Skip to main content
Log in

Surface enrichment structures in a binary polymer system with different stiffnesses confined in slits

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Binary polymer systems show advantage in many applications. Herein, we study the conformational properties of a binary polymer system consisted of flexible and stiff polymers confined in slits using molecular dynamics simulation. The flexible and stiff polymers have the same chain length and concentration. Two surface enrichment structures, surface enrichment structure of stiff polymers and surface enrichment structure of flexible polymers, are observed dependent on the surface property and polymer concentration. In repulsive slits at high polymer concentration, surface enrichment structure of stiff polymers is observed as the unique structure. For attractive slits of the same attraction strength to both polymers, surface enrichment structure of stiff polymers even appears at low polymer concentration. Surface enrichment structure of flexible polymers can be observed when the surface attraction to the flexible polymers is much stronger than that to the stiff polymers. Our simulation results indicate that the structure of the binary polymer system can be controlled by varying the surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu X, Zhu Y (2017) Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett 5:527–532

    Article  CAS  Google Scholar 

  2. Meyers MA, McKittrick J, Chen PY (2013) Structural biological materials: critical mechanics-materials connections. Science 339:773–779

    Article  CAS  Google Scholar 

  3. Torres AM, Matheny JB, Keaveny TM, Taylor D, Rimnac CM, Hernandez CJ (2016) Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc Natl Acad Sci USA 113:2892–2897

    Article  CAS  Google Scholar 

  4. Chremos A, Chaikin PM, Register RA, Panagiotopoulos AZ (2012) Sphere-to-cylinder transitions in thin films of diblock copolymers under shear: the role of wetting layers. Macromolecules 45:4406–4415

    Article  CAS  Google Scholar 

  5. Chremos A, Chaikin PM, Registera RA, Panagiotopoulos AZ (2012) Shear-induced alignment of lamellae in thin films of diblock copolymers. Soft Matter 8:7803–7811

    Article  CAS  Google Scholar 

  6. Eisenriegler E, Kremer K, Binder K (1982) Adsorption of polymer chains at surfaces: Scaling and Monte Carlo analyses. J Chem Phys 77:6296–6320

    Article  CAS  Google Scholar 

  7. Descas R, Sommer JU, Blumen A (2004) Static and dynamic properties of tethered chains at adsorbing surfaces: a Monte Carlo study. J Chem Phys 120:8831–8840

    Article  CAS  Google Scholar 

  8. Binder K, Egorov SA, Milchev A (2020) Slit pore confinement of semiflexible polymers – interplay of adsorption and liquid-crystalline Order. World Scientific Series in Nanoscience and Nanotechnology Soft Matter and Biomaterials on the Nanoscale, Chapter 1:1–35

    Google Scholar 

  9. Sintes T, Sumithra K, Straube E (2001) Adsorption of semiflexible polymers on flat, homogeneous surfaces. Macromolecules 34:1352–1357

    Article  CAS  Google Scholar 

  10. Hsu HP, Binder K (2013) Effect of chain stiffness on the adsorption transition of polymers. Macromolecules 46:2496–2515

    Article  CAS  Google Scholar 

  11. Yang X, Wu F, Hu DD, Zhang S, Luo MB (2019) Simulation of the critical adsorption of semi-flexible polymers. Chin Phys Lett 36:098202

    Article  CAS  Google Scholar 

  12. Milchev A, Binder K (2020) How does stiffness of polymer chains affect their adsorption transition? J Chem Phys 152:064901

    Article  CAS  Google Scholar 

  13. Spencer R, Matsen M (2022) Universality of entropic surface segregation from athermal polymer blends due to conformational asymmetry. Macromolecules 55:1120–1126

    Article  CAS  Google Scholar 

  14. Milchev A, Binder K (2020) Semiflexible polymers interacting with planar surfaces: weak versus strong adsorption. Polymers 12:255

    Article  CAS  Google Scholar 

  15. Yang X, Huang JH, Mikhailov IV, Polotsky AA, Luo MB (2020) Height switching in mixed polymer brushes with polymers of different stiffnesses. Macromolecules 53:7369–7379

