
https://doi.org/10.1007/s00396-020-04674-9

ORIGINAL CONTRIBUTION

On the glass transition and correlation functions

Henrich Frielinghaus1

Received: 24 March 2020 / Revised: 5 May 2020 / Accepted: 11 May 2020
© The Author(s) 2020

Abstract
Correlation functions are the basis for the understanding of many thermodynamic systems that can be directly observed by
scattering experiments. In this manuscript, the correlation functions include the steric repulsion of atoms that also leads to
distinct shells of neighbors. A free energy is derived on the basis of these assumptions, and in the following the temperature
dependence of the density (or specific volume), the typical time scale of the α-relaxation, and the heat capacity. From this,
I argue that the glass transition is dominated by the vicinity of a first-order phase transition. While the correlation length
stays rather constant in the vicinity of the glass transition, the intensity of the fluctuations is considerably increasing. The
scattering amplitude is connected to the cluster size, also introduced in the cooperativity argument. Additionally, correlations
of loops are discussed. The additional correlations describe rather small structures. Applying this to scattering intensities, a
correlation peak was described that may be connected to the “Boson Peak” or a “cooperativity length.” The new concept of
correlation functions on sterically repulsive atoms may find more attention in the wider field of physics.
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Introduction

The glass transition has been investigated and discussed
over many decades with the result of clear experimental
temperature dependencies of the specific volume, the
typical time scale of the α-relaxation, and the heat capacity
[1, 2] to show either steeper steps, divergencies, or peaks
at the glass transition temperature. However, the exact
physical meaning of all these observations was left partially
unclear such that different authors even contradict each
other [3].

Classically, the time scale t of the α-relaxation measured
by dielectric spectroscopy or as a viscosity η ∼ t was
empirically described by the Vogel-Fulcher equation [4, 5]
as given by:

t = t∞ exp

[
DT0

T − T0

]
(1)

The high temperature limit of the time scale is t∞, D is
a constant, and T0 is the Vogel-Fulcher temperature that
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points towards the glass transition temperature. D is also
called the “fragility” parameter [6] that is connected to the
degree of deviation from the pure Arrhenius behavior:

t = t∞ exp

[
EA

kBT

]
(2)

with EA being the activation energy and kB being the Boltz-
mann constant. Usually, the Vogel-Fulcher temperature T0
is found approx. 40K below the glass transition tempera-
ture Tg . It should be stressed that the glass transition is a
thermo-kinetic phenomenon, which means that around Tg

and below most observations are dominated by extremely
slow processes and the equilibrium is rarely reached.

The scenario becomes even more complicated by the
view of Tanaka [7], who argues that most glassy systems
deal with two-order parameters: One is connected to the
particle density as the most important and most obvious
order parameter. The other one is introduced as a directional
order parameter which is connected to the molecular
anisotropy. For polymers, these fluctuations are connected
to the Fischer renormalized behavior [8] (and references
herein). While spin glasses are dominated by the directional
order parameter, classical colloidal suspensions and simple
metals are dominated by the order parameter of the density.

A dynamic model for colloidal suspensions has been
developed quite far recently [9]. Astonishingly, hydrody-
namic interactions were neglected; thus, the model would
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be applicable for a wide range of systems. Currently, rheo-
logical measurements on aging and creep are in the focus of
colloidal glasses [10, 11].

Here, I offer a model free energy that should help
to better understand the experimental observations, and
therefore is able to go a little deeper consistently within
the model. This model considers only density fluctuations,
and neglects any directional order parameter. Furthermore,
it is less heuristic than free volume models [12] that
successfully capture most of the features of the glass
transition similarly well. There also exists a lattice theory
[13, 14] that captures aspects of density fluctuations through
the free volume and aspects of directed bonds, but which
stays at a finite expansion level. The important difference
of the newly introduced model is the correlation function
that covers the steric repulsion of atoms and introduces
distinct neighboring shells. I also discuss limits of my
model, and accidently came to a motivation of the “Boson
Peak” observed in [15] as a matter of the steric repulsions.

