
Vol.:(0123456789)

Basic Research in Cardiology 
https://doi.org/10.1007/s00395-024-01049-x

REVIEW

Targeting cardiomyocyte cell cycle regulation in heart failure

Chaonan Zhu1,2 · Ting Yuan1,2,3,4  · Jaya Krishnan1,2,3,4

Received: 21 November 2023 / Revised: 11 March 2024 / Accepted: 29 March 2024 
© The Author(s) 2024

Abstract
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited 
ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While 
various medications and surgical interventions have been used to improve cardiac function, they are not able to address 
the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in 
understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a 
means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regula-
tion and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established 
and novel therapeutic strategies targeting this area for treatment purposes.
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Introduction

Heart failure is becoming a growing concern globally in 
industrialized societies. The prevalence of heart failure has 
resulted in significant mortality rates and poor prognoses 
for individuals affected by these conditions. Loss of car-
diomyocytes, or CMs, is observed in various human heart 
failure including hypertensive cardiomyopathy, myocarditis, 
myocardial infarction (MI), and aortic stenosis. This loss 
ultimately leads to decreased cardiac function and potential 
progression to heart failure [58, 72, 93, 158]. Unlike certain 
amphibians and fish that can regenerate their hearts follow-
ing injury [54, 111, 140], the regenerative capacity of the 

adult mammalian heart is limited [17, 154]. Less than 1% of 
adult mammalian cardiomyocytes have the ability to prolif-
erate within one year, with this rate declining as individuals 
age [103]. Regrettably, lost cardiomyocytes are replaced by 
non-functional scar tissue that cannot be effectively restored 
after injury occurs [66, 141]. One of the primary reasons 
for the limited regenerative capacity in adult mammalian 
cardiomyocytes is their gradual exit from the cell cycle dur-
ing maturation [68, 94]. As a result, they lose their ability 
to proliferate and have very restricted potential to re-enter 
the cell cycle.

Promoting cardiomyocytes to re-enter the cell cycle 
and complete cytokinesis after cardiac injury is a crucial 
approach to addressing heart failure. In the past four dec-
ades, numerous studies have investigated various methods 
of inducing cardiomyocyte cell cycle activity to enhance 
proliferation, including regulating cell cycle regulators, sign-
aling pathways, non-coding RNAs (ncRNAs), and metabo-
lism [16, 29, 45, 124]. So far, we have reached a stage of 
consolidation with new tools at hand, such as gene therapy 
and delivery methods. This review will focus on the current 
understanding of how cardiomyocyte cell cycle activity is 
regulated as a potential mechanism for cardiac repair. Based 
on current literature, we will also discuss targeting the cell 
cycle as a strategy for cardiac regeneration therapy in treat-
ing heart failure.
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The mammalian cell cycle

The cell cycle is the process in which a cell duplicates and 
divides into two daughter cells. In mammals, the cell cycle 
consists of G1 phase, synthesis (S) phase, G2 phase, and M 
phase (mitosis and cytokinesis) [65, 96]. During G1 and G2 
phases, the cell grows and prepares for division [48, 143]. 
The S phase is when DNA synthesis occurs [22]. After 
interphase, the cell enters a checkpoint before progressing to 
mitosis [163]. Mitosis encompasses several phases including 
prophase, prometaphase, metaphase, anaphase telophase, 
culminating in cytokinesis [185]. If the cell exits the cell 
cycle in response to molecular cues during any part of the 
cell cycle, it enters the arrested quiescent G0 state.

Cellular processes involved in the cell cycle are tightly 
regulated. In G1 phase, cyclin-dependent kinase 4 (CDK4) 
and CDK6 complexes phosphorylate retinoblastoma (RB) 
proteins, leading to the inhibition of E2F repressor RB and 

increased activity of the E2F family (Fig. 1). This enhances 
expression of gene driving DNA synthesis and promotes 
cell cycle progression [145, 162]. As the cell cycle advances 
towards the G1 restriction point, formation of the cyclin 
E-CDK2 complex occurs. This complex facilitates phospho-
rylation of RB proteins, stimulating G1/S transition and ini-
tiating S phase [188]. Following this transition, progression 
through S phase is controlled by cyclin A-CDK2 complex 
which regulates chromosome duplication and early mitotic 
events [153]. While during the G2/M transition, cyclin A 
forms complex with CDK1 which facilitates entry into the 
M phase along with cyclin B-CDK1 complex [153]. In the 
context of myocardial proliferation, it is suggested that tar-
geting the regulation of the cell cycle could be a potential 
therapeutic approach for cardiac repair. However, due to the 
intricate and diverse nature of myocardial cell cycle regula-
tion, there is still a need for more comprehensive strategies 
to control these processes effectively.

