Skip to main content
Log in

Structural characteristics and interfacial relaxation of nanocomposites based on polystyrene and modified layered double hydroxides

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Nanocomposites based on polystyrene (PS) and organically modified MgAl-layered double hydroxides (O-LDHs) were prepared via in situ free radical polymerization. The modification of LDH by sodium dodecylbenzenesulfonate (SDBS) led to a nearly complete substitution of original NO3 in LDH intergallery and an enlarged interlayer distance. The structural changes of LDH layers before and after preparation of nanocomposite samples were well investigated, and the corresponding mechanism diagram was proposed to visually describe the results. X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that O-LDH was homogeneously distributed in the PS matrix as stacks with an intercalated structure. The tan δ spectra of nanocomposites revealed that there were two kinds of relaxation in PS/O-LDH nanocomposites. The second of relatively low intensity located at the temperature is higher than the main relaxation (glass transition of PS matrix), corresponding to motions of the PS chains confined by O-LDH particle surfaces. According to the stack structure and dispersion behavior of O-LDH layers in the PS matrix, a three-layer model was introduced to explain the two relaxations in PS/O-LDH nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28:83–114

    Article  CAS  Google Scholar 

  2. Bandyopadhyay A, De Sarkar M, Bhowmick AK (2005) Polymer-filler interactions in sol-gel derived polymer/silica hybrid nanocomposites. J Polym Sci B Polym Phys 43:2399–412

    Article  CAS  Google Scholar 

  3. Luo LB, Yu SH, Qian HS, Zhou T (2005) Large-scale fabrication of flexible silver/cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach. J Am Chem Soc 127:2822–3

    Article  CAS  Google Scholar 

  4. Robertson CG, Roland CM (2008) Glass transition and interfacial segmental dynamics in polymer-particle composites. Rubber Chem Technol 81:506–22

    Article  CAS  Google Scholar 

  5. Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17:R461–524

    Article  CAS  Google Scholar 

  6. Schonhals A, Goering H, Costa FR, Wagenknecht U, Heinrich G (2009) Dielectric properties of nanocomposites based on polyethylene and layered double hydroxide. Macromolecules 42:4165–74

    Article  CAS  Google Scholar 

  7. Tsagaropoulos G, Eisenberg A (1995) Dynamic-mechanical study of the factors affecting the 2 glass-transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 28:6067–77

    Article  CAS  Google Scholar 

  8. Chen L, Zheng K, Tian XY, Hu K, Wang RX, Liu C, Li Y, Cui P (2010) Double glass transitions and interfacial immobilized layer in in-situ-synthesized poly(vinyl alcohol)/silica nanocomposites. Macromolecules 43:1076–82

    Article  CAS  Google Scholar 

  9. Wurm A, Ismail M, Kretzschmar B, Pospiech D, Schick C (2010) Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 43:1480–7

    Article  CAS  Google Scholar 

  10. Huang XY, Brittain WJ (2001) Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules 34:3255–60

    Article  CAS  Google Scholar 

  11. Tian XY, Zhang X, Liu WT, Zheng J, Ruan CJ, Cui P (2006) Preparation and properties of poly(ethylene terephthalate)/silica nanocomposites. J Macromol Sci B Phys 45:507–13

    Article  CAS  Google Scholar 

  12. Ash BJ, Schadler LS, Siegel RW (2002) Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater Lett 55:83–7

    Article  CAS  Google Scholar 

  13. Bershtein VA, Egorova LM, Yakushev PN, Pissis P, Sysel P, Brozova L (2002) Molecular dynamics in nanostructured polyimide-silica hybrid materials and their thermal stability. J Polym Sci B Polym Phys 40:1056–69

    Article  CAS  Google Scholar 

  14. Rives V, Ulibarri MA (1999) Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord Chem Rev 181:61–120

    Article  CAS  Google Scholar 

  15. Gerardin C, Kostadinova D, Sanson N, Coq B, Tichit D (2005) Supported metal particles from LDH nanocomposite precursors: control of the metal particle size at increasing metal content. Chem Mater 17:6473–8

    Article  CAS  Google Scholar 

  16. Corma A, Fornes V, Rey F, Cervilla A, Llopis E, Ribera A (1995) Catalytic air oxidation of thiols mediated at a Mo(VI)O2 complex center intercalated in a Zn(II)-Al(III) layered double hydroxide host. J Catal 152:237–42

