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Abstract
Partial substitution of ethylene oxide with carbon dioxide moieties can yield greener nonionic surfactants with comparable 
functionalities. In water, studies showed that the incorporation of  CO2 moieties suppresses the formation of liquid crystal-
line phases at high concentrations. A similar reduction in solvation and suppression of liquid crystal formation is observed 
here in the ionic liquids ethylammonium nitrate and propylammonium nitrate. Small-angle neutron scattering is used to 
study the solvation and packing of micelles in ionic liquids as functions of temperature, concentration, and content of  CO2 
moieties. By comparing with aqueous solutions, this work shows that while the nature of surfactant-solvent interaction is 
comparable among water and alkylammonium nitrate ILs, their behaviours in the solvated micelle shell are different. The 
lack of liquid crystalline phases should be attributed to the small excluded volume of micelles, which can be fine-tuned via 
ion design and choice of solvent.
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Introduction

Over the past two decades, ionic liquids (ILs) have attracted 
interest as promising candidates for next-generation sol-
vents. They exhibit negligible vapour pressure and tuneable 
solvent properties [1–3]. More than  106 different ion pairs 
have been postulated, greatly expanding on the hundreds 
of organic solvents currently being used in industry and 
research. Among these, some ILs were found to be inhomo-
geneous in the bulk [4]. The delicate balance of directional 
intermolecular interactions (e.g. hydrogen bonding), electro-
static forces, and Van der Waals forces induces molecular 
segregation resulting in bicontinuous, sponge-like polar/
apolar networks in pure ILs [5–7]. This is exemplified by 
alkylammonium nitrate ILs, among which ethylammonium 
nitrate (EAN) is the most extensively studied [8]. A series 

of structural studies have shown the domain size and cor-
relation length can be controlled through variation of the 
alkyl length of the cation [1, 8]. The formation of this nano-
structure enables them to dissolve a diverse range of polar 
and apolar solutes, and the presence of this rich pattern of 
intermolecular forces has made them excellent media for 
self-assembly [5, 9–12].

The self-assembly of numerous surfactants [10, 
13–15] in ILs has been extensively studied, as have 
other amphiphiles including block copolymers [16–19], 
biomolecules [20], and even alkanols [9, 21]. Specific 
counterion effects can complicate studies of ionic 
surfactants [10, 11, 15, 22–26], making nonionic sur-
factants preferred solutes to isolate solvation and sur-
factant packing as functions of IL composition and sol-
vent nanostructure.

Polyoxyethylene n-alkyl ethers  (CnEm) are the most 
widely used nonionic surfactants present in almost all 
cleaning products today. They are often added as poly-
disperse mixtures (a distribution in headgroup and tail 
length) to engineer desirable phase behaviour and regu-
late the viscoelastic properties of the solution. Although 
among the most widely used surfactants, the ethylene 
oxide-based headgroups are derived from petrochemi-
cals. This motivated a search for greener replacement, and 
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carbon dioxide stood out as a promising candidate. Recent 
advances in catalytic processes have enabled large-scale 
production of nonionic surfactants with  CO2 groups partly 
substituting ethylene oxide (Fig. 1) [27, 28]. This can 
be achieved by simply copolymerising ethylene oxide 
and  CO2 with a suitable catalyst onto the OH-group of a 
chosen alcohol. These surfactants with  CO2-derived ester 
groups  (CO2 moieties) can greatly reduce petrochemical 
consumption and deliver comparable functionalities to 
conventional nonionic surfactants in aqueous systems 
[29–32]. More strikingly, the inclusion of even a single 
 CO2 moiety per surfactant is reported to completely sup-
press the formation of gel-like liquid crystalline phases 
in water at high surfactant concentration [29]. This is 
attributed to reduced headgroup hydration and increasing 
micelle softness. Ordered packing of these soft micelles 
is discouraged even at high concentrations, allowing solu-
tions to be much more easily stored and handled, which is 
of high importance for practical applications.

