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Abstract
Metal nanoparticles are used to catalyze chemical reactions. Among them, noble metal nanoparticle catalysts need to be 
used in small quantities. Some reports reveal catalytic activity is further improved by controlling nanoparticle arrangement 
and distribution. Much research has been directed toward the formation of one-dimensional arrays by compositing metal 
nanoparticles with template materials. However, previously reported methods form arrays that lack linearity or suitable 
interparticle distances, which is ascribable to array crossover and particle aggregation, in addition their fabrication proce-
dures are expensive and not suitable for large-scale practical use. Here we show that one-dimensional arrays of platinum 
nanoparticles (PtNPs) were formed by using electrospun polyurethane nanofibers as a template. PtNPs adsorbed on each 
polyurethane nanofiber form a one-dimensional array over longer distances. The catalytic  H2O2 decomposition performance 
of the prepared one-dimensional PtNP arrays was 45.6% decomposition in 15 min, which revealed a decomposition rate 
more than twice that obtained using the same number of PtNPs randomly distributed on the template or dispersed in a liquid. 
Although this method is a very simple method for one-dimensional arrangement of metal nanoparticles, thereby improving 
catalytic efficiency per metal nanoparticle, which help to reduce the amount of metal nanoparticles used during catalysis 
and contributes the cost of catalysis products cost.
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Introduction

Nanotechnology is gaining increasing attention, nanopar-
ticles becoming more-actively researched [1–7]. Catalysis, 
especially involving metal nanoparticles, has been among 
the most actively investigated nanoparticle fields [8–15]. 
Such a catalyst reduces the activation energy of a reaction 
but is not included in the product; consequently, a small 
amount of a catalyst is preferred from the perspectives of 
reducing cost and minimizing impurities. The beginning of 
nanoparticulation of bulk metals is to increase the specific 

surface area and improve the catalytic efficiency [16]. In 
addition, recent reports reveal that catalytic efficiency is 
related to metal nanoparticle distribution [17–20]. Thus, 
the catalyst becomes more efficient when the particles are 
widely spaced rather than aggregated. Therefore, control-
ling the inter-particle distance is one of the key parameters 
for enhancing the catalytic activity. And more, noble metal 
nanoparticulation and distribution control can significantly 
affect cost when a noble metal is used as the catalyst.

Controlling the metal nanoparticle distribution on the 
templates is a core nanomaterials chemistry problem, and 
many one-dimensional array templates have been used to 
assemble ordered nanoparticle aggregate, with DNA, self-
assembled polymers, carbon nanotubes, and lithography 
used to form templates [21–29]. However, DNA and lithog-
raphy involve expensive procedures that are not suitable 
for large-scale practical use. Self-assembled polymers and 
carbon nanotubes procedure that lack linearity or suitable 
interparticle distances due to array crossover and nanopar-
ticle aggregation.
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To overcome these problems, our group introduced one-
dimensional arrays of nanoparticles fabricated using electro-
spun segmented polyurethane (PU) nanofibers as a template 
[30]. A surface specific segmented PU nanofiber structure 
was achieved by stretching (stretched PU nanofibers) during 
electrospinning [31]. In these reports, hard segments are lin-
early distributed along the long axis of the fiber by the hard 
and soft segments of the PU molecular structure to form 
a remarkable phase-separated structure. This is ascribable 
to the stretching force applied during the electrospinning 
preparation of the PU nanofiber. Furthermore, these reports 
revealed that gold nanoparticles can be one-dimensionally 
arranged on hard segments that are linearly distributed along 
the long axis of the fiber through hydrophobic interactions. 
Compared to previous methods, this method enables uniform 
interparticle distances and linearity to be maintained over 
long distances. Moreover, the most significant feature of 
this method is simplicity: a one-dimensional array of nano-
particles is assembled using inexpensive PU as a template, 
with the PU nanofibers simply dipped into a nanoparticle 
dispersion.