    Article  CAS  Google Scholar 

  17. Wang Q, Undrell JP, Gao YS, Cai GP, Buffet JC, Wilkie CA, O’Hare D (2013) Synthesis of flame-retardant polypropylene/LDH-borate nanocomposites. Macromolecules 46:6145–50

    Article  CAS  Google Scholar 

  18. Fogg AM, Williams GR, Chester R, O’Hare D (2004) A novel family of layered double hydroxides—MAl4(OH)(12) (NO3)(2)center dot xH(2)O (M = Co, Ni, Cu, Zn). J Mater Chem 14:2369–71

    Article  CAS  Google Scholar 

  19. Kotal M, Srivastava SK (2011) Synergistic effect of organomodification and isocyanate grafting of layered double hydroxide in reinforcing properties of polyurethane nanocomposites. J Mater Chem 21:18540

    Article  CAS  Google Scholar 

  20. Acharya H, Srivastava SK, Bhowmick AK (2007) Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: structural characterization and properties. Compos Sci Technol 67:2807–16

    Article  CAS  Google Scholar 

  21. Ma SL, Chen QM, Li H, Wang PL, Islam SM, Gu QY, Yang XJ, Kanatzidis MG (2014) Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. J Mater Chem A 2:10280–9

    Article  CAS  Google Scholar 

  22. Ma SL, Islam SM, Shim Y, Gu QY, Wang PL, Li H, Sun GB, Yang XJ, Kanatzidis MG (2014) Highly efficient iodine capture by layered double hydroxides intercalated with polysulfides. Chem Mater 26:7114–23

    Article  CAS  Google Scholar 

  23. Miyata S (1975) Syntheses of hydrotalcite-like compounds and their structures and physicochemical properties. 1. Systems Mg2+-Al3+-NO3 , Mg2+-Al3+-Cl, Mg2+-Al3+-ClO4 , NI2P-Al3+-Cl and Zn2+-Al3+-Cl. Clays Clay Miner 23:369

    Article  CAS  Google Scholar 

  24. Charifou R, Gouanve F, Fulchiron R, Espuche E (2015) Polypropylene/layered double hydroxide nanocomposites: synergistic effect of designed filler modification and compatibilizing agent on the morphology, thermal, and mechanical properties. J Polym Sci B Polym Phys 53:782–94

    Article  CAS  Google Scholar 

  25. Moujahid EM, Dubois M, Besse JP, Leroux F (2002) Role of atmospheric oxygen for the polymerization of interleaved aniline sulfonic acid in LDH. Chem Mater 14:3799–807

    Article  CAS  Google Scholar 

  26. Leng J, Purohit PJ, Kang NJ, Wang D-Y, Falkenhagen J, Emmerling F, Thünemann A, Schönhals A (2015) Structure-property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides. Eur Polym J 68:338–54

    Article  CAS  Google Scholar 

  27. Triantafyllidis KS, LeBaron PC, Pinnavaia TJ (2002) Homostructured mixed inorganic-organic ion clays: a new approach to epoxy polymer-exfoliated clay nanocomposites with a reduced organic modifier content. Chem Mater 14:4088–95

    Article  Google Scholar 

  28. Hsueh HB, Chen CY (2003) Preparation and properties of LDHs/polyimide nanocomposites. Polymer 44:1151–61

    Article  CAS  Google Scholar 

  29. Arrighi V, McEwen IJ, Qian H, Prieto MBS (2003) The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer 44:6259–66

    Article  CAS  Google Scholar 

  30. Wu XB, Liu CS, Zhu ZG, Ngai KL, Wang LM (2011) Nature of the sub-rouse modes in the glass-rubber transition zone of amorphous polymers. Macromolecules 44:3605–10

    Article  CAS  Google Scholar 

  31. Purohit PJ, Huacuja-Sanchez JE, Wang DY, Emmerling F, Thunemann A, Heinrich G, Schonhals A (2011) Structure-property relationships of nanocomposites based on polypropylene and layered double hydroxides. Macromolecules 44:4342–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21204090 and 51303182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, L., Li, Q. et al. Structural characteristics and interfacial relaxation of nanocomposites based on polystyrene and modified layered double hydroxides. Colloid Polym Sci 294, 815–822 (2016). https://doi.org/10.1007/s00396-016-3834-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3834-6

Keywords

Navigation