Previous studies of conventional  CnEm surfactants 
in ethylammonium nitrate (EAN) have shown that they 
can support a wide range of amphiphilic self-assembly 
behaviour into micelles, lyotropic liquid crystals, and 
microemulsions [13, 14, 33, 34]. Systematic trends in 
micelle morphology and phase behaviour are observed 
parallel to their aqueous analogues [14]. In this study, 
we have investigated micelle formation by nonionic 
surfactants containing  CO2 moieties in two ionic liq-
uids, EAN and propylammonium nitrate (PAN). We 
used small-angle neutron scattering (SANS) to eluci-
date how this modification of the headgroup influences 
its interaction with IL solvents and thereby modulates 
their aggregation properties. Dodecyl and hexadecyl sur-
factants with varying  CO2 moiety contents are studied 
at multiple temperatures and compositions, allowing us 
to also assess the effect of the alkyl chain length on 
the aggregation behaviour. The aim of this investigation 
was to provide insight into the origin of solvophobicity 
displayed in ILs [35], the interaction between ILs and 
the modified surfactant headgroups, and to compare this 
behaviour to that previously observed in water. This will 
enable rational design of phase behaviours via choice 
of solvents.

Materials

Octaethylene glycol monohexadecyl ether  (C16E8) was pur-
chased from Nikkol and used as received. Other surfactants 
containing  CO2 moieties (Table 1) were developed and pro-
duced by Covestro via copolymerisation of ethylene oxide 
with  CO2 applying an alkyl alcohol as the initiator and a 
bimetallic catalyst. Electrospray mass spectrometry was 
employed to verify their alkyl length and headgroup size 
(see SI). All samples were stored in a freezer at −20 ℃, and 
the average molecular mass is given in Table 1.

Partially deuterated  d3-ethylammonium nitrate (EAN) 
and  d3-propylammonium nitrate (PAN) were prepared 
by neutralisation of nitric acid with the corresponding 
alkylamine, followed by deuteration of exchangeable hydro-
gens. Ethylamine solution (66–72%, Sigma), propylamine 
(99%, Sigma), and nitric acid (70%, Ajax) were used as 
received. Amine solutions were diluted in water to ~20 wt% 
before being added dropwise to the diluted nitric acid solu-
tion (~20 wt%). The mixture was under constant stirring 
and kept in an ice bath. Temperature was maintained below 
10 ℃ and the titration is conducted until pH indicated the 
reaction mixture was in slight excess of amine. Bulk water 
was removed using a rotary evaporator (30 mbar, 40 ℃). 
Deuteration of exchangeable protons was performed by add-
ing 3:1 mol/mol  D2O to ILs. Bulk water was removed by 
rotary evaporation, and exchange was repeated 5 times per 
IL sample. Trace water was removed under a high vacuum 
over > 48 h (0.2 mbar, room temperature). Final water con-
tent is < 0.2 wt% (Karl Fischer titration), and 300 MHz 1H 
NMR confirmed that all exchangeable protons had been 
replaced by deuterium.

Methods

Diffusive interfacial transport experiments were performed 
to confirm the absence of liquid crystalline phases [36, 37]. 
A Leica DM 2500p microscope fitted with a polariser was 
used. Here, a drop of molten dry surfactant is added to a 

Fig. 1  Structure of nonionic surfactant with  CO2-derived ester 
groups,  Cn+2(E)y(CO2)xOH, n = 10 or 14. The headgroup is a statisti-
cal copolymer of ethylene oxide and carbon dioxide. Average head-
group compositions and molecular masses are shown in Table  1. 
Mass spectra are shown in Fig. S1

Table 1  Average compositions and molecular masses of nonionic 
surfactants used in this study. C16E8 is monodisperse but all other 
samples are industrial mixtures of various headgroup sizes, and the 
averaged value is used

Surfactant Mn (g/mol) Abbreviation

C12(EO)8.2(CO2)3.1OH 680.21 C12E8C3
C16(EO)8OH 594.86 C16E8
C16(EO)9.3(CO2)1.5OH 707.09 C16E9C2
C16(EO)7.8(CO2)2.8OH 708.64 C16E8C3
C16(EO)14.6OH 824.97 C16E15
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clean glass slide and covered by a thin coverslip. A drop of 
solvent is added to the corner of the coverslip. Due to the 
capillary effect, the solvent is drawn into the gap between the 
coverslip and glass slide. As the solvent meets the surfactant, 
a continuous concentration gradient is created between pure 
solvent and pure surfactant. This enables all phases that exist 
at any composition at the specified temperature to be gen-
erated. Crossed polarisers are used to help identify liquid 
crystalline phases that display birefringence. Images were 
captured using a QImaging MicroPublisher 3.3 RTV camera 
with 200 times magnification.

