Skip to main content
Log in

Mussel-inspired polydopamine and Al2O3 nanoparticles co-modified MoS2 for reinforcing anticorrosion of epoxy coatings

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A novel Al2O3–PDA–MoS2 nanohybrid was synthesized by depositing Al2O3 nanoparticles on the surface of molybdenum disulfide (MoS2) sheets covered with polydopamine (PDA). Many characterizations demonstrated that the Al2O3 was successfully deposited on the surface of MoS2. It was found that when the mass ratio of PDA–MoS2 to Al2O3 was 1.5:1, the nano-hybrid filler showed good dispersion performance. Then, the composite coating samples were prepared by adding Al2O3–PDA–MoS2 (1.5:1) hybrid to waterborne epoxy resin. The effects of Al2O3, MoS2, and PDA–MoS2 on the corrosion resistance of epoxy coating were also investigated. The potentiodynamic polarization test demonstrated that Al2O3–PDA–MoS2 nanohybrids had excellent corrosion inhibition properties. The results of electrochemical impedance spectroscopy also revealed that the impedance modulus of Al2O3–PDA–MoS2/EP composite coating was nearly two orders of magnitude higher than that of pure epoxy resin after immersion in saline for 21 days. This study confirmed that Al2O3–PDA–MoS2 nanosheets had better barrier properties and corrosion inhibition properties, and provided a new idea for the wide application of nanofillers in the field of anticorrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that [the/all other] data supporting the findings of this study are available within the article [and its supplementary information files].

References

  1. Zheng B, Ge S, Wang S et al (2020) Effect of γ-aminopropyltriethoxysilane on the properties of cellulose acetate butyrate modified acrylic waterborne coatings. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2020.104657

    Article  Google Scholar 

  2. Zavašnik J, Peng J, Palm M (2021) TEM investigation of pre-oxidised Fe–Al with improved aqueous corrosion resistance. Corros Sci. https://doi.org/10.1016/j.corsci.2020.109170

    Article  Google Scholar 

  3. Li A, Zhu A (2021) Preparation of Fe3O4/PANI nanocomposite and its metal anticorrosive activity. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2021.106477

    Article  Google Scholar 

  4. Chai Z-L, Chen Y-X, Zhou D et al (2022) Excellent corrosion resistance of FGO/Zn2SiO4 composite material in epoxy coatings. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2022.106992

    Article  Google Scholar 

  5. Li S, Huang H, Chen F et al (2021) Reinforced anticorrosion performance of waterborne epoxy coating with eco-friendly L-cysteine modified Ti3C2Tx MXene nanosheets. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2021.106478

    Article  Google Scholar 

  6. Wang H, Li R, Wu Q et al (2021) Gemini surfactant-assisted fabrication of graphene oxide/polyaniline towards high-performance waterborne anti-corrosive coating. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2021.150581

    Article  PubMed  Google Scholar 

  7. Wan S, Chen H, Ma X et al (2021) Anticorrosive reinforcement of waterborne epoxy coating on Q235 steel using NZ/BNNS nanocomposites. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2021.106410

    Article  Google Scholar 

  8. Habibiyan A, Ramezanzadeh B, Mahdavian M et al (2020) Rational assembly of mussel-inspired polydopamine (PDA)-Zn (II) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123630

    Article  Google Scholar 

  9. Zhou T, Zhang J, Zhao J et al (2021) In-situ grafted graphene oxide-based waterborne epoxy curing agent for reinforcement corrosion protection of waterborne epoxy coating. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2021.127043

    Article  Google Scholar 

  10. Zhou W, Wang S, Sang Y et al (2021) Synthesis of h-BN modified GO to improve the corrosion resistance of the water-borne epoxy coating for hot-dip galvanized steel. Mater Lett. https://doi.org/10.1016/j.matlet.2020.129136

    Article  PubMed  Google Scholar 

  11. Ma Y, Wang H, Li S et al (2022) An eco-friendly and pH response cerium-based melamine phytate (PM) nanosheets with active and passive anticorrosion ability in water-borne epoxy coating. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.153726

    Article  PubMed  Google Scholar 

  12. Haddadi SA, Ramazani SAA, Mahdavian M et al (2021) Epoxy nanocomposite coatings with enhanced dual active/barrier behavior containing graphene-based carbon hollow spheres as corrosion inhibitor nanoreservoirs. Corros Sci. https://doi.org/10.1016/j.corsci.2021.109428

    Article  Google Scholar 

  13. Chen C, He Y, Xiao G et al (2020) Graphic C3N4-assisted dispersion of graphene to improve the corrosion resistance of waterborne epoxy coating. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2019.105448

    Article  Google Scholar 

  14. He X, Li S, Shen R et al (2022) A high-performance waterborne polymeric composite coating with long-term anti-corrosive property based on phosphorylation of chitosan-functionalized Ti3C2Tx MXene. Adv Compos Hybrid Mater 5:31699–31711. https://doi.org/10.1007/s42114-021-00392-0