Theory

I start with a classical Hamiltonian for a number of N

identical particles that interact with each other via a single
pair potential V (�r):

H = T +
∑
i �=j

V (ri − rj ) (3)

The kinetic energy T is only needed later for the entropy
and heat capacity, and is not of interest for most of the
considerations. The partition function of the interactions
will then read:

Zint =
∫

V

· · ·
∫

V

d3Nr1· · ·rN exp

⎛
⎝−β

∑
i �=j

V (ri − rj )

−βμ

N

N∑
i,j=1

∫
d3�r δ(ri − rj − �r)

⎞
⎠ (4)

Note that the volume V without an argument appears in the
limits of the integral. I introduced the chemical potential
that I will need later for the grand canonical partition. The
potential that is normalized by the thermal energy β−1 =
kBT can be split in a short range repulsive and an attractive
term of a little longer range, which is usually considerably
strong for next neighbors.

βV (�r) = vrep(�r) + vattr(�r) (5)

The complete repulsive energy is expressed by εrep = ∫
d3r

vrep(r)/v0 and normalized by the thermal energy β−1. The
repulsive term reserves a spherical volume of v0 = πd3/6
for each particle of diameter d , because the repulsive energy

εrep takes large values (in Appendix 1, I am more precise
and replace v0 by vlattice). The attractive potential has a
minimum min(vattr) = ε that is equally normalized by
the thermal energy, and will be used later. I assume that
the minimum is taken at the distance d , i.e., vattr(|r| =
d) = ε. In the following, I will understand the theory
in terms of a hybrid between a lattice and a continuous
theory: The repulsive interaction will reserve distinguished
compartments of volume v0 where only one particle can be
present. So, nearest particles build up a lattice if they come
close to each other. On the other hand, I treat the parameter
r still as a continuous parameter that especially over large
distances does not take discrete values anymore. The only
important parameter of the potential will be the next
neighbor interaction ε and is the only energetic parameter
of interest. This distinction between εrep and ε is not made
by most lattice theories, while here I argue that the repulsive
term reserves the particle volume and practically is not
probed anymore by other particles while the next neighbor
interaction is the essential parameter which is probed by
neighboring particles. We will see below that our entropic
term serves for avoiding highest densities while classical
lattice theories achieve the finite compressibility also by
choosing rather high repulsive interaction parameters that
are included in the overall interaction.

The term with the chemical potential can be expanded as
follows:

〈
exp

⎛
⎝−βμ

N

N∑
i,j=1

∫
d3�r δ(ri − rj − �r)

⎞
⎠

〉
=

〈
1 − βμ

N

N∑
i,j=1

∫
d3�r δ(ri − rj − �r)

+ 1

2!
β2μ2

N2

∑
i,j,k,l

∫
d6�r1�r2 ·

· δ(ri − rj − �r1) δ(rk − rl − �r2)

− 1

3!
β3μ3

N3

∑
i,j,k,l,m,n

∫
d9�r1�r2�r3 · · ·

〉
(6)

This expansion is understood in terms of a small
chemical potential μ, but the limits arise from other reasons
as discussed later. To some extent, this assumption can
be seen in parallel to a fugacity f expansion with f =
exp(−βμ) being close to 1, but being applied to the
Gibbs’ free energy [16, 17]. In this context, I used the
angled brackets to indicate the canonical integral with the
thermodynamic weight of the original interaction term. This
in particular includes the repulsive term that avoids two
particles being at the same origin, and the next neighbor
interactions. The different lines of Eq. 6 indicate correlation
functions with different degrees. The first line introduces
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the 2-point correlation function, the next line a 4-point
correlation function, and so on. By integrating over all
possible particle positions ri , there are no open ends that can
be parameterized, and so only closed loops are considered.

Now, I will factorize the partition function of the above
expression in the following simple manner:

Zint =
[
V (1 − φ) exp(−ε

z

2
φ2)

]N
∞∑
l=0

1

l! (−βμN 〈Φ〉)l

=
[
V (1 − φ) exp(−ε

z

2
φ2) exp(−βμ 〈Φ〉)

]N

(7)

The first two terms in the bracket arise from the mean field
entropy S/N ∼ kB ln(V (1 − φ)) of one component with
unoccupied volume (I define φ = Nv0/V ). These terms
are basically connected to the translational entropy of the
particles, but they differ from classical lattice theories which
would obtain an expression like V (1 − φ)1−1/φ . The lattice
entropy takes the value zero for the density 1, because the
discrete packing of particles has only one solution. In my
approach, I assumed continuous variables for the particle
position, and this results in high entropic pressures due to
the confinement. This approach becomes incorrect in the
limit of highest densities 1 or extremely high pressures
or temperatures towards zero, where quantum mechanical
effects would yield a countable number of states and finally
lead to a finite entropy that then can be defined as zero.
The third factor of Eq. 7 in the bracket represents a mean
field expression of the next neighbor interactions (with the
coordination number z = 12).