Small-angle neutron scattering (SANS) measurements 
were performed on the Quokka beamline at the Australian 
Centre for Neutron Scattering with hydrogenous surfactants 
in partially deuterated ILs (single contrast). Neutrons with 
average wavelengths of 5.0 and 6.0 Å and a ∆λ/λ up to 15% 
were selected with a velocity selector. Scattering was col-
lected from 1.0-mm path length samples at two sample-to-
detector distances of 4 and 14 m, giving a combined range 
of 0.004 < q < 0.4 Å−1. Acquisition was performed at 308, 
343, and 378 K. Isotropic scattering patterns collected on 
a 2D detector were reduced to I(q) using modified NIST 
routines in Igor™.

Model fits to the SANS patterns are shown and described 
in the SI. In order to facilitate comparison with these sys-
tems in water, we have followed the analysis described pre-
viously. Forward scattering intensities, I(0), were used to 
extract the structure factor at the thermodynamic limit (S(0)) 
in the monodisperse approximation (Eq. 1) [29].

where �dry is the dry volume fraction of surfactant calcu-
lated from theoretical aggregation number and it is in good 
agreement with published density of conventional nonionic 
surfactants (see SI) [38], Δ� is the difference in scattering 
length densities of dry micelles and solvent, and V is the 
volume of the dry micelle. For the model of hard-spheres, 

(1)I(0) = �dry ⋅ Δ�
2
⋅ V ⋅ S(0)

S(0) is accurately described by the Carnahan-Starling model 
(Eq. 2) [39].

This model was then used to determine the effective, con-
centration-dependent, hard-sphere volume fraction ( �hs ) of 
the dispersed micelles according to Eq. (2). The relationship 
between measured �hs and the actual volume fraction of sur-
factant added, �dry , is modelled by Eq. (3) [29].

Both B and A are parameters that describe two differ-
ent concentration-dependent effects regarding the effective 
volume of the micelles. B accounts for the solvation of dry 
micelles which increases their effective volume fraction, i.e. 
the volume ratio of solvated to dry micelles (which must 
be > 1). The parameter A accounts for the interpenetration of 
neighbouring micelles which occurs with increasing micelle 
concentration and reduces the effective volume fraction [29]. 
A is a second-order term and therefore negligible at low 
concentrations, but being quadratic in the volume fraction 
becomes increasingly dominant at higher concentrations. In 
molecular terms, A�dry can be interpreted as the fraction of 
the initial hard-sphere volume (present at infinite dilution, 
B�dry ) that becomes penetrable at a finite concentration.

Results and discussion

Figure 2 shows diffusive interfacial transport images of 
polydisperse C16E15 (Fig. 2A) and C16E8C3 (Fig. 2B) in 
EAN at 296 K. Neither surfactant forms birefringent liq-
uid crystalline phases, but the deformed air bubble near 
the solid–liquid interface of C16E15 (Fig. 2A) is diagnos-
tic for an isotropic, gel-like cubic phase. In contrast, the 

(2)S(0)−1 =

(

1 + 2�hs

)2
− 4�3

hs
+ 4�4

hs
(

1 − �hs

)4

(3)�hs = B�dry(1 − A�dry)

Fig. 2  Polarised microscopy 
images of diffusive interfacial 
transport experiments at 296 K 
for A C16E15 and B C16E8C3 
in EAN. The top right corner 
is pure surfactant and solvent 
is added from the bottom left 
corner of each image
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solid–liquid interface of C16E8C3 with EAN displayed a 
smooth boundary from which any trapped bubbles could 
easily diffuse away indicating that no cubic phase occurs in 
C16E8C3-EAN mixtures at any compositions. This is con-
sistent with existing literature in water, where the incorpora-
tion of  CO2 moieties can completely suppress the formation 
of liquid crystalline phases [29]. To understand the origin of 
this behaviour and the interaction between micelles, SANS 
experiments were performed.

