fig. 11.

Fluid model validation by time-temperature-superposition

To validate the quality of the obtained fluid model further,
and thereby the quality of the setup, measurements are
performed by means of time-temperature superposition
(TTS) method. This method enables fluid characterization
over very large frequency ranges (Olsen et al. 2001). The
setup used is a Rheometrics ARES LS rheometer equipped
with parallel plates. An isothermal frequency sweep from
215 to 0.1 rad/s with three logarithmically spaced points
per decade was done. The maximum dynamic strain did
not exceed 4 % to ensure behavior in the linear viscoelastic
region. Figure 12 shows the behavior of the fluid model as
described in this paper and the curves measured by the TTS
method for a reference temperature of 20 °C. The fluid
model, obtained by the setup as described in this paper,
provides a relatively good fluid model up to at least
7 kHz, which was used in the fitting procedure. The wav-
iness of the storage modulus in Fig. 12 is due to the fact
that only three modes are applied to describe the fluid
behavior over this frequency range.

Table 4 System parameter values and the corresponding fluid
parameter values (three-mode model)

M#1 M#2 M#3

C = 1.51e5 4.29e6 5.72e7 N/m

D = 646.6 790.5 607.4 Ns/m

Fluid parameters

G = 15,538 4.41e5 5.87e6 Pa

η = 66.3 81.1 62.3 Pa·s

Time constants

λ = 4.3e−3 1.8e−4 1.06e−5 s
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Fig. 11 Measured results with the single fin mechanism—continuous
line—and the estimation by the 3-mode model—dash-dotted line. The
lower plot shows the error between the prediction and the measurement

Table 5 Resulting fluid model values for the single fin measurement

M#1 M#2 M#3

G = 3.49e5 30.35 2.72e9 Pa

η = 69.5 5e−4 70.9 Pa·s
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Concluding remarks

Conclusion

In this paper, a novel design of a sliding plate damper is
presented that can be used to characterize LVE fluid be-
havior of high-viscosity fluids, i.e., it can be used as a
(very cheap) rheometer. The drawbacks of standard sliding
plate, damping devices, are taken cared off by the mechan-
ical design: elastic elements are applied to enable a mea-
surement stroke combined with stiff guidance in other di-
rections. Linear viscoelastic fluid characterization of a
high-viscosity fluid is performed in a frequency range from
10 Hz to 7 kHz. In this frequency range of roughly three
decades, a three-mode Maxwell model accurately de-
scribes the LVE behavior. The fluid model obtained by
the double-fin setup appeared to be more accurate than
the fluid model obtained by the single-fin measurement,
which was verified by the zero shear viscosity found of
209.7 Pa·s, which is close to the value as specified by the
manufacturer. This indicates that a major part of the linear
viscoelastic behavior of this fluid is captured in the fre-
quency range that has been fitted. A second validation of
the LVE behavior by TTS characterization shows that the
fluid model as obtained is correctly up to 10 kHz. This
frequency is high enough to obtain fluid models that can
be used in practical damper designs for motion stages. The
obtained LVE fluid models are applicable in the design
procedure of dampers for future motion systems.

Discussion

The three-mode fluid model as described in this paper is
intended for application in the design of industrial
dampers for motion stages. This is demonstrated in

(Verbaan et al. to be submitted). Although this fluid mod-
el is applicable in practical designs, improvements can be
made regarding the rheometer design, which improves the
quality of the fluid model further. In order to derive the
fluid model, the damper displacement is measured. The
displacement graphs show, as function of frequency, suc-
cessively, a region dominated by the stiffness, one domi-
nated by the damping and one dominated by the mass.
The damping behavior is dominant around the setup’s
resonance frequency. The single-fin measurement and
the double-fin measurement show that a higher damping
value leads to a larger damping-dominated frequency re-
gion and, therefore, to a more accurate fluid model.
Figure 13 shows model-calculated behavior of respective-
ly the undamped setup, the setup with the single-fin and
double-fin mounted and an additional curve for a hypo-
thetical setup with 10 fins. This curve shows that the
damping becomes more dominant and, therefore, can be
separated from the measurement with higher accuracy,
especially at frequencies further from the resonance fre-
quency: Fig. 13 shows that the damping behavior can be
distinguished more accurately in the frequency regions
10–100 Hz and 3–10 kHz. This results in a higher quality
of the fluid model, at least in these regions. Related to this
observation is the question about the viscosity range of
fluids that can be measured in this setup. Based on the
previous statement about force-dominated frequency re-
gions, this setup is not suitable for fluids with a zero shear
viscosity lower than 100 Pa·s. For lower viscosities, the
damper design should be changed to obtain accurate fluid
models. The geometrical factor of the damper has to be
changed to increase the influence of the damping force. In
addition, in this case, it might be possible to describe the
fluid LVE behavior more accurately by applying more
than three Maxwell modes.
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