The factorization of the individual correlation functions
is not exact, because various indices might take the same
values which would complicate the correlation function.
First of all, the frequency of indices being different is
quite high, especially for the lower degrees of correlation
functions. Second, the correlations that are represented by
open graphs (Fig. 1) reduce to exactly the factorization,
because the order of integrals can be chosen in this way
that the graphs are stripped from the outer regions to the

inner regions, and each time the exact factor Φ appears.
So the exactness of this calculation is only corrupted by
closed loops (see Appendix 2). The portion of graphs
with closed loops is always low compared with the open
graphs, especially for the low degrees of correlations.
Another flaw might be that at high degrees of connectivity
the actually distinguished number of different paths is
limited to the coordination number. Again, this bulkiness
effect will eventually need corrections at high degrees of
correlations, which can be safely neglected here. So within
the considerations of this manuscript, the abovementioned
approximation is good, and assumed to be quite precise.

The derived correlation function is understood as the
following: I consider a chain of particles covering the
distance �r. From this chain, I get a contribution α =
φ · (−ε) for each particle in the chain accounting for
the probability and the energetic contribution of the next
neighbors. At this point, the probability α is treated
in the sense of classical lattice theories. An energy
renormalization to the average contact energy would refine
the term α = φ · (−ε + φε) = φ(1− φ)(−ε). At this point,
the correlation function counts additional correlations that
are not covered by the mean field expression ε z

2φ
2 of Eq. 7.

This correlation function would read then:

Φ(�r) = αn with n = g|�r|/d (8)

The factor g takes the possibility for wrinkled paths into
account, but still is of the order of unity. The overall estimate
is then given by:

〈Φ(�r)〉 = 1 + γ · α(1 + α)

(1 − α)3
(9)

While Φ(�r) · 〈φ〉 = 〈φ(r1)φ(r1 + �r)〉 is a classical
van Hove correlation function [18] of the particle density
φ (except for the factor of the mean density φ =
〈φ〉), the integral 〈Φ(�r)〉 := ∫

Φ(r)d3r tells about the
cooperativity of correlations. I include every coordination
number effect in the prefactor γ including the wrinkledness
of the paths. It lies in the range of γ = √

2π =

Fig. 1 A selection of open
graphs showing the possibility
of connectivity. None of them
violates the factorization of the
corresponding correlation
function, because the order of
integration allows for stripping
the graphs sequentially
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4.4 and π
√
27/2 = 11.5 ≈ z for simple cubic and

hexagonal-packed lattices. Finally, we will see below that
the exact number does not play a major role. Apart
from the discussion about the coordination number, the
explicit presence of the particle at the origin is added to
this correlation function. This central particle is always
considered, because the original sum of Eq. 6 considers
equal indices i, j explicitly. This correlation function
describes the cluster size with respect to the average particle
density, so to speak the size of enrichments with respect to
the background. For the grand canonical partition function,
I still need to sum up all possible particle numbers, and so I
obtain:

Zgc =
∞∑

N=0

Zint =
[
1 − V

V0
(1 − φ) exp(−ε

z

2
φ2 − βμ〈Φ〉)

]−1

(10)

The reference volume V0 is introduced to obtain
dimensionless numbers in the partition function. It appears
as a constant for derivatives and is set to V at the
end of calculations. All of this also guarantees that the
abovementioned sum converges to finite numbers. From
this, I do the transformation back to obtain the free energy
with the parameters T , V , and N (with leading terms only):

F = −kBT · N

〈Φ〉
[
ln

(
V

V0
(1 − φ)

)
− ε

z

2
φ2

]
(11)

This free energy basically looks like a mean field expression
of interacting particles. But the number of particles
appearing in the expression is now divided by the cluster
size 〈Φ〉 to yield the effective number of particles. From
this, I obtain the equation of state:

−p − ∂F

∂V
= 0 = (12)

−p̃〈Φ〉 + φ

1 − φ
+ εzφ3 − φ2 ∂ ln〈Φ〉

∂φ

[
ln(1−φ)−ε

z

2
φ2

]

(13)

Here the scaled pressure is p̃ = pv0/kBT . This enables
us to calculate the particle density as a function of the
scaled parameters p̃ and ε (see also Fig. 2). As all of the
parameters scale with the reciprocal temperature τ−1, I can
write p̃ = p̃0/τ and ε = ε0/τ . This basically leaves
the interesting parameter space to be around unity for the
considered parameters.

