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Abstract We have generated closed-cell microcellular foams
from gliadin, an abundantly available wheat storage protein.
The extraction procedure of gliadin from wheat gluten, which
involves only the natural solvents water and ethanol, respec-
tively, is described with emphasis on the precipitation step of
gliadin which results in a fine dispersion of mostly spherical,
submicron gliadin particles composed of myriad of protein
molecules. A dense packing of these particles was hydrated
and subjected to an atmosphere of carbon dioxide or nitrogen
in a high-pressure cell at 250 bar. Subsequent heating to
temperatures close to but still below 100 °C followed by
sudden expansion and simultaneous cooling resulted in
closed-cell microcellular foam. The spherical gliadin tem-
plates along with the resulting foam have been analyzed by
scanning electron microscope (SEM) pictures. The size distri-
bution of the primary particles shows diameters peaked
around 0.54 μm, and the final foam cell size peaks around
1.2 μm, at a porosity of about 80 %. These are the smallest
foam cell sizes ever reported for gliadin. Interestingly, the cell
walls of these microcellular foams are remarkably thin with
thicknesses in the lower nanometer range, thus nourishing the
hope to be able to reach gliadin nanofoam.
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Introduction

Gliadin, a heterogeneous mixture of single-chained or
monomeric proteins with a molecular mass between
roughly 25 and 75 kDa, represents about the half of the
seed storage proteins of wheat kernels [1–3]. Based on
their electrophoretic mobility at low pH, α-/β-, γ- and ω-
gliadins are distinguished [4]. Their mass varies from 25
to 35 kDa for the α-type, 30–35 kDa for the β-type, 35–
40 kDa for the γ-type, and 55–75 kDa for the ω-type [5].
The α- and β-gliadins are closely related and therefore
often typed as α-gliadin. The sulfur-rich α-/β- and γ-
gliadins show a similar primary structure of polypeptides
with cysteine residues in the native state connected by
inter-chain disulfide bonds, whereas the sulfur-poor ω-
gliadins, which lack cysteine, cannot form cross-links [2,
6]. With their intramolecular disulfide bonds, gliadins
contribute to the viscous nature of dough [7]. They are
characterized by a low electrostatic charge density and a
poor solubility in aqueous salt solutions but a good solu-
bility in alcohol water mixtures [8]. Besides the mono-
meric gliadin, wheat storage proteins also contain poly-
meric proteins, so-called glutenins, with masses from
about 80 to several thousand kilodaltons. The elastic and
strength properties of dough, for example, are ascribed to
the glutenin polymers, whereas the gliadins are believed
to act as plasticizers that weaken the interactions between
the glutenin chains leading thereby to an increase of the
dough viscosity [9]. The terms mono and polymeric refer
to the quaternary structure of the protein. Referring to the
high proportions of glutamine and proline, especially in

S. Quester (*) :R. Strey
Department of Chemistry, Institute of Physical Chemistry, University
of Cologne, 50939 Cologne, Germany
e-mail: silke.quester@uni-koeln.de

M. Dahesh
Laboratoire Charles Coulomb UMR 5221, Université Montpellier 2,
CNRS, 34095 Montpellier, France

M. Dahesh
Laboratoire Charles Coulomb UMR 5221, CNRS,
34095 Montpellier, France

M. Dahesh
UMR IATE, UM2-CIRAD-INRA-SupAgro, 2 Place Pierre Viala,
34070 Montpellier, France

Colloid Polym Sci (2014) 292:2385–2389
DOI 10.1007/s00396-014-3317-6



the central hydrophilic domain [9], these proteins are
classified as “prolamins” [9].

Wheat storage proteins constitute an interesting green ma-
terial from renewable resources for various applications, not
only in the food sector. Due to the unique structural and
functional properties of gluten, it has experienced attention
not only in baking processes. It is known from Banc et al. that
gliadin shows surface-active properties [10], one characteristic
feature which is utilized to stabilize gas cells during bread
making [9]. Its viscoelastic properties and low water solubility
are interesting features for non-food applications [6, 11, 12].
The different gluten proteins and mixtures thereof with their
different characteristics might be utilized to tailor foams with
special properties. Blomfeldt et al. proposed wheat gluten as an
interesting alternative, especially for making polymer foams
[12]. In the non-food, non-bio world, the quest for foams of
nanoscopic sizes and low densities continues, as such so-called
nanofoams constitute a promising nanoinsulation material [13].
It could, e.g., be used to better insulate houses and refrigerators.
Of course, a clean production of nanofoams from biomaterial
would greatly enhance the green aspect of energy saving by
insulation. In any case, already, microfoam from gliadin is an
interesting alternative to conventional polymer foams.

The structure of the gliadin proteins, which form together
with the polymeric glutenin proteins some of the most com-
plex network structures in nature [14], is itself already com-
plex due to the heterogeneity of the individual proteins and the
wide range of their molecular weights.

