Skip to main content
Log in

A new method for preparing porous magnetic PS particles modified with EVA via a phase inversion emulsion procedure

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Magnetically assisted separation method is a rapid and easy technique based on the separation and isolation of magnetic substance by the application of an external magnetic field. However, the service life of absorbents using polystyrene as skeleton is heavily shorted by the intrinsic brittleness of polystyrene. A novel method of preparing porous magnetic polystyrene particles modified with EVA targeting to eliminate the problems of homogeneous polystyrene is described. The optimum hydrophile-lipophilic-balance (HLB) value, phase inversion temperature, and cloud point of the combined emulsifier selected in this work are analyzed and the optimized preparation conditions are determined accordingly. TEM and SEM show that the particles have a morphology structure that most of Fe3O4 particles are embedded in the interior. The dimension distribution of the pores in porous PS/EVA/Fe3O4 particles mainly belongs to mesopore. XRD indicates that the Fe3O4 particles keep their intrinsic crystal structure in the prepared porous magnetic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang T, Ding SD, Liu N et al (2009) Synthesis of extraction resin containing N, N, N’, N’ -Tetraisobutyl diglycolamide and its application for separation of Sr(II) from Rb(I). Sep Sci Technol 44:2526–2540. https://doi.org/10.1080/01496390903017766

    Article  CAS  Google Scholar 

  2. Zhang W, Ye G, Chen J (2013) TRPO impregnated levextrel resin: synthesis and extraction behavior of Zr (IV) and Nd (III) Ions. Sep Sci Technol 48:263–271. https://doi.org/10.1080/01496395.2012.675002

    Article  CAS  Google Scholar 

  3. Duan L, Du L, Jia L et al (2015) High impact of uranyl ions on carrying–releasing oxygen capability of hemoglobin-based blood substitutes. Chem Eur J 21:520–525. https://doi.org/10.1002/chem.201405439

    Article  CAS  PubMed  Google Scholar 

  4. Peng Y, Feng X, Jiang J et al (2022) Controllable polyvinylpyrrolidone modified polystyrene divinylbenzene for efficient adsorption of bilirubin and improvement of hemocompatibility. Eur Polym J 170:111172. https://doi.org/10.1016/j.eurpolymj.2022.111172

  5. Zhao L, Huang L, Huang Y et al (2022) Preparation and structural regulation of macroporous agarose microspheres for highly efficient adsorption of giant biomolecules. Colloid Polym Sci 300:691–705. https://doi.org/10.1007/s00396-022-04968-0

    Article  CAS  Google Scholar 

  6. Hao Y, Xu H, Lia X et al (2022) Mesoporous polystyrene-based microspheres with polar functional surface groups synthesized from double emulsion for selective isolation of acetoside. J Chromatogr A 1662:462720. https://doi.org/10.1016/j.chroma.2021.462720

  7. Unsal E, Elmas B, Camlı ST et al (2005) Monodisperse-porous poly (styrene-co-divinylbenzene) beads providing high column efficiency in reversed phase HPLC. J Appl Polym Sci 95:1430–1438. https://doi.org/10.1002/app.21368

    Article  CAS  Google Scholar 

  8. Peña JA, Du XJ, Xing JF (2022) One-step grafting reaction of thermoresponsive polymer brushes over silica nanoparticles. Colloid Polym Sci 300:1087–1099. https://doi.org/10.1007/s00396-022-05012-x

    Article  CAS  Google Scholar 

  9. Pickering emulsion temp d Jiang B, Li R, He X et al (2022) Fabrication PDA-polyurea microcapsules with anti-photolysis and sustained-release performances via Pickering emulsion template. Colloid Polym Sci 300:1–10. https://doi.org/10.1007/s00396-021-04922-6

    Article  CAS  Google Scholar 

  10. Wang X, Cao Y, Yan H (2018) Chlorambucil loaded in mesoporous polymeric microspheres as oral sustained release formulations with enhanced hydrolytic stability. Mater Sci Eng C 91:564–569. https://doi.org/10.1016/j.msec.2018.05.078

    Article  CAS  Google Scholar 

  11. Parvate S, Dixit P, Chattopadhyay S (2022) Hierarchical polymeric hollow microspheres with size tunable single holes and their application as catalytic microreactor. Colloid Polym Sci 300:1101–1109. https://doi.org/10.1007/s00396-022-05008-7

    Article  CAS  Google Scholar 

  12. Antonangelo AR, Bezzu CG, Mughal SS et al (2017) A porphyrin-based microporous network polymer that acts as an efficient catalyst for cyclooctene and cyclohexane oxidation under mild conditions. Catal Commun 99:100–104. https://doi.org/10.1016/j.catcom.2017.05.024

    Article  CAS  Google Scholar 

  13. Zhang S, Dai F, Wang Q et al (2022) The fabrication of porous hollow polysulfone microspheres with PEG as a porogen for methylene blue adsorption. Colloids Surf A 634:127949. https://doi.org/10.1016/j.colsurfa.2021.127949

  14. Gao J, Song X, Huang X et al (2018) Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation. Appl Surf Sci 439:394–404. https://doi.org/10.1016/j.apsusc.2018.01.013

    Article  CAS  Google Scholar 

  15. Horák D, Lednický F, Řehák V et al (1993) Porous poly EMA beads prepared by suspension polymerization in aqueous medium. J Appl Polym Sci 49:2041–2050. https://doi.org/10.1002/app.1993.070491122