An example for such calculations is shown in Fig. 3. The
particle density goes up steadily until τ−1 ≈ 1.5, where a
steeper increase is found.We can see that in this example the
increase becomes steeper with higher ε0. As we will see, this
property correlates with the fragility of the glass. For even
higher τ−1, the density saturates. This overall behavior is
well known for the specific volume, which is V/N = v0/φ.
I believe that the theory is closer to the observations on
the heating cycle compared with the cooling cycle, because

Fig. 2 The equation of state for the parameters ε = −0.4 (solid line),
−0.5 (dashed), and−0.6 (dotted). The other parameters were p = 0.05
and γ = 11.5 (z = 12). One can see that a single state is well defined
for smaller neighbor interactions, while for larger interactions phase
separation occurs. The interactions for stable phases are indicated by
the arrows

cooling towards the glassy state deals with stronger changes
in the configuration.

From the concept of cooperativity [19], a basic equation
was derived for the characteristic time t involved in the α-
process of the glass-forming system [2, 3, 20, 21]. I finally
use the specific entropy of the clusters that were explicitly
well explained in [20]:

ln t =
(

a

T · Sconf

)x

(14)

The parameter a is a free energy and is neglected in the
following. The exponent x is mostly found close to 1

Fig. 3 The particle density as a function of the scaled temperature.
The common parameters are p̃0 = 0.1 and γ = 11.5 (z = 12). The
attractive nearest neighbor interaction ε0 was−0.28 (solid line),−0.25
(dashed), −0.20 (dotted), and −0.15 (thin solid)
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in theory and experiments. The configurational entropy is
calculated as follows:
Sconf

NkB

= − 1

NkB

∂F

∂T
= (15)

3

2
+ 1

〈Φ〉
[(

1 − ∂ ln〈Φ〉
∂ ln T

)(
ln(1 − φ) − ε

z

2
φ2

)
+ ε

z

2
φ2

]

(16)

At this point, I come back on the kinetic term, i.e., 3/2,
that is needed to be considered, and other terms involving
the cluster size. So, the cluster size is highly important,
and gives rise to the glassy behavior, but is not directly
connected to the “Cooperatively Rearranging Units” [21],
i.e., ncluster = 〈Φ〉 �∼ S−1

conf.
Examples for the relaxation times are depicted in Fig. 4.

They are normalized to span the range of 0 to 1. The
fragile glass (ε = −0.28) shows a highly bent curve, while
the softer glass (ε = −0.15) leads to a lower curvature.
This is a general observation for glass-forming systems,
and the underlying model free energy is capable to connect
the fragility of a glass to the simple parameter ε: The
nearest neighbor interaction parameter. These curves can
also directly be connected to experimental viscosities [22,
23].

In more recent discussions of the time scale t [24, 25]
as a function of the reciprocal temperature, say τ0/τ , the
magnitude
(

∂ ln(t)

∂(τ0/τ)

)−1/2

=
√

1

DT0
·
(
1 − T0

T

)
(17)

is often discussed because more detailed temperature ranges
with distinct slopes can be observed more clearly. The

Fig. 4 The characteristic time t as a function of the scaled temperature
τ0/τ . The common parameters are p̃0 = 0.1 and γ = 11.5 (z = 12).
The attractive nearest neighbor interaction ε0 was −0.28 (solid line),
−0.25 (dashed), −0.20 (dotted), and −0.15 (thin solid)

Fig. 5 The more detailed derivative of the characteristic time as a
function of τ0/τ for more detailed analysis of nearly straight regions.
The common parameters are p̃0 = 0.1 and γ = 11.5 (z = 12). The
attractive nearest neighbor interaction ε0 was−0.28 (solid line),−0.25
(dashed), −0.20 (dotted), and −0.15 (thin solid)

Arrhenius behavior would lead to a constant value over a
certain temperature range. The corresponding graph to Fig.
4 is displayed in Fig. 5. The classical Vogel-Fulcher region
would be found in the range of τ0/τ = 0.9..1. Towards even
lower temperatures τ0/τ ≈ 1, the behavior flattens as also
found in literature for propylbenzene [25] and salol [24].
Towards higher temperatures τ0/τ = 0.6..0.8, the curve also
flattens and is often identified by the Arrhenius behavior
with an ideal slope of zero (propylbenzene [25] and salol
[24]). At much higher temperatures τ0/τ < 0.5, the curve
takes a higher slope again, which is also found for systems
very far from the Vogel-Fulcher temperature [24], namely
glycerol and glycols. Here, a rather soft glass behavior
might even flatten the original Vogel-Fulcher region τ0/τ =
0.9..1 more than shown in our graph (Fig. 5) such that the
slope might be unified over a larger range τ0/τ = 0.6..1.
More details would be left for a deeper parameter analysis
of the whole theory.