Fig. 1  Schematic diagram of physiological and pathological processes during cardiomyocyte cell cycle progression
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In mature mammalian cells, negative regulators known as 
cyclin-dependent kinase inhibitors (CKIs) have an important 
role in regulating cell cycle activity by binding to cyclin-
CDK complexes and inhibiting their functions [20]. The 
CKI complex consists of two distinct protein groups: INK4 
family members (p14, p15, p16, p18 and p19) inhibit cyclin 
D function on CDK4 and CDK6 leading to cell cycle arrest 
in G1 phase [27, 87]; while CIP/KIP family members (p21, 
p27 and p57) act as broad blockers preventing progression 
through different phases by inhibiting various cyclin-CDK 
complexes [40, 170]. Thus, both activating and inhibiting 
factors collaborate to ensure precise regulation of the cell 
cycle.

Manipulation of the cell cycle to induce 
cardiomyocyte proliferation

In adult mammals, cardiomyocytes are specialized cells 
with the majority having lost their ability to divide. After 
birth, most of these cardiomyocytes undergo a process 
where they cease cell division and become polyploid 
and multinucleated [7, 86, 100, 161]. Polyploid and 
multinucleated cardiomyocytes lose the ability to proliferate 
and regenerate [88]. The exit from the cell cycle can occur 
at various checkpoints either prior to or after mitosis [8, 
23, 100]. Shortly after birth, the majority of postnatal 
cardiomyocytes pause at the G1/S transition phase in 
order to prepare for their designated functions. During this 
transition phase, genes related to promoting cell division 
such as cyclins are downregulated while levels of cell 
cycle inhibitors like p21 and p57 increase [4, 83, 89, 137]. 
Although some cardiomyocytes manage to pass through the 
G1/S checkpoint and proceed into mitosis, most are unable 
to complete chromosome separation or cytokinesis resulting 
in polyploidy and cell cycle exit [17, 88, 94]. While the 
majority of adult mammalian cardiomyocytes are unable 
to re-enter the cell cycle, a small subset has demonstrated 
proliferative potential within the adult heart [6, 17], 
particularly in response to injury or disease [126, 154].

In recent years, numerous studies have investigated 
different strategies aimed at modulating the cardiomyocyte 
cell cycle for enhanced proliferation. A deeper understanding 
of the molecular mechanisms governing this process may 
hold promise for developing therapies that can replenish 
cardiomyocyte populations and restore cardiac function 
following cardiac injury. In this review, we will focus on 
the effects on cardiomyocyte cell cycle from the following 
perspectives: cell cycle regulators, signaling pathways, 
ncRNAs, metabolic pathways, epigenetic and extrinsic 
factors.

In the adult mammalian heart, cardiomyocytes have 
the ability to re-enter the cell cycle. However, this does 

not result in functional regeneration after injury due to 
the limited number of cardiomyocytes that successfully 
complete the cell cycle and undergo proliferation. Therefore, 
most research efforts focus on identifying paracrine cues that 
can stimulate cardiac muscle cell growth. This is particularly 
challenging because the majority of cardiomyocytes in 
adult mammals are polyploid or multi-nucleated, unlike 
naturally regenerative non-mammalian vertebrates. Cell 
cycle regulation in mammalian cardiomyocytes involves the 
repression of cell cycle activators, such as cyclins, CDKs, 
and CDK-activating kinases (CAKs), along with CKIs [23]. 
This leads to cardiomyocyte cell cycle arrest during cardiac 
development [78]. The activity of cyclin-CDK complexes is 
tightly controlled and plays a crucial role in facilitating cell 
cycle progression through phosphorylation of downstream 
proteins [78].