Figure 3 shows representative SANS patterns of selected 
surfactants in EAN at 308 K, above the Krafft temperature 
of the hexadecyl surfactants. Figure 3A shows the results 
found for all surfactants at 5 wt% and 308 K (complete 
dataset of all compositions and temperatures are shown in 
Figs. S2−S5), which is consistent with the formation of 
spherical core–shell micelles above a critical micelle con-
centration (CMC). Figure 3B shows that with increasing 
concentration, scattered intensity increases, and an inter-
action peak (structure factor) develops above 5 wt%. The 
upturn in intensity at q < 0.01 Å−1, which is most apparent 
in C12E8C3, due to the low scattering intensity from the 
sample, is likely due to microbubbles trapped within the 
sample cell [14].

The scattering patterns of C16E9C2 and C16E8C3 at 5 
wt% (Fig. 3A) are almost identical, suggesting that the for-
mation of micelles is insensitive to small differences in the 
extent of  CO2 incorporation. However, both C16 surfactants 
containing  CO2 moieties show a higher scattering intensity, 
and the intensity upturn occurs at a lower q than that of 
C16E8 (near 0.1 Å−1), both indicating that surfactants with 
 CO2 moieties form larger micelles. We also noticed that 
for the most highly concentrated samples, the correlation 
peak is much sharper for C16E8 than C16 surfactants con-
taining  CO2 moieties (e.g. Fig. S2). This indicates that the 
repulsions between micelles at the same concentration are 
stronger in C16E8 than surfactant containing  CO2 moieties, 
similar to their behaviour in water [31].

The lower overall scattering intensity of the C12E8C3 
solution is due to its much higher CMC. This is clear from 
the absence of C12E8C3 micelles in EAN below 2 wt% 
(Fig. S2), and from invariant analysis (see Fig. S7), which 
yields the CMC values listed in Table 2. Similar depend-
ence of CMC on alkyl chain length is reported in water and 
EAN [14].

CMCs are much higher in PAN than EAN, which is 
higher than in water (e.g. C12E8C3 is 0.0036 wt%,  C16ExCy 
CMCs in water are not available due to poor solubility) [29]. 
C12E8C3 can no longer form well-defined micelles up to 
10 wt%, indicating that the minimum alkyl chain length 
required to stabilise micelles is greater in PAN than in EAN, 
as also seen in conventional polyoxyethylene surfactants 
[34]. Similarly, no micelles were observed by SANS in C16 
surfactants up to 2 wt% in PAN, and 5 wt% solutions yielded 
lower-than-expected total coherent scattering and volume 
fraction, both consistent with elevated CMC.

Fitting of the SANS data to a core–shell sphere form fac-
tor with hard-sphere structure factor did not yield a unique 
and consistent set of physically meaningful fits [14, 31]. 
This is likely due to interpenetration of the headgroups, 
as was found for these systems in aqueous solution (see SI 
for details).

To further explore the intermicellar interactions and facil-
itate comparison with aqueous solutions, we instead analysed 
the forward scattering, I(0), in terms of effective volume 

Fig. 3  Representative SANS patterns of nonionic surfactants in EAN 
at 308  K. A 5 wt% solutions of C16E8, C16E9C2, C16E8C3, and 
C12E8C3 and B all concentrations of C16E8C3

Table 2  Critical micelle concentrations (CMCs) in EAN and PAN 
estimated using invariant analysis. The CMC of C12E8C3 in PAN 
could not be determined as micelles were only observed in one sam-
ple above 10 wt%. Details are provided in SI

Surfactant CMCs (wt%)

EAN PAN

C12E8C3 2.0 ± 1.7 > 10
C16E8C3 0.70 ± 0.56 1.2 ± 0.7
C16E9C2 0.79 ± 0.70 1.4 ± 0.4
C16E8 0.72 ± 0.48 2.6 ± 0.8

816 Colloid and Polymer Science (2023) 301:813–820



1 3

fraction for a hard-sphere interaction as outlined in the 
“Methods” Section [29]. All scattering curves exhibit pla-
teaus at q < 0.02 Å−1 (see Fig. 3 and Figs. S2−S6), enabling 
the thermodynamic limit, I(0), to be determined. I(0) first 
increases with increasing concentration as more micelles are 
present, and the total scattering volume increases and then 
decreases as the packing of micelles becomes increasingly 
ordered. This structure factor effect leads to the development 
of a peak near 0.05 Å−1, which becomes more pronounced 
and shifts to higher q with increasing surfactant concentra-
tion as the average separation between micelles decreases.