The heat capacity is another relevant function in concert
with the glass transition. It is related within our expressions
in the following:

Cp

NkB

= 1

NkB

(
∂H

∂T

)
p

(18)

= 3

2
− T

NkB

∂2F

∂T 2
+ T p̃

φ2

∂eqn13
∂T

/
∂eqn13

∂φ
(19)

The explicit use of the left-hand side of Eq. 13 is used
for the full expression. The kinetic energy also plays a role,
and contributes simply in terms of 3/2. Examples for the
calculation are given in Fig. 6. We can see the presence of
a more or less pronounced peak, according to the fragility
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Fig. 6 The heat capacity of a glass-forming system as a function of
the reduced temperature τ . The common parameters are p̃0 = 0.1 and
γ = 11.5 (z = 12). The attractive nearest neighbor interaction ε0 was
−0.28 (solid line), −0.25 (dashed), −0.20 (dotted), and −0.15 (thin
solid)

of the glass. I again believe that the theory is closer to the
observations on the heating cycle.

Polymers

The glass transition of polymers has also been in the focus
of recent research [26]. The whole concept of the present
manuscript might be extended for polymers with little
changes (if no directional order parameter is needed [7, 8]).
For the equation of state, I find the following (following ref.
[17]):

0 = −p̃〈Φ〉 + φ

Npol
+ φ2

1 − φ
+ ε

(
z − 2 + 2N−1

pol

)
φ3

−φ2 ∂ ln〈Φ〉
∂φ

(
ln(1 − φ) − ε

( z

2
− 1 + N−1

pol

)
φ2

−(1 − N−1
pol ) ln

z − 1

e

)
(20)

The reference unit is a single atom (or monomer). The
rather strong change lies in the probabilities for the next
neighbor particles. Here the connectivity of the chain plays
an important role that is completely independent of the
temperature. So I find:

α = 2 − 2N−1
pol

4π
+ 4π − 2 + 2N−1

pol

4π
φ(1 − φ)(−ε) (21)

I calculated some examples for the particle densities as a
function of the degree of polymerization Npol (see Fig. 7).
One can see that the glass transition temperature is lowered
for the shorter chains. This seems to be the usual case.
Here, the glass fragility seems to be changed less (also
seen from the heat capacity, not shown) compared with
smaller molecules. In parallel, I could find other parameters

Fig. 7 The particle density as a function of the degree of
polymerization, which were chosen Npol = 500 (solid line), 100
(dashed), and 20 (dotted). The common parameters are ε0 = −0.28,
p̃0 = 0.05 and γ = 11.5 (z = 12). The change of the glass transition
temperature is ≈ . 5%

(smaller ε0, and higher p̃0) for the opposite trend. While
I predicted now changes for polymeric glasses with the
degree of polymerization, a very detailed analysis of the
model and experimental data is needed to get the trends
correct. At the moment, I leave the results as they are now.

Discussion

Small-angle scattering of glasses would be a measure den-
sity fluctuations and, therefore, the correlation function.
According to the scenario I have developed here, the scat-
tering function is derived from the Fourier transformation of
the correlation function 〈φ(r1)φ(r1 + �r)〉 = Φ(�r) · 〈φ〉,
see Eq. 8:

S(Q) = v0 φ 〈Φ〉
(1 + A2Q2/2)2

(22)

with the correlation length A = √
2d/(−g lnα). I expect

that especially the correlation length and the specific
volume deliver the parameters of the presently discussed
model. Details about the coordination number of this model
could be corrected on the basis of scattering experiments
on absolute scale. Furthermore, I believe that the tendency
to crystallization might modify the assumed coordination
number of the hexagonal packing to a different one. There
are not many experiments on this type of scattering [27],
because the correlation volumes are small, and the scattering
intensities are weak.