In the present study, we assembled one-dimensional 
arrays of platinum nanoparticles (PtNPs) using stretched PU 
nanofibers as a template. In addition, we demonstrated that 
the PtNP-controlled distribution facilitated by this method 
significantly improves catalytic efficiency compared to that 
of the non-controlled (randomly dispersed) distribution. 
Some recent reports have shown that catalytic efficiency is 
related to metal nanoparticle distribution, with interparticle 
distance or nanoparticle (or atom/molecule) arrangement 
used to control the electronic state of the particle surface 
or adsorption of the substrate. We assume that one-dimen-
sional PtNP arrays can similarly affect catalytic efficiency 
by arranging PtNPs using our method.

Experimental

Chemicals and materials

PU pellets (Elastollan 1180A; 77,000, Mw/Mn = 1.89) 
were purchased from BASF Japan (Tokyo, Japan), glass 
substrates (20 × 20 × 1 mm) from AS ONE (Osaka, Japan), 
Cu grid mesh from Okenshoji (Tokyo, Japan), tetrahydro-
furan (THF), N,N-dimethylformamide (DMF), Sulfuric acid 
 (H2SO4) and hydrogen peroxide  (H2O2) from FUJIFILM 
Wako Chemicals (Osaka, Japan). Carbon nanotube multi-
walled (MWCNT; φ = 20‒40 nm, L = 1‒2 µm) was pur-
chased from Tokyo Chemical Industry. PtNPs (φ = 2 nm) 
were purchased from TANAKA Precious Metals (Tokyo, 
Japan) as 4wt% aqueous nitric acid dispersion. The surfaces 
of the PtNPs were coated with polyvinylpyrrolidone (PVP), 
with ethyl terminal groups. The PtNPs surface coated with 

PVP, which has a methyl group at the terminal, was chosen 
to adsorb via hydrophobic interactions on the hydrophobic 
portion of the electrospun PU nanofibers [30].  H2O2 assay 
kit was used Amplite Colorimetric Hydrogen Peroxide Assay 
Kit (ABD AAT Bioquest, US). Electrospinning devices were 
from MECC (Fukuoka, Japan), High voltage unit; HVU-
30P100, Collector; C-DI, Spinneret; S-TU/100/5 mL.

Preparation of PU nanofibers

An 8% (w/v) solution of PU in a 95:5 (v/v) mixture of THF 
and DMF was prepared by stirring overnight at room tem-
perature. It was visually confirmed that all pellets were dis-
solved and there was no phase separation of the solution. PU 
nanofibers were fabricated by electrospinning. A high volt-
age (25 kV) was applied between the syringe needle (27 G) 
and the ground electrode. A rotating collector (φ = 100 mm) 
was placed horizontally 100 mm from the needle, and the 
PU solution was extruded from the syringe at 1.0 mL  h−1. 
The rotational speed and spinning duration were 2000 rpm 
and 4 h, respectively, for stretched nanofibers, and 0 rpm 
(stationary) and 2 h, respectively, for unstretched nanofib-
ers. To prepare MWCNT-containing PU nanofibers, the 
MWCNTs were dispersed in a PU solution and subjected 
to 28 kHz ultrasonic treatment for 2 h before spinning. The 
spinning duration was 30 min for both, the unstretched and 
stretched nanofibers.

All synthesized samples were dried and stored in a desic-
cator. The PU nanofibers were electrospun onto glass sub-
strates for scanning electron microscopy (SEM) and catalytic 
efficiency investigation, and Cu grid mesh for transmission 
electron microscopy (TEM).

Platinum nanoparticles adsorption on PU nanofiber 
surface

The purchased PtNPs were diluted with Milli-Q water to 
14.8 ×  10−3 wt%. The fiber-spun substrates were placed in 
the dilute PtNP dispersion with the fiber surfaces down-
ward for 12 h. The substrates were then washed with Milli-Q 
water and dried overnight in a desiccator.

Scanning electron microscopy

The fabricated PU nanofibers were coated with Au/Pd using 
an ion coater (VACCUM DEVICE, Japan, MSP-1S) and 
subject to SEM with an accelerate voltage 15 kV (JEOL, 
Japan, JSM-6390). The diameters of the nanofibers were 
determined from the SEM images (5–10 k magnification) 
using ImageJ software.
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Transmission electron microscopy

The PtNP-adsorbed PU nanofibers were subjected to TEM 
(Hitachi, Japan, H-7650) at an accelerator voltage of 80 kV. 
Interparticle distances were determined from TEM images 
(50 k magnification) using ImageJ software.