Fits to Eq. (3) and the derived fit parameters are shown  
in Fig.  4 and Table  3, respectively, assuming that the 
micelle aggregation number is independent of concentra-
tion [14]. Good fits are obtained overall, especially at high 
surfactant concentrations. The dry micelle volume fraction 
for C12E8C3 has been corrected for its CMC of 2.5 wt% but 

neglected for C16 surfactant which may explain the slight 
discrepancies observed for the lowest concentrations (see 
SI). This is most pronounced for C16E8, which has a higher 
CMC than the other two C16 surfactants as shown by the 
relatively low scattering intensity in Fig. 3A. Nevertheless, 
this has negligible impact to the fit over the entire concen-
tration range, and the subtle differences in CMCs among 
C16 surfactants are negligible within the uncertainties of 
the invariant analysis (Table 2).

Table 3 shows that all four surfactant systems yielded 
a solvation value, B, greater than two in EAN. This 
means that isolated micelles in dilute solution occupy 
more than twice their dry volume due to solvation, which 
are significantly larger than the corresponding values (for 
C12 surfactants with same headgroups) in water. This 
means the headgroup layer of the micelles is much more 
swollen and the headgroups themselves protrude further 
into their surroundings in EAN. The solvation numbers 
of each surfactant are smaller, however, as the volume 
of each EAN ion pair is much larger than a single water 
molecule [29].

The hydration of  C12E14 of 28.8 corresponds well to 
approximately two water molecules per ether oxygen 
hydrogen bonding acceptor [41]. In EAN, the ethylammo-
nium cation can donate into three H-bonds, from which the 
predicted IL/surfactant ratio should be around 0.67 that of 
water. This is consistent with our results of 17.2 water mol-
ecules versus 12.8 EAN per C12E8C3 [29] and suggests that 
the solvophilic solvent-headgroup interaction of nonionic 
surfactants with alkylammonium ILs is also governed by 
hydrogen bonding.

Increasing alkyl length to C16E8C3 reduces the EAN/
surfactant ratio. This is likely due to the formation of larger 
micelles reducing the curvature of the headgroup shell, so 
that less volume is available per surfactant to be occupied 
by solvent species. Despite having the smallest headgroup, 
C16E8 has the largest solvation in EAN, confirming that the 
incorporation of  CO2 moieties reduces headgroup solvation 
in EAN, just as it does in aqueous systems [29].

The main difference to the aqueous system is that the soft-
ness parameter A does not increase with increasing content 
of  CO2 moieties but slightly decreases. This means the pure 
ethylene oxide headgroup shows a high degree of interpene-
tration in EAN. This difference may be attributed to the large 
volume of micelles in EAN (i.e. the B parameter in EAN is 
substantially bigger than in water). More swollen micelles 
means the micellar shell is more prone to penetration. Fur-
thermore, water is a stronger H-bond donor relative to the 
less polar N–H bonds in ethylammonium cations and there-
fore is more tightly H-bonded to the ethylene oxide groups.  
In a similar direction, the difference between B and A is 1.7 
and 1.3 (Table 3) in water and EAN, respectively [14, 29], 
which means that the relative effect of the interpenetration 

Fig. 4  Variation of experimental hard-sphere volume fraction, �hs , of 
surfactant solutions from SANS data with dry volume fraction, �dry , 
corrected by its CMC. Lines show the best fit to Eq. (3)

Table 3  Micelle solvation, B, and softness, A, determined from fits 
to Eq. (3), represented as multiples of dry micelle volume. Solvent 
per surfactant is calculated based on the known solvent density and 
micelle aggregation number (see SI for details). Values for aqueous 
solutions are taken from ref [29].

Surfactant-solvent Solvation, B Softness, A Solvent per 
surfactant

C12E8C3-EAN 2.8 1.8 12.8
C16E8C3-EAN 2.1 1.2 8.3
C16E9C2-EAN 2.3 1.5 10.2
C16E8-EAN 3.2 1.9 14.7
C12E8C3-water 1.51 0.55 17.2
C12E12C2-water 1.58 0.52 19.7
C12E11C1-water 1.63 0.50 23.2
C12E13-C1-water 1.64 0.37 25.2
C12E14-water 1.72 0.01 28.8
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of shells (softness) is more pronounced in EAN compared 
to water.