Numerous studies have been conducted to investigate 
the potential reactivation of cell cycle activators in 
cardiomyocytes. For instance, enhancing the expression 
of cyclin D1 has been shown to stimulate DNA synthesis 
in adult mouse cardiomyocytes, resulting in more 
than 40% of these cells re-entering the cell cycle [161, 
171]. However, it should be noted that many of these 
stimulated cardiomyocytes experienced M-phase arrest or 
endoreplication. On the other hand, constitutive cardiac 
expression of cyclin A2 (CCNA2) in adult mice or rats leads 
to increased cardiomyocyte mitosis and improved cardiac 
function after heart injury [32, 37, 189]. Additionally, 
delivering the CCNA2 gene via adenovirus into peri-
infarct myocardium in pig hearts promotes cytokinesis 
and an approximately 18% increase in ejection fraction 
[157]. Similarly, researchers have explored the regulation 
of other cyclins or CDKs, such as exogenously increasing 
the expression of CDK2, cyclin D2, or cyclin B1 with 
constitutively activated cell division cycle 2 kinase (CDC2), 
to enhance adult cardiomyocyte proliferation [21, 110, 133]. 
Additionally, specific overexpression of cyclin D2 has been 
found to promote cardiomyocyte proliferation, improve 
cardiac function, and decrease infarct size after MI in both 
mice and pigs in vivo [165]. Recognizing that a single cyclin 
or CDK may have limited impact, Mohamed et al. recently 
conducted combinatorial screening and reported that ectopic 
overexpression of CDK1-CDK4-CCNB-CCND (4F) can 
increase cardiomyocyte proliferation by approximately 
15% to 20% in cultured mouse and human cardiomyocytes 
[1, 124]. Furthermore, overexpressing 4F has shown 
promising results by significantly increasing cardiomyocyte 
proliferation and enhancing cardiac function following MI 
in mouse models as well as rat models of subacute heart 
failure [1, 124].

In contrast, several studies have aimed to promote 
cardiomyocyte re-entry into the cell cycle by inhibiting 
CKIs. One study found that p16 knockdown extends the 
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regeneration period in neonatal mice through CDK4/6 
and reactive oxygen species (ROS)-related autophagy 
[167]. Another study demonstrated that specifically 
inactivating p16 in cardiomyocytes improves heart 
function and reduces scar size after a myocardial 
infarction [148]. Additionally, triple knockdown of CKIs 
(p21, p27 and p57) promotes cell cycle progression into 
the S phase and cytokinesis in adult rat cardiomyocytes, 
leading to an increase in their number [40]. Recently, 
researchers reported that silencing cyclin L1 (CCNL1) 
via AAV9-cTnT-CCNL1 shRNA enhances the percentage 
of Ki67-positive and phospho-histone H3 (pHH3)-
positive cardiomyocytes in MI mice, thereby promoting 
cardiac repair within the infarct zone and improving 
cardiac function [56]. Thus, CCNL1 appears to inhibit 
cardiomyocyte proliferation and indicates that cyclins 
can have diverse, and sometimes conflicting, functions 
in cardiomyocyte cell cycle regulation. A summary of 
these findings is depicted in Table 1.

These studies collectively indicate that promoting car-
diomyocyte proliferation can be achieved by reactivat-
ing cell cycle activators or inhibiting CKIs. However, it 
should be noted that certain findings demonstrate that 
increased DNA synthesis in cardiomyocytes may lead to 
multinucleation or polyploidy without complete cytoki-
nesis. Hence, additional research is required to not only 
understand how to facilitate cardiomyocyte re-entry into 

the cell cycle but also ensure successful completion of 
cytokinesis.

Manipulation of signaling pathways to induce 
cardiomyocyte proliferation

Studies have demonstrated that signaling pathways play 
a crucial role in inducing cardiomyocyte proliferation by 
influencing cell cycle regulators. These intricate molecular 
networks interact with each other to ensure precise control 
of the cell cycle in response to internal or environmental 
cues. Signaling pathways coordinate cellular responses and 
collaborate with transcription factors to regulate various 
cellular processes. Numerous pathways and proteins have 
been identified as key players in regulating cardiomyocyte 
proliferation following cardiac injury.