Determining the amount of adsorbed PtNPs

The number of PtNPs adsorbed per unit nanofiber was 
determined using laser ablation inductively coupled plasma 
mass spectrometry (LA-ICP-MS: LA part; ST. JAPAN INC., 
Japan, Jupiter Solid Nebulizer, ICP-MS part; Thermo Fisher, 
Japan, iGAP-TQ). Samples were ablated in raster mode with 
a sample-surface fluence of 5 J  cm−2, a repetition rate of 
1 Hz, and a laser spot size of 1 × 1 mm. Helium gas was 
used as the carrier gas, and argon gas was used to ablate the 
sample. A 30 s ICP-MS time was used and laser ablation 
was performed 5 s after the start of the ICP-MS experiment. 
The Pt/C intensity ratio and the number of Pt nanoparticles 
were calculated by analyzing the LA-ICP-MS signal inten-
sity; the former was determined from corresponding peak 
areas, while the number of adsorbed PtNPs per unit C was 
determined from a calibration curve constructed using sam-
ples of known concentration (v/v%), Pt density, and PtNP 
volume. The calculated data are reported as means ± stand-
ard deviations.

Catalytic efficiency

PtNP catalytic efficiency was evaluated based on the ability 
to decompose  H2O2. The purchased 30%  H2O2 solution was 
diluted to 50 µM with Milli-Q water, after which 3 mL this 
solution was added to a petri dish, and the PtNP-adsorbed 

PU nanofibers were immersed in the solution at room tem-
perature for 15 min. The  H2O2 solution was sampled, and the 
concentration of  H2O2 was determined using a colorimet-
ric assay kit. The assay kit solution included Amplite™ IR 
peroxidase substrate, horseradish peroxidase, and dimethyl 
sulfoxide (DMSO). The 50 µL assay kit solution was added 
in 96-well plate. Add 50 µL  H2O2 sample solution to each 
well. The test samples to make the total  H2O2 assay volume 
of 100 µL/well. Incubation the reaction at room temperature 
for 10 min, protected from light. Monitor the absorbance 
with a microplate reader (Thermo Fisher Scientific K. K., 
Japan, Multiskan Sky High) at 650 nm.

The electrochemical catalytic surface area (ECSA) 
was estimated through cyclic voltammetry (CV). CV 
was performed using an electrochemical analyzer (BAS, 
Japan, ALS660E) and a three-electrode method with 
PtNP-adsorbed PU nanofibers (unstretched or stretched) 
as the working electrode, Ag/AgCl (BAS, Japan, RE-1B) 
as the reference electrode, and a Pt wire (Nilaco, Japan, 
PT-351384) as the counter electrode. The measurement 
conditions involved the use of a 0.5 M  H2SO4 electrolyte, 
-0.25 V‒1.2 V sweep range, and 0.1 V/s sweep rate. Before 
the measurement, a degassing operation was carried out by 
bubbling  N2 gas through the solution for 30 min.

Results and discussion

Characterization of the PtNP‑adsorbed PU 
nanofibers

Figure 1a and b shows the SEM images of PtNP-adsorbed 
PU nanofibers and Fig. 1c shows the histograms of nanofib-
ers diameter determined by SEM images. The average 