I just stress the prediction of this model for the scattering:
The correlation length A is rather constant in the vicinity of
the glass transition, and the intensity would increase towards
the glass transition due to the growing term φ (see Fig. 3).
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The regions of stronger fluctuations are stabilized because a
smaller driving force acts towards equilibrium. This, and the
bigger cluster size (or bigger “Cooperatively Rearranging
Units”) together, is responsible for the strong slowing down
of relaxations in a glass. More details about the scattering
are discussed in Appendix 3.

Two experimental results might be quite interesting to
be compared with Eq. 22 with the correlation length A =√
2d/ (−g lnα). The diverging intensity towards lower

temperatures was confirmed by depolarized light scattering
experiments [28]. A dependence of the correlation length
A over a wide temperature range has been performed on
glycerol confined in zeolites and a scaling exponent of
γ1 = 0.28 was obtained [29]. This can be compared with
our theory with γ1 = −1/ ln(α) by taking φ = 0.5 and
ε = −0.2, I would arrive at a value of γ1 = 0.33. It should
be stressed that this value is only observed over a large
temperature range, while close to the glass transition and
below the correlation length should be rather constant.

I discuss now the meaning of the glass transition within
this model. As we see, that close to ε0 = −0.26 the heat
capacity diverges, and the specific volume nearly changes
stepwise from one to another value. I can also depict the
equation of state (Eq. 13) for higher neighbor interactions
(see Fig. 2). We see that then a two-phase coexistence
between a high density state and a low density state is
obtained. While the model is not really capable of predicting
the crystalline state correctly, the meaning is as follows:
The phase transition between the liquid and crystalline
state is close to the glass transition. This causes relatively
strong but finite fluctuations of particle density (even though
they will be hardly observable due to a small correlation
length). The discussed equation of state indicates a first-
order phase transition, a diverging heat capacity, and a
nearly stepwise change of the specific volume. The interplay
of strong fluctuations and large clusters (or “Cooperatively
Rearranging Units”) explains the dramatic slowing down
of relaxations in a glass, while the correlation length A is
growing very slowly as discussed in the literature [30, 31].
Thus, the glass transition can be classified physically on the
basis of this model. Apart from that, I hope that this model
will be a basis for more detailed models that are capable of
quantitative predictions.

In the Appendix, I argue basically for the absence of
contributions from loops in the calculation, because they
predict a crowdedness that basically cannot appear. From
calculations of higher order corrections to the scattering and
a heuristic subtraction of the original cluster, I derived an
additional scattering function:

SBP(Q) = v0φ〈Φ〉2
(
exp(−A2Q2) − exp(−2.62A2Q2)

)
(23)

This scattering contribution describes a correlation peak,
the intensity of which depends on the magnitude of ncluster.

Thus, a new length scale � = 8.1A appears. While I believe
that this feature would stay weak for a pure structural scattering
experiment (without energy resolution), the additional
correlation might appear in spectroscopic methods, where
this finding is called the “Boson Peak.” Polymers might
show this feature more often, because the term α includes
a contribution of the connectivity. The “Boson Peak”
would describe rearrangements of a few neighbors to the
actual cluster. In another publication [32], the “cooperativity
length” was observed using calorimetric methods and
pointed out as a separate, considerably bigger length scale
than the bare correlation length. Details about this feature
still stay open for discussion. I also would like to stress that
I argue here in terms of discretization (or bulkiness) effects
that I introduced heuristically (described by the Feynman
graphs in Eq. 45), and not in terms of a strict mathematical
formalism (that actually contradicts to this view).

Conclusions

While this model contains many detailed relations, I would
like to put emphasis on a few aspects that seem to be
correctly described by the model. The analysis of the time
scale t as a function of the temperature was refined by a
special derivative (Eq. 17 and Fig. 5) with higher sensitivity
to different regions. Quite quantitatively, the different
temperature ranges of locally linear dependencies were
identified. The correlation or scattering function grows in
amplitude but the correlation length A stays rather constant
(see Eq. 22) in the vicinity of the glass transition. The
constant length scale is recently discussed in the literature
[30, 31]. Over a wider temperature range, the correct
scaling exponent of the correlation length is predicted [29].
The predicted and confirmed growing amplitude [28] is
connected to a higher susceptibility that slows down the
restoring forces. The secondary scattering function is a
correlation peak (see Eq. 23) that points towards a much
larger length scale compared with the correlation length
A. In recent measurements, the “cooperativity length” was
identified to be much bigger than the bare correlations
[32]. Alternatively, a “Boson Peak” at considerably larger
length scales than the atomistic distances [15] is observed
in spectrometric experiments. In the latter publication,
the atomistic length scales are just not identified as the
bare correlations for the glass-forming system. Thus, the
new concept of repulsive atoms with distinct neighboring
shells is promising in calculating correlation functions for
glassy systems and may even be extended to high energy
physics when gravitation comes into play. In any case, I am
optimistic that the derived correlation functions will shed
new light on the physics of glasses and contribute to quite
quantitative predictions.
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Appendix 1. Details for the free energy