    Article  CAS  Google Scholar 

  16. Glynos E, Chremos A, Frieberg B, Sakellariou G, Green PF (2014) Wetting of macromolecules: from linear chain to soft colloid-like behavior. Macromolecules 47(3):1137–1143

    Article  CAS  Google Scholar 

  17. Afshar A, Gultekinoglu M, Edirisinghe M (2022) Binary polymer systems for biomedical applications. Int Mater Rev. https://doi.org/10.1080/09506608.2022.2069451

    Article  Google Scholar 

  18. Milchev A, Binder K (2022) Surface enrichment and interdiffusion in blends of semiflexible polymers of different stiffness. Soft Matter 18:3781–3792

    Article  CAS  Google Scholar 

  19. Hu DH, Yu J, Wong K, Bagchi B, Rossky PJ, Barbara PF (2000) Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations. Nature 405:1030–1033

    Article  CAS  Google Scholar 

  20. Vezie MS, Few S, Meager I et al (2016) Exploring the origin of high optical absorption in conjugated polymers. Nature Mater 15:746–753

    Article  CAS  Google Scholar 

  21. Grey J (2016) Strong absorption in stiff polymers. Nature Mater 15:705–706

    Article  CAS  Google Scholar 

  22. Hegde GA, Chang J, Chen Y, Khare R (2011) Conformation and diffusion behavior of ring polymers in solution: a comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations. J Chem Phys 135:184901

    Article  Google Scholar 

  23. Bulacu M, van der Giessen E (2005) Effect of bending and torsion rigidity on self-diffusion in polymer melts: a molecular dynamics study. J Chem Phys 123:114901

    Article  Google Scholar 

  24. Sorichetti V, Hugouvieux V, Kob W (2018) Structure and dynamics of a polymer–nanoparticle composite: effect of nanoparticle size and volume fraction. Macromolecules 51:5375–5391

    Article  CAS  Google Scholar 

  25. Tsehay DA, Luo MB (2018) Static and dynamic properties of a semiflexible polymer in a crowded environment with randomly distributed immobile nanoparticles. Phys Chem Chem Phys 20:9582–9590

    Article  CAS  Google Scholar 

  26. He GL, Merlitz H, Sommer JU, Wu CX (2007) Static and dynamic properties of polymer brushes at moderate and high grafting densities: a molecular dynamics study. Macromolecules 40:6721–6730

    Article  CAS  Google Scholar 

  27. Karatrantos A, Clarke N, Composto RJ, Winey KI (2015) Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter 11:382–388

    Article  CAS  Google Scholar 

  28. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  29. Cheng S, Xie SJ, Carrillo JMY, Carroll B, Martin H, Cao PF et al (2017) Big effect of small nanoparticles: a shift in paradigm for polymer nanocomposites. ACS Nano 11:752–759

    Article  CAS  Google Scholar 

  30. Khan RAA, Qi HK, Huang JH, Luo MB (2021) A simulation study on the effect of nanoparticle size on the glass transition temperature of polymer nanocomposites. Soft Matter 17:8095–8104

    Article  CAS  Google Scholar 

  31. Wu F, Fu Y, Yang X, Sun LZ, Luo MB (2019) Driven translocation of semiflexible polyelectrolyte through a nanopore. J Polym Sci Part B: Polym Phys 57:912–921

    Article  CAS  Google Scholar 

  32. Sarabadani J, Milchev A, De Virgiliis A, Vilgis TA (2014) Molecular dynamic study of the structure and dynamics of polymer melt at solid surfaces. Soft Mater 12:S56–S70

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grant No. 12174338 (to W.-T. Zhu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Ping Cao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, WT., Cao, WP. Surface enrichment structures in a binary polymer system with different stiffnesses confined in slits. Colloid Polym Sci 301, 31–39 (2023). https://doi.org/10.1007/s00396-022-05041-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-05041-6

Keywords

Navigation