Fig. 1  a, b SEM images of 
PtNP-adsorbed PU nanofib-
ers. a unstretched, b stretched. 
c Histograms of nanofibers 
diameter. Horizontal axis is 
particle diameter, vertical axis is 
number of particles
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diameter of unstretched nanofibers and stretched nanofib-
ers are 880.8 ± 298.0 nm and 871.8 ± 203.3 nm, respec-
tively. Figure 2 shows TEM images of PtNP-adsorbed PU 
nanofibers. At the unstretched PU nanofibers, PtNPs were 
adsorbed on hard segments as clusters of several PtNPs that 
were randomly distributed on the surfaces of the unstretched 
PU nanofibers (Fig. 2a). On the other hand, as the stretched 
PU nanofibers, PtNPs were adsorbed on hard segments in 
a one-dimensional manner along the long axis of stretched 
PU nanofiber (Fig. 2b). Furthermore, PtNPs adsorbed on the 
stretched PU nanofibers were observed to be continuously 
adsorbed along both edges of the fiber in the TEM image. 
PtNPs with interparticle distances of less than 10 nm are 
shown enclosed in red boundaries, and their aspect rations 
were measured to compare the linearities and lengths of the 
arrays in the two TEM images. Aggregated PtNPs with low 
aspect ratios aggregate into ellipse like structures, while 
those with high aspect ratios form long linear arrange-
ments. The PtNP aggregates adsorbed on the unstretched 
PU nanofibers were an average aspect ratio of 2.6, while that 
for the PtNPs adsorbed on the stretched PU nanofibers were 
determined to be 13.4.

Numbers of adsorbed PtNPs

The number of adsorbed PtNPs per unit PU nanofiber needs 
to be evaluated in order to determine whether catalytic effi-
ciency depends on PtNP loading or distribution. Elemental 
C per unit volume was determined by LA-ICP-MS, with 
the obtained C signal assumed to belong to carbon chains 
that form the PU structure. The intensities of the Pt signals 
were normalized against the C signals of the unstretched 
and stretched samples LA-ICP-MS traces are displayed in 
Fig. 3. Table 1 lists the Pt/C intensity ratios and calculated 
numbers of PtNPs adsorbed per unit C from the data shown 
in Fig. 3. The Pt/C intensity ratios of the unstretched and 
stretched nanofibers were determined to be 137.6 ± 10.2 and 
135.4 ± 12.6, respectively.

Fig. 2  TEM images of PtNPs 
on single a unstretched and b 
stretched PU nanofibers. The 
red circle surrounds the agglom-
eration of particles

Fig. 3  LA-ICP-MS trace of 
carbon (C) and platinum (Pt) 
elements

Table 1  Pt/C intensity ratios numbers of PtNps adsorbed per unit C

Unstretched (0 rpm) Stretched (2000 rpm)

Intensity ratio 
(Pt/C) [-]

137.6 ± 10.2 35.4 ± 12.6

PtNP adsorption 
amount [mg/g]

0.897 ± 0.067 0.883 ± 0.082

Fig. 4  H2O2 decomposition as function of time
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The adsorbed amounts of PtNPs were calculated to be 
0.897 ± 0.067 and 0.883 ± 0.082 mg/g for the unstretched 
and stretched nanofibers, respectively. The Pt/C intensity 
ratios and PtNP adsorption amount were almost the same 
for the unstretched and stretched PU nanofibers.

Catalytic efficiency

H2O2 decomposition efficiencies were compared with three 
samples: using PtNPs with controlled one-dimensional distri-
butions adsorbed on stretched PU nanofibers, PtNPs randomly 
distributed by adsorption on unstretched PU nanofibers, and 
PtNPs dispersed in water at the same concentration as those 
adsorbed on the stretched PU nanofibers, as calculated by 
LA-ICP-MS, the results of which are shown in Fig. 4. When 
 H2O2 was exposed to PtNP-dispersed water, it decomposed 
over time, with 17.6% decomposition observed after 15 min. 
The PtNP-adsorbed unstretched PU nanofibers decomposed 
 H2O2 faster than the PtNP-dispersed water, with a decom-
position of 20.9% recorded after 15 min. However, the best 
results were obtained using the PtNP-adsorbed stretched 
PU nanofibers, where 45.6% of  H2O2 decomposed after 
15 min, which is more than twice that observed for the PtNP-
adsorbed unstretched PU nanofibers. Despite the stretched PU 
nanofibers having a similar number of adsorbed PtNPs as the 