State of the art

The excellent foaming properties of gliadin [9] are known for
decades. McDonald and Pence described in 1961 stable foams
similar to those prepared from egg white resulting from
whipped aqueous solutions of gliadin [15]. Compared to egg
white, gelatin, soy, and milk proteins, gliadin exhibited supe-
rior performance at no increase or even reduction in cost. In
1977, Mita et al. studied the stability of gluten foams and
found the mechanical properties of the surface to be respon-
sible for the foam stability [16, 17]. Hernandez-Munoz et al.
reported about the excellent film-forming properties and the
long-term stability which qualifies gliadin as a good candidate
for the production of sustainable films and coatings, e.g., for
food packaging [18]. Thewissen et al. emphasized the visco-
elastic properties accessible by hydration of the gliadin as its
predominant feature [19–21]. In 2010, Blomfeldt et al. termed
gluten a “fascinatingly versatile material” which can be proc-
essed with conventional polymer processing techniques into
various 3D forms [22]. Two years later, these authors reported
freeze-dried foams from gliadin and gluten-rich fractions of
gliadin as well as from gluten with mean pore size diameters
between 20 and 73 μm [23].

Experimental

Materials

Gliadin was extracted from commercial wheat gluten (courte-
sy of Tereos Syral, France). The gliadin extraction method
was adapted from Boire et al. [3]. Briefly, 100 g of wheat
gluten were dispersed in 1 L of an ethanol/water mixture 50%
(v/v) and stirred overnight at 20 °C. The supernatant recovered
after centrifugation for 30 min at 20 °C, and 15,000 g was
cooled to and kept overnight at 4 °C which resulted in phase
separation. The upper phase which contains almost only gli-
adin was separated and kept under a fume hood in order to
evaporate the ethanol before freeze-drying. The gliadin yield
was about 18 g.

In Fig. 1, the structure of the original dried gliadin powder
is shown featuring a characteristic collection of spherical
particles, although also, some larger particles and irregular
shaped blocks are visible. Analyzing the predominantly spher-
ical particles, we find the sizes to vary from roughly 100 nm to
1 μm.

Preparation of starting material

For further processing, the gliadin material as seen in Fig. 1
was contacted with water in the following manner. Under
gentle stirring, purified water (filtered through a Millipore
membrane) was dropwise added to the dry gliadin powder at
room temperature. Thereby, the mixture became successively
more deformable and flowable, but still a viscous paste. To
avoid the intake of air bubbles, stirring was performed very
carefully just to achieve a homogenous state. The water con-
tent was 33 wt%.

Scanning electronmicroscope (SEM) pictures of the highly
viscous mass after 24 h in a vacuum desiccator show a very
homogenous structured material of close-packed spheres with

Fig. 1 SEM picture of the gliadin primary particles
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diameters between roughly 10 and 30 nm (Fig. 2, left). The
individual protein spheres can almost be resolved and appear
as visible as points. To get a feel for the structure of the
proteins, the recently proposed structure model of unmodified
gliadin (α/β, γ, ω) (Rasheed et al. [14]) is shown on Fig. 2,
right.

Preparation of foam

A portion of the viscous hydrated gliadin starting material was
cut with a scalpel, weighed in a sample pan, and placed in a
high-pressure cell. The cell consists of a 4-cm-long, hollow
sapphire cylinder standing upright in a water bath. The inner
bore is 1 cm, the wall thickness 1 cm. The pressure can be
regulated by pressing down a tightly fitting piston into the
inner bore. The pressure is recorded electronically. An exter-
nal valve permits a pressure release with an initial dp/dt=
100 bar s−1 or less. The cell was filled with fluid CO2 at room
temperature at a pressure of 72 bar and was then placed in a
water bath at a temperature of 95 °C adjusting the rising
pressure to 250 bar. Ninety-five degree Celsius were chosen
to stay below the ordinary boiling point of water. After 30min,
a sudden expansion to atmospheric pressure was performed
while the high-pressure cell was cooled in a second water bath
to 25 °C within 2 min. The sample was dried in a vacuum
desiccator for at least 1 day and was examined under a SEM.

With no further additive (e.g., a cross-linking agent), just
from the hydrated gliadin, a foam with mean cell diameters in
the lower micrometer range is obtained by the procedure
described above. Figure 3 displays the foam, while Fig. 3a
demonstrates that the whole material is foamed and that the
cells distribution is relatively homogenous. The next higher
magnification in Fig. 3b shows the even distribution of the
foam cells. The highest magnification in Fig. 3c clearly illus-
trates the individual cells of the smallest gliadin foam reported

so far. Interestingly, the membranes of the foam windows are
in some areas extremely thin formed by presumably only a
single layer of gliadin molecules.