    Article  CAS  Google Scholar 

  15. Jing Y, Wang P, Yang Q et al (2021) MoS2 decorated with ZrO2 nanoparticles through mussel-inspired chemistry of dopamine for reinforcing anticorrosion of epoxy coatings. Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2020.125625

    Article  Google Scholar 

  16. Wan P, Zhao N, Qi F et al (2020) Synthesis of PDA-BN@f-Al2O3 hybrid for nanocomposite epoxy coating with superior corrosion protective properties. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2020.105713

    Article  Google Scholar 

  17. Chen C, He Y, Xiao G et al (2018) Two-dimensional hybrid materials: MoS2-RGO nanocomposites enhanced the barrier properties of epoxy coating. Appl Surf Sci 444:511–521. https://doi.org/10.1016/j.apsusc.2018.03.013

    Article  CAS  Google Scholar 

  18. Xu L, Li D, Zhou W et al (2020) High-efficiency electrodeposition of polyindole nanocomposite using MoS2 nanosheets as electrolytes and their capacitive performance. Arabian J Chem 13:76061–76071. https://doi.org/10.1016/j.arabjc.2020.05.006

    Article  CAS  Google Scholar 

  19. Lashgari SM, Yari H, Mahdavian M et al (2021) Application of nanoporous cobalt-based ZIF-67 metal-organic framework (MOF) for construction of an epoxy-composite coating with superior anti-corrosion properties. Corros Sci. https://doi.org/10.1016/j.corsci.2020.109099

    Article  Google Scholar 

  20. Gao F, Du A, Ma R et al (2020) Improved corrosion resistance of acrylic coatings prepared with modified MoS2 nanosheets. Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2019.124318

    Article  Google Scholar 

  21. Arukalam IO, Madu IO, Ishidi EY (2021) High performance characteristics of Lupinus arboreus gum extract as self-healing and corrosion inhibition agent in epoxy-based coating. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2020.106095

    Article  Google Scholar 

  22. Keramatinia M, Ramezanzadeh M, Bahlakeh G et al (2021) Synthesis of a multi-functional zinc-centered nitrogen-rich graphene-like thin film from natural sources on the steel surface for achieving superior anti-corrosion properties. Corros Sci. https://doi.org/10.1016/j.corsci.2020.109077

    Article  Google Scholar 

  23. Wang S, Liu W, Shi H, et al (2021) Co-modification of nano-silica and lysine on graphene oxide nanosheets to enhance the corrosion resistance of waterborne epoxy coatings in 3.5% NaCl solution. Polymer 222. https://doi.org/10.1016/j.polymer.2021.123665

  24. Shi H, Liu W, Liu C et al (2020) Polyethylenimine-assisted exfoliation of h-BN in aqueous media for anticorrosive reinforcement of waterborne epoxy coating. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2020.105591

    Article  Google Scholar 

  25. Ma Y, Huang H, Zhou H et al (2021) Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide. J Mater Sci Technol 95:95–104. https://doi.org/10.1016/j.jmst.2021.04.019

    Article  CAS  Google Scholar 

  26. Xia Z, Liu G, Dong Y et al (2019) Anticorrosive epoxy coatings based on polydopamine modified molybdenum disulfide. Prog Org Coat 133:154–160. https://doi.org/10.1016/j.porgcoat.2019.04.056

    Article  CAS  Google Scholar 

  27. Huang H, Sheng X, Tian Y et al (2020) Two-dimensional nanomaterials for anticorrosive polymeric coatings: a review. Ind Eng Chem Res 59:3515424–3515446. https://doi.org/10.1021/acs.iecr.0c02876

    Article  CAS  Google Scholar 

  28. Li F, Zheng Z, Wang X et al (2022) Horizontally aligned BN nanosheet array for nanometer-thick ZrO2 coating with greatly enhanced anticorrosion and hydrogen isotope resistance property. Chem Eng J. https://doi.org/10.1016/j.cej.2022.135920

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dhoke SK, Khanna AS (2012) Electrochemical impedance spectroscopy (EIS) study of nano-alumina modified alkyd based waterborne coatings. Prog Org Coat 74:192–199. https://doi.org/10.1016/j.porgcoat.2011.11.020

    Article  CAS  Google Scholar 

  30. Omar R, Oraby E, Abdelrhman Y et al (2020) Effect of glycine as a complex agent on the surface and corrosion properties of Ni-P and Ni-P/Al2O3 electroless coating. Anti-Corros Methods Mater 67:6593–6603. https://doi.org/10.1108/acmm-06-2020-2318

    Article  CAS  Google Scholar 

  31. Sun J, Li W, Zhan Y et al (2022) Two preparation processes for anti-corrosion and self-healing epoxy coatings containing the poly (calcium alginate) microcapsules loaded with tung oil. Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2022.128600