    Article  Google Scholar 

  16. Rahman A, Iqbal M, Rahman F et al (2012) Synthesis and cha racterization of reactive macroporous poly(glycidyl methacrylate-triallylisocyanurate-ethylene glycol dimethacrylate) microspheres by suspension polymerization: effect of synthesis variables on surface area and porosity. J Appl Polym Sci 124:915–926. https://doi.org/10.1002/app.35026

    Article  CAS  Google Scholar 

  17. Wang H, Wang M, Ge X (2008) One-step fabrication of multihollow polystyrene particles from miniemulsion system with nonionic surfactant. Polymer 49:4974–4980. https://doi.org/10.1016/j.polymer.2008.09.028

    Article  CAS  Google Scholar 

  18. Yang S, Liu H, Zhang Z (2008) Fabrication of novel multihollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via water-in-oil-in-water double emulsions. Langmuir 24:10395–10401. https://doi.org/10.1021/la800657k

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Wu M, Xiang X et al (2022) A self-templating dilution strategy for preparation of hollow concave polystyrene nanoparticles in a styrene/ethanol-water ternary system. Colloids Surf A 637:128253. https://doi.org/10.1016/j.colsurfa.2022.128253

  20. Corradini C, Corradini D, Huber CG et al (1994) Synthesis of a polymeric-based stationary phase for carbohydrate separation by high-pH anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 685:213–220. https://doi.org/10.1016/0021-9673(94)00665-2

    Article  CAS  Google Scholar 

  21. Liu J, Wang Y, Li W et al (2016) Octadecylamine-modified poly (glycidylmethacrylate-divinylbenzene) stationary phase for HPLC determination of N-nitrosamines. Talanta 160:298–305. https://doi.org/10.1016/j.talanta.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  22. Wang PY, Zu JH, Wei YZ (2017) Synthesis and characterization of porous 4VP-based adsorbent for Re adsorption as analogue to 99Tc. Nucl Sci Tech 28:1–7. https://doi.org/10.1007/s41365-017-0181-3

    Article  CAS  Google Scholar 

  23. Duan Y (2017) Novel preparation of Fe3O4/styrene-co-butyl acrylate composite microspheres via a phase inversion emulsion process. Colloid Polym Sci 295:1757–1763. https://doi.org/10.1007/s00396-017-4154-1

    Article  CAS  Google Scholar 

  24. Ferreira WH, Silva CA, Andrade CT (2020) Improved compatibilization and shape memory properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/ poly(ethylene-co-vinyl acetate) blends by incorporation of modified reduced graphene oxide. Polymer 201:122625. https://doi.org/10.1016/j.polymer.2020.122625

  25. Cao T, Liu J, Hu J (2007) Principle of synthesis, properties and applications of polymer emulsion (second edition). Chemical Industry Press. Beijing, pp 149–151, 167–168

  26. Querol N, Barreneche C, Cabeza LF (2017) Method for controlling mean droplet size in the manufacture of phase inversion bituminous emulsions. Colloids Surf A 527:49–54. https://doi.org/10.1016/j.colsurfa.2017.05.018

    Article  CAS  Google Scholar 

  27. Li C, Mei Z, Liu Q et al (2010) Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method. Colloids Surf A 356:71–77. https://doi.org/10.1016/j.colsurfa.2009.12.036

    Article  CAS  Google Scholar 

  28. Binks BP, Rocher A (2009) Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles. J Colloid Interface Sci 335:94–104. https://doi.org/10.1016/j.jcis.2009.03.089

    Article  CAS  PubMed  Google Scholar 

  29. Sadurní N, Solans C, Azemar N et al (2005) Studies on the formation of O/W nano-emulsions, by low-energy emulsification methods, suitable for pharmaceutical applications. Eur J Pharm Sci 26:438–445. https://doi.org/10.1016/j.ejps.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  30. Charin RM, Araújo BC, Farias AC et al (2015) Studies on transitional emulsion phase inversion using the steadystate protocol. Colloids Surf A 484:424–433. https://doi.org/10.1016/j.colsurfa.2015.08.003

    Article  CAS  Google Scholar 

  31. Sasaki Y, Konishi N, Kasuya M et al (2015) Preparation of size-controlled polymer particles by polymerization of O/W emulsion monomer droplets obtained through phase inversion temperature emulsification using amphiphilic comb-like block polymers. Colloids Surf A 482:68–78. https://doi.org/10.1016/j.colsurfa.2015.04.019

    Article  CAS  Google Scholar 

  32. Preetika R, Mehta PS, Kaisare NS et al (2019) Kinetic stability of surfactant stabilized water-in-diesel emulsion fuels. Fuel 236:1415–1422. https://doi.org/10.1016/j.fuel.2018.09.074

    Article  CAS  Google Scholar 

  33. Baek S, Min J, Lee JW (2016) Equilibria of cyclopentane hydrates with varying HLB numbers of sorbitan monoesters in water-in-oil emulsions. Fluid Phase Equilib 413:41–47. https://doi.org/10.1016/j.fluid.2015.10.018

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Hebei Province (E2018208161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Duan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Guo, C., Fan, J. et al. A new method for preparing porous magnetic PS particles modified with EVA via a phase inversion emulsion procedure. Colloid Polym Sci 301, 293–302 (2023). https://doi.org/10.1007/s00396-023-05067-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05067-4

Keywords

Navigation