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The German Colloid Society had its annual meeting in
September 23–25, 2019, at the University of Stuttgart. Many
interesting contributions employing neutron scattering as an
important method were presented. From that, often discus-
sions came up after the talks and in the coffee breaks which
role the European Spallation Source (ESS) in Lund, Sweden,
will play in the context of colloid and soft matter research.
After that, I tried to condense some thoughts and my own
opinions with the background as an active researcher thor-
oughly employing neutron scattering. The first 15 instruments
of the ESS are presented in Ref. [1]. Future instrumentation
rounds are foreseen in the near future.

The two small-angle neutron scattering (SANS) instru-
ments LoKI and SKADI will be flagships in the discussed
context, because they will be addressed in the first place due
to their resolved length scales in the approximate range of 1 to
1000 nm. Here, the structure of mesoscales will be resolved
that are often the origin of understanding the functionality of
colloidal and soft matter materials on the macroscopic length
scales. Of course, this method is often combined with further
characterizations be it laboratory scale methods or further
scattering methods. One important example is the
microemulsion [2, 3] that structure needs to be resolved in
combination with further methods for a wider range of pur-
poses. Especially, when taking supercritical CO2 as the oil [3],
new perspectives for industrial nano-foams are opened. The
instrument LoKI will focus on a broader Q-range at slightly

worse resolution, while SKADI is the multi-purpose SANS
with higher resolution. The latter instrument will also aim at
magnetic nano-particles [4] using polarization and polariza-
tion analysis.

The engineering instruments BEER and HEIMDAL serve
also for much higher Q with a compromise in the SANS range
where lowest Q are cut. However, this large Q-range is inter-
esting for crystallizing materials, such as polymeric mem-
branes for fuel and electrolyzer cells [5, 6]. In operando stud-
ies are highly interesting for studying the conversion mecha-
nisms and fatigue in the membrane.

The diffraction instrument NMX is originally devoted to
hydrogen detection in protein crystals. However, well-ordered
lipid bilayer systems can be characterized also in terms of
structure [7, 8] at this instrument. The influence of drugs and
proteins on the bilayer structure is usually analyzed in such
experiments. Very crucial is the radiation background if the
weakest peaks are to be detected.

The reflectometer FREIA simultaneously measures the
specular reflectivity in a wide Q-range. This is for instance
interesting for microgels [9] and lipid bilayers (partially from
whole cells) [10]. A wider use towards grazing incidence
SANS is not foreseen in the current state.

Currently, the spectrometers MIRACLES and CSPEC
serve for the medium and higher energies in soft matter re-
search. Examples focus on nano-particles in a viscous envi-
ronment [11], and also proteins are often in the focus [12].

Highly important are the joint efforts of the European
DEUNET network in deuteration on demand (https://
sine2020.eu/about/the-road-to-the-ess/deunet.html) that
serves for lipids [13], polymers, and other smaller molecules
needed in colloid and soft matter science. A successor
program is planned within the framework of the League of
advanced European Neutron Sources (LENS) (https://www.
lens-initiative.org).
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The uncovered types of instruments that are urgently need-
ed at the ESS are a grazing incidence (GI)SANS instrument
and a conventional neutron spin echo (NSE) spectrometer.
The GISANS instrument allows for studying lateral structures
in thin films at length scales of a typical SANS instrument [14,
15]. Varying the incident angle, different depths are highlight-
ed independent of the lateral resolution. The Swedish commu-
nity is currently preparing for a GISANS instrument proposal.
However, the detailed plans and a final decision are still in
preparation. Similarly, a conventional NSE spectrometer [16,
17] completes the spectrometer suite of the ESS towards the
time resolution of 1 ns to a few 100 ns. This method is essen-
tial in the colloid and soft matter research in the field of poly-
mers, micelles, microgels, proteins, and lipid bilayers for in-
stance [18]. If the radiation background is low, grazing inci-
dence NSE spectroscopy [19] could be implemented to this
instrument which directly leads us to tribology effects and the
dynamics of membrane proteins. Both instruments (GISANS
and GINSE) would complement each other when aiming at
near-surface kinetics and dynamics, possibly in operando.
This would further be highly interesting when studying lithi-
um batteries, fuel and electrolyzer cells, and film deposition to
name some of them. These two rather new methods tease the
new source ESS in terms of intensity because the scattering
volumes are tiny. Apart from that, lowest radiation back-
ground is inevitable when detecting low signals. After all,
surprising and profitable new results can be expected from
the two instruments. So, I hope that these considerations
would feed in to the decisions of the next set of instruments
to be built at the ESS and the necessary funding will be raised.
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