    Article  Google Scholar 

  32. Zheng Z, Li H, Li F et al (2022) An efficient PDA/Al2O3 nanosheets reinforced ultra-thin ZrO2 coating with attractive anti-corrosion and deuterium resistance property. Chem Eng J. https://doi.org/10.1016/j.cej.2022.138307

    Article  Google Scholar 

  33. Huang X, Wang L-T, Song Y-F et al (2021) Effect of Al2O3 nanoparticles on the corrosion behavior of aluminum alloy in simulated vehicle coolant. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.159807

    Article  PubMed  Google Scholar 

  34. Cheng L, Wu H, Li J et al (2021) Polydopamine modified ultrathin hydroxyapatite nanosheets for anti-corrosion reinforcement in polymeric coatings. Corros Sci. https://doi.org/10.1016/j.corsci.2020.109064

    Article  Google Scholar 

  35. Liu T, Wei J, Ma L et al (2021) Effect of polyaniline-based plate on the anticorrosion performance of epoxy coating. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2020.106109

    Article  Google Scholar 

  36. Li C, Wang X, Zhang M et al (2022) Fluoro-substituted polyaniline deeply incorporation with inert h-BN for interface improvement in anti-corrosion. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2022.106993

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rad SV, Moosavi A, Nouri-Boroujerdi A et al (2021) Drag reduction in internal turbulent flow by fabricating superhydrophobic Al2O3/waterborne polyurethane coatings. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2021.127406

    Article  Google Scholar 

  38. Lu W, Zhang S, Wang L et al (2022) Understanding the role of epoxy emulsifiers in water-borne epoxy coatings with the aggregation-induced emission approach. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2022.106987

    Article  Google Scholar 

  39. Qiao Q, Tam LM, Cristino VAM et al (2022) Surface hardness and corrosion behavior of laser surface-alloyed Ti6Al4V with copper. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2022.128663

    Article  Google Scholar 

  40. Bahremand F, Shahrabi T, Ramezanzadeh B (2021) Epoxy coating anti-corrosion properties enhancement via the steel surface treatment by nanostructured samarium oxide-poly-dopamine film. J Hazard Mater 403:123722. https://doi.org/10.1016/j.jhazmat.2020.123722

    Article  CAS  PubMed  Google Scholar 

  41. Fadl AM, Abdou MI, Zordok WA et al (2021) Intrinsic anti-corrosion, self-healing and mechanical resistance behaviors of epoxy composite coating intercalated with novel mixed Ni(II), Pd(II), and Cd(II) complex cross-linking accelerators for steel petroleum tanks. J Mater Res Technol 15:2242–2275. https://doi.org/10.1016/j.jmrt.2021.09.034

    Article  CAS  Google Scholar 

  42. Chen J, Xiao J, Zhang Y et al (2020) Corrosion mechanism of Cr2O3-Al2O3-ZrO2 refractories in a coal-water slurry gasifier: A post-mortem analysis. Corros Sci. https://doi.org/10.1016/j.corsci.2019.108250

    Article  Google Scholar 

  43. He Y, Boluk Y, Pan J et al (2019) Corrosion protective properties of cellulose nanocrystals reinforced waterborne acrylate-based composite coating. Corros Sci 155:186–194. https://doi.org/10.1016/j.corsci.2019.04.038

    Article  CAS  Google Scholar 

  44. Zhou Z, Pourhashem S, Wang Z et al (2022) Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings. Chem Eng J. https://doi.org/10.1016/j.cej.2022.135765

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ni L, Li S, Liu Y et al (2021) Fabrication of active corrosion protection waterborne polyurethane coatings using cerium modified palygorskite nanocontainers. J Appl Polym Sci 138:36. https://doi.org/10.1002/app.50899

    Article  CAS  Google Scholar 

  46. Xu L, Fu X, Su H et al (2022) Corrosion and tribocorrosion protection of AZ31B Mg alloy by a hydrothermally treated PEO/chitosan composite coating. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2022.107002

    Article  Google Scholar 

  47. Sheng C, Cheng L, Chen X et al (2021) Synergistic effect of 2D/0D mixed graphitic carbon nitride/Fe2O3 on the excellent corrosion behavior of epoxy-based waterborne coatings. Colloid Polym Sci 299:5883–5897. https://doi.org/10.1007/s00396-020-04799-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Xinxing Casting Pipe Co., Ltd., Hebei Province and Shanghai Municipal Science and Technology Commission Project (YDZX20223100004006) for funding and raw materials.

Author information

Authors and Affiliations

Authors

Contributions

Rui Meng: conceptualization, formal analysis, data curation, writing—original draft, writing—review and editing, investigation. Liqin Liu: conceptualization, supervision. Weihong Guo: conceptualization, resources, supervision, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Weihong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, R., Liu, L. & Guo, W. Mussel-inspired polydopamine and Al2O3 nanoparticles co-modified MoS2 for reinforcing anticorrosion of epoxy coatings. Colloid Polym Sci 301, 175–187 (2023). https://doi.org/10.1007/s00396-022-05052-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-05052-3

Keywords

Navigation