The partition function in the canonical ensemble Zint (4)
introduces the chemical potential term βμN by expressing
the number of particles N indirectly through the following
identity:

N∑
i,j=1

∫
d3�r δ(ri − rj − �r) = N2 (24)

It is implicitly assumed that surface effects can safely be
neglected, such that the integral of the δ-function always
takes the value 1. The newly introduced δ-function now
gives rise to a correlation function Φ(�r) that we see in the
context of the partition with its statistical weight, i.e., the
angled brackets mean:

〈f (rk, rl )〉 =
∫

V

· · ·
∫

V

d3Nr1· · ·rN f (rk, rl ) · exp
⎛
⎝−β

∑
i �=j

V (ri − rj )

⎞
⎠ (25)

and I define Φ as:

Φ(�r) = 1

N

N∑
j=1

〈δ(r1 − rj − �r)〉 (26)

where the index 1 is arbitrary because all particles are
identical. This correlation function can be interpreted in
terms of particle chains (on a lattice) that have probability
of α from particle to particle. Then, the correlation function
simply takes Φ(�r) = αn with the number of particles in
the chain n = g|�r|/d . Since the average contact energy
is explicitly taken into account in terms of a mean field
approach (third term in Eq. 7), the energy in the probability
α is renormalized with respect to the average contact energy,
and so α = φ · (−ε + φε) = φ(1 − φ)(−ε). The volume
integral of the correlation function finally would lead to the
expression:∫

d3�r Φ(�r) = 4π
∫ ∞

0
dr r2αgr/d (27)

In the main text, the continuous integral was replaced by a
discrete sum using n = gr/d . Thus, the essential term reads:

4π

(
d

g

)3 ∞∑
n=0

n2αn = 4π

(
d

g

)3
α(1 + α)

(1 − α)3
(28)

These expressions carry units from the volume that
originally was avoided by the δ-function. So they need to
be normalized by the lattice volume vlattice ∼ d3 such
that the expressions are dimensionless. Apart from that, the
correlation of the central particle is added to the whole

correlation function (I write sloppy 〈Φ(�r)〉) and arrive at
Eq. 9. The new parameter γ is defined as 4πd3/(g3vlattice).
For a simple cubic lattice, I arrive at vlattice = d3 and
g = √

2, so γ = √
2π = 4.4. For a hexagonal close-

packed (or fcc) lattice, the parameters are vlattice = a3/4,
d = a/

√
2, and g = 2/

√
3, so γ = π

√
27/2 = 11.5 (with

the fcc unit cell size a3). Note that I took a maximum value
for the wrinkledness. It might be discussed if an average
value for g between 1 and the maximum value might apply.
The additional term 1 arises from the central particle that
is present for sure according to the original idea of the δ-
function (for i = j ). The magnitude 〈Φ〉 can be interpreted
as a cluster size which grows from 1 for smallest α (i.e.,
either ε = 0 or φ = 0 or 1) to bigger values. A rather big
value is obtained for ε = −0.28 and φ = 1/2 that results in
〈Φ〉 ≈ 2.07 for hexagonal closed packing.

From the grand canonical partition (8) function, I obtain:

Fgc = −kBT lnZgc

= kBT ln

[
1 − V

V0
(1 − φ) exp(−ε

z

2
φ2 − βμ〈Φ〉)

]
(29)

and the number of particles can be calculated according to:

N = ∂

∂μ
Fgc = 〈Φ〉 X

1 − X
(30)

I used the definitions:

X = V

V0
(1 − φ) exp(−ε

z

2
φ2 − βμ〈Φ〉) (31)

Y = N

〈Φ〉 (32)

1166 Colloid Polym Sci (2020) 298:1159–1168

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


And soX = Y/(1+Y ) holds true. The canonical description
can be obtained by the free energy that is determined by:

F ≡ Fc = kBT ln(1 − X) − μN (33)

= −kBT ln(1 + Y )

+ ln

(
X

V
V0

(1 − φ) exp(−ε z
2φ

2)

)
N

β〈Φ〉 (34)

= kBT
[
Y lnY − (1 + Y ) ln(1 + Y )

+Y

(
− ln

[
V

V0
(1 − φ)

]
+ ε

z

2
φ2

)]
(35)

≈ −kBT
N

〈Φ〉
(
ln

[
V

V0
(1 − φ)

]
− ε

z

2
φ2

)
(36)

The two logarithmic terms of Y and (1+Y ) basically cancel
out (∼ −1 − lnY − 1/(2Y ) · · · ) against the much bigger
third term of the second last line (large number of particles).
In the last line, I obtained (11) of the main text.

Appendix 2. Somemissing terms

The approximations so far left some terms disappear, and
I tried to argue that I still cover most of the physics of
the glass transition. This is quite true, and I will give more
details why. So within second-order correlations, a single
loop might form. The contribution looks like:

(37)

Here and in the following I neglected details about the
combinatorial factors, when N went slowly down to N − 1,
N−2, etc. For the third-order correlation, I could also have a
loop coexisting with a single strand. This contribution looks
similar:

(38)

The most complicated correlation I consider is a loop
consisting of three strands. The contribution is:

(39)

The constant f = 0.00128 results from a numeric
integration for the triangular correlation. For this I had to
solve the integral:

8π2

∞∫
0

z2dz

∞∫
z/2

r2dr

z/2r∫
−1

d cos θ αz+r+
√

r2+z2−zr cos θ (40)

≈ γ 2

2

∞∑
n=0

n5αn

2∫
0

dR

R4

1∫
0

dκ · · ·

1 + R/2

(1 + R−1 + √
1 + R−2 − (κ(1 + R/2) − 1)R−1)6

(41)

The z-axis connects particles 1 and 2, while the third particle
is connected to particle 1 along the r-axis. The angles for
the z-axis are arbitrary, while this is only the case for the
azimuthal angle. The residual polar angle θ is kept explicitly
in the integration. In line 41, the integral limits are made
rectangular such that a simple Monte Carlo integration
delivers the numerical result of f . The original integral
along z was rewritten as a sum, and the term for n = 0 was
added separately in Eq. 39.

The terms of order l containing a single loop are small
compared with the leading term of order l when the
condition below is fulfilled:

N2 
 l(l + 1)

2〈Φ〉 (42)

By assuming a large system, this condition is always
fulfilled. The complicated case of small finite volumes
[21] cannot be treated here because there are important
surface terms apart from the condition above. The condition
for the triangle correlation (here I stick to the third-order
correlation) reads:

N3〈Φ〉3 
 f

2

(
1 + γ 2α

1 + 26α + 66α2 + 26α3 + α4

(1 − α)6

)
(43)

Again, within my model, the system is large, and so the
condition is usually fulfilled (actually more easily than
condition 42). Tending towards smaller volumes would also
require the neighbor interaction to be attractive enough to
have a reasonable system within the approximations.

Appendix 3. The smallness of the loop terms

We have seen that at some point the loop terms might break
down the approximation. Here, I would like to argue that
a strict mathematical treatment of loops is to be seen with
caution, because those correlations would take place on
the tiniest spaces, and that cannot appear for particles of
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finite size. While the open loops extend over a reasonable
space, the closed loops do not. So, I discuss a scattering
contribution from a triangular correlation, i.e.,

(44)

The dashed line indicates the scattering term. The triangular
correlation was calculated similarly as in Eqs. 39-41, where
the Q-axis was parallel to the z-axis. The dominating Q-
dependence was calculated from a Taylor expansion at small
Q. When comparing this result with the original scattering
function (22, A is the original correlation length), we see:
The structural size does not change dramatically, while the
amplitude goes up dramatically. This would mean that there
are many more correlations in the tiniest space. Due to my
applied continuous space description (used especially here),
I artificially find an amplification of correlations for the
higher order terms. This means that closed loops violate
the concept of discrete particles. One way out, to describe
higher order terms (heuristically), might be the subtraction
of this crowdedness, i.e., Eq. 23 and:

(45)

I stress that I argue here in terms of discretization (or
bulkiness) effects that I introduced heuristically and not in
terms of a strict mathematical formalism.
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