corresponding unstretched nanofibers (as discussed in Section 
"Numbers of adsorbed PtNPs"), they showed a significant 
increase in their ability to decompose  H2O2. Based on the 
PtNP adsorption amount from Table 1 and the decomposed 
percentages of  H2O2 from Fig. 4, the  H2O2 decomposition per 
mg of Pt after 15 min was 19.6% for PtNP-dispersed water, 
23.3% for the PtNP-adsorbed unstretched PU nanofibers, and 
51.6% for the PtNP-adsorbed stretched PU nanofibers. Thus, 
the date show that the  H2O2 decomposition rate is affected 
by the PtNP distribution. Because PtNP-dispersed water is a 
heterogeneous catalyst, its decomposition efficiency is lower 
than that of template-immobilized catalysts. The potential 
PtNP catalytic regions overlap for the PtNPs adsorbed on the 
unstretched nanofibers because they form aggregates of multi-
ple nanoparticles; hence, its large specific surface area, which 
is a PtNP feature, cannot be used effectively (Fig. 5a). On 
the other hand, the catalytic potential regions overlap much 
less for the PtNPs adsorbed on the stretched PU nanofibers 
because they are distributed at uniform intervals (Fig. 5b); 
consequently, more  H2O2 substrate can be concurrently cata-
lytically decomposed.

To obtain further information regarding the catalytic 
potential regions, the ECSA was determined. For the inves-
tigate of electrochemical properties and conductivity, CV 
was conducted on glassy carbon electrodes coated with 
PtNP-adsorbed nanofibers containing MWCNTs, in their 
unstretched and stretched states. Figure 6 shows the cyclic 
voltammograms, with the reduction peaks below 0.2 V rep-
resenting the  H2 adsorption peaks on the Pt surface. The 
ECSA of Pt can be calculated from the  H2 adsorption peak 
and Eq. 1 as follows:

where QH is the electric charge of  H2 adsorption (µC) and 
CHad is the  H2 adsorption/desorption electric charge per unit 
Pt surface area (µC/cm2

Pt), with CHad generally assumed to 
be 210 µC/cm2

Pt. The calculated ECSA were 0.01162 for 

(1)ECSA
[

cm2

Pt

]

= QH[�C]∕CHad

[

�C∕cm2

Pt

]

Fig. 5  Depicting overlaps in catalytic regions resulting from con-
trolled distributions of PtNPs. a  Randomly distributed PtNPs on an 
unstretched PU nanofiber, b  One-dimensional arrays of PtNPs on a 
stretched PU nanofiber

Fig. 6  Cyclic voltammograms of a PtNP-adsorbed stretched PU nanofibers and b PtNP-adsorbed unstretched PU nanofibers
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PtNP-adsorbed unstretched PU nanofibers and 0.0192  cm2
Pt 

for PtNP-adsorbed stretched PU nanofibers, which shows 
that the ECSA of stretched one is approximately 1.19 times 
larger than that of unstretched one. The one-dimensional 
arrangement of the PtNPs is responsible for the larger cata-
lytically active region, which contributed to the improve-
ment in the  H2O2 decomposition efficiency.

Conclusions

We assembled one-dimensional arrays of PtNPs using elec-
trospun PU nanofibers as a template. Compared to previous 
methods, present method maintains uniform interparticle 
distance and linearity over long distances, which is a sig-
nificant feature. Moreover, the most important feature of the 
current method is its simplicity; the one-dimensional arrays 
of nanoparticles are assembled by dipping an inexpensive 
PU nanofiber template in to a PtNP dispersion. The assem-
bled one-dimensional arrays of nanoparticles on stretched PU 
nanofibers decompose  H2O2 in a significantly more efficient 
manner than the PtNPs randomly adsorbed on unstretched 
PU nanofibers and those dispersed in water, despite fewer 
PtNPs on the stretched PU nanofibers. The PtNP-distributed 
one-dimensional array decomposed more than twice the 
amount of  H2O2 over 15 min than the alternative randomly 
distributed PtNPs. We hypothesize that the PtNP catalytic 
regions overlap little in the one-dimensional arrays due to 
their uniform interparticle distances, which controls distri-
bution in a manner that enables a larger amount of  H2O2 (as 
the substrate) to be concurrently catalytically decomposed.
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