To evaluate the cell size distribution, the largest extensions
of 1,350 individual cells in Fig. 3b were measured, referred to
as d. The diagram in Fig. 3d shows the foam cell distribution
along with a (modified Gaussian) fit function (f (d)=a d exp
(−(d−dmax)

2 /(2σ2)), a=0.175 μm−1, σ=0.14 μm, dmax=
1.2 μm). From Fig. 3c, we have evaluated the number density
of foam bubbles according to Nf=(nM

2/A)3/2=3,6·1011 cm−3

[24, eq. 1], where n was the number of cells in, M the
magnification factor, and A the area of the micrograph, re-
spectively. This compares favorably with the estimate for the
number density Nf=dmax

−3=5.8·1011 cm−3 from the maxi-
mum of the cell size distribution dmax in Fig. 3c. About
20 % of the foam is solid material; thus, the porosity is 0.8.

The tuning of the rheological characteristics of the
material by degree of hydration and temperature [25]
facilitates disulfide/sulfhydryl interchange reactions,
which can end up in the formation of intermolecular
disulfide bonds between the gliadin units providing sta-
bility to the structure. During the expansion process, the
interface experiences enormous stress. Therefore, the
relatively homogenous structure and size distribution of
the closed cells is quite surprising, indicating once more
the unique features of this material. The protein mole-
cules are able to perform hydrophobic interactions
and—probably more importantly—to form disulfide
bridges which enable the formation of network struc-
tures [26]. This process is known from processing of
gliadin films. For instance, it was recently reported from
thermo-processing of gliadin resin [21]. As already
mentioned, the α-/β- and γ-gliadins contain significant
levels of disulfide or sulfhydryl groups that potentially
can be involved in the formation of new disulfide

Fig. 2 SEM picture of the cross-section of the dried hydrated gliadin (left). A predicted model structure of unmodified gliadin (right) (provided by and
reproduced with permission of the authors, Rasheed et al. [14])
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bonds, while the ω-gliadins are deficient and in some
cases completely lacking of sulfur-containing amino
acids and therefore cannot participate in the formation
of disulfide bonds [27, 28].

A reduction of the size of the foam bubbles by a factor of
about ten appears reachable, possibly by a reduction of the
size of the primary particles which are to be hydrated and
thereby of the accompanying voids. We presume that the
morphology and mean cell size of the final foam is the result
of the interplay between the degree of hydration, especially a
homogenous hydration of the sample, rheological character-
istics which significantly depend on temperature, pressure,
and time, the nature of the blowing agent, and the temporal
evolution of temperature during the expansion. This very
complex parameter space has not yet been explored.
Currently, we are performing a systematic variation of the
parameters in order to develop an understanding of the influ-
ence of the different parameters with regard to the foam
morphology including the cell size distribution, the wall thick-
ness, and the porosity. Presently, we presume increasing pres-
sure and temperature while decreasing the rate of pressure
release should result in an increase of the number density of
cells accompanied by simultaneous decrease of the thickness
of the cell walls. The foams obtained so far were prepared just

from gliadin proteins plasticized by water without further
additives. They appear to be quite elastic and irreversibly
deformable, but are also brittle to a certain degree. The foam
characteristics can further be tuned by addition of plasticizer
such as glycerol [9] and stabilizers or by other substances
promoting polymerization. By this, the mechanical properties
can be tuned to achieve, for example, flexibility which might
be required for packing materials or other applications [29].
Mangavel et al. addressed to the mechanical properties of
gliadin films and their improvement and found a significant
rise of the tensile strength as well as a decrease of elongation at
break of the films for increased drying temperatures along
with a decrease of the water solubility (indicating some net-
work strengthening induced by thermal treatment) [30].

Conclusion

Closed-cell gliadin foams with very thin membranes of only a
few nanometers were obtained in the first foaming experi-
ments. The mean diameter of the foam cells is only slightly
larger than 1 micron. These are the smallest foam cell sizes
ever reported for gliadin foams. The porosity of 0.8 is—for a
first set of experiments—already quite high. We are confident

Fig. 3 a–c SEM pictures of the resulting foam after the hydrated gliadin was soaked with fluid CO2 at room temperature and heated to 95 °C while the
pressure was adjusted to 250 bar and held for 30 min followed by sudden expansion and cooling to 25 °C. d Cell size distribution
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that it can further be increased towards unity by increasing the
pressure drop, optimizing the pressure drop rate, the temper-
ature, and the degree of hydration. Increasing pressure and
temperature while decreasing the pressure drop rate will in-
crease the number density of bubbles while simultaneously
decreasing the cell wall thickness. The brittleness of the foams
might be reduced by additives. The foams prepared so far
exhibit pore sizes in the lower micrometer regime, presumably
as a result of coalescence or Ostwald ripening. We presume
that the morphology and mean cell size of the final foam is the
result of the interplay between the size and the packing of the
primary particles, the degree of hydration, temperature, pres-
sure, nature of the blowing agent, rheological parameters, and
time. This complex parameter space has not yet been ex-
plored. Efforts towards this end are underway to provide a
useful guide towards nanocellular foams from genuine bio-
material. The procedure reported is simple and low cost, thus
lending itself to a technical realization.
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