The solvophobic interaction that gives rise to amphiphilic 
nanostructure in EAN itself has been shown to also cause 
ethylammonium ions to associate with surfactant aggregates 
[15]. The IL cation can preferentially orient at apolar inter-
faces and exhibit co-surfactant-like behaviour by embedding 
its alkyl tail into the micelle core. These amphiphilic IL 
cations may slightly swell the micelle cores, also contribut-
ing to softer micelles overall.

With increasing temperature, the SANS patterns of all 
surfactants in both EAN and PAN exhibit less sharp corre-
lation peaks, the peaks are shifted to lower q, and the over-
all scattering intensity increases. These changes indicate a 
growth of the micelles with rising temperature and possible 
increase in polydispersity. SANS patterns of surfactants 
containing  CO2 moieties in ILs at elevated temperature can 
no longer be modelled by interacting spheres, requiring 
the core to become ellipsoidal (see SI) [32]. This transi-
tion is also consistent with past studies of polyoxyethylene 
surfactants in water and EAN. In both solvents, micelle 
growth occurs as the temperature approaches their cloud 
point [14, 42–44] and confirms that the thermal response 
of these surfactants is comparable to conventional non-
ionic surfactants. This is attributed to the reduced solvation 
with increasing temperature, thereby reducing the effec-
tive headgroup area and surfactant packing. The scatter-
ing patterns of the PAN samples (Fig. S6) show that this 
increase of scattering intensity with temperature is more 
pronounced for pure C16E8 than surfactants containing 
 CO2 moieties, where most likely an increasing CMC leads 
to demicellisation.

In water, EAN, and PAN, the minimum alkyl chain length 
for conventional nonionic surfactants to form well-defined 
micelles at low concentrations (i.e. low CMC) is C10, C14, 
and C16, respectively [14, 34, 41]. Our results confirm that 
a similar trend applies to nonionic surfactants with  CO2 moi-
eties, indicating that the driving force of self-assembly is 
largely unaffected by headgroup modification [40]. From the 
CMC values, we can conclude that the free energy of micel-
lisation, ΔG°mic, of hexadecyl surfactants in PAN is lower 
than in EAN by about a kT, which is itself 6 kT smaller than 
in water.

Conclusion

The incorporation of  CO2 moieties in the headgroup of 
nonionic surfactants has a negligible effect on the ten-
dency to form micelles. The solvophobic driving force 
for self-assembly is governed by the alkyl chain length 
of surfactant and the average polarity and nanostructure 
of the solvent. However, the presence of  CO2-derived 

ester groups in the headgroup can modulate the sol-
vent-headgroup interaction. Higher content of  CO2 
moieties is observed to suppress solvent-headgroup 
hydrogen bonding which reduces solvation in ILs as 
it does in water.

While the underlying molecular interaction is simi-
lar, this has led to different trends in micelle softness in 
water and EAN. In water, the micelle softness increases 
(or the extent of interpenetration among nearest micelles, 
captured by parameter A) with content of  CO2 moieties. 
This is attributed to the reduced hydration of the micellar 
headgroup [29]. In contrast, micelles in EAN are inher-
ently more swollen due to the larger EAN molar volume 
(relative to water), and micelles become less penetrable 
with increasing content of  CO2 moieties, opposite to water. 
Alkylammonium IL cations can act as a co-surfactant and 
undergo dynamic exchange between the solvation and 
bulk state [15, 45–47]. As a result, the relatively large 
volume of ILs in micellar shell can become easily dis-
placed by chain-chain interpenetration among neighbour-
ing micelles. This allows well-solvated micelles to be 
softer than poorly solvated ones in ILs.

Overall, the effect of incorporation of  CO2 moieties 
into nonionic surfactant headgroups has the same effect of 
decreasing solvation in ILs and in water. The co-surfactant 
behaviour of ILs has induced a different trend in the ability 
to interpenetrate among neighbouring micelles as the con-
tent of  CO2 moieties increases. Nevertheless, the excluded 
volume per micelle in ILs for surfactants containing  CO2 
moieties is comparable to, if not lower than, that of water. 
This suppresses the formation of liquid crystalline phases, 
allowing concentrated solutions to be easily handled as 
low-viscosity fluids. Differences in H-bonding and amphi-
philic character of water and EAN highlight that solvent 
can be used as a tool to fine-tune micelle properties and 
inter-micelle interactions.
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