Hippo signaling pathway is evolutionarily conserved to 
control organ size and development by controlling prolifera-
tion, apoptosis, viability and differentiation [62, 130, 200]. 
The Hippo pathway in mammals comprises core compo-
nents sterile 20-like protein kinases 1 and 2 (MST1/2), Sal-
vador homolog 1 (Sav1), large tumor suppressors 1 and 2 
(LATS1/2), MOB kinase activator 1A and 1B (MOB1A/1B), 
the two Yorkie homologs Yes-associated protein (YAP) and 
transcriptional coactivator with PDZ-binding motif (TAZ), 
and TEA domain family member (TEAD) [199]. Recent 
findings have revealed that Hippo pathway is essential for 
mammalian cardiomyocyte regeneration, along with its 

Table 1  Cell cycle regulators in cardiomyocyte regeneration and heart failure

OE overexpression; MI myocardial infarction; KD knock down; KO knock out; CM cardiomyocyte; CDC2 cell division cycle 2 kinase; CDK 
cyclin-dependent kinase; CCNB cyclin B1; CCND cyclin D1

Cell cycle regulators Species Application Effects References

Cyclin D1 Mouse OE Adult CM cell cycle reentry ↑ [162, 171]
Cyclin A2 Mouse

Rat
Pig

OE Adult CM mitosis ↑
Post-MI cardiac function ↑

[32, 37, 157, 188]

Cyclin B1-CDC2 Rat OE Adult CM cell cycle reentry ↑ [21]
CDK2 Mouse OE Smaller mononuclear CMs ↑ [110]
Cyclin D2 Mouse

Pig
OE Adult CM cell cycle reentry ↑

Post-MI cardiac function ↑
Post-MI infarct size↓

[133, 165]

CDK1-CDK4-CCNB-CCND Mouse
Rat
hiPSC-CM

OE Adult CM cell cycle reentry ↑
Post-injury cardiac function ↑

[1, 124]

p16 Mouse KD or KO Neonatal CM regeneration period ↑
Post-MI cardiac function ↑
Post-MI infarct size ↓

[148, 167]

p21-p27-p57 Rat KD Adult CM cell cycle reentry ↑ [40]
Cyclin L1 Mouse KD Adult CM cell cycle reentry ↑

Post-MI cardiac function ↑
Post-MI infarct size ↓
Post-MI CM size ↓

[56]
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downstream effector Yes-associated protein (YAP)/ tran-
scriptional co-activator with PDZ-binding motif (TAZ) 
[70, 112, 193]. Overexpression of YAP extends neonatal 
cardiomyocyte cell cycle activity and promotes prolifera-
tion [179], whereas cardiomyocyte-specific deletion of Yap 
impairs regenerative responses and the hearts display exten-
sive cardiac fibrosis [193]. Based on the importance of YAP 
in regeneration, pharmaceutical interventions targeting YAP 
activity have significant potential for the treatment of heart 
failure. Nathaniel Kastan et al. have screened a small mol-
ecule inhibitor, TRULI, which can reversibly activate YAP 
and promote proliferation in postnatal day 0 (P0) murine 
cardiomyocyte in vitro [84]. Consistent with these results, 
cardiomyocyte-specific knockout of Sav, MST1/2 or LATS2 
in mouse hearts also increases cardiomyocyte proliferation 
in the neonatal heart after adult myocardial infarction as 
well as after P8 myocardial infarction [70, 71]. Furthermore, 
knockdown of the Sav in border zone cardiomyocytes in pigs 
2 weeks after I/R can significantly promote cardiomyocyte 
proliferation, reduce scar size and improve cardiac function 
without any tumor formation [114]. Taken together, Hippo 
pathway has great potential to be the clinical target for heart 
failure.

Phosphoinositide 3-kinase (PI3K)/protein kinase 
B (AKT) signaling pathway serves as one of the key 
mechanisms in cell cycle progression through regulating 
p21 and p27, cyclin D1 and CDK2 [118, 122, 132]. Studies 
in cardiomyocytes have also shown that PI3K/AKT pathway 
plays an important role in cardiomyocyte proliferation [121, 
159]. Specific nuclear overexpression of AKT in mouse heart 
results in an increase in smaller cardiomyocytes, prolonged 
cell cycling and enhanced cardiac contractility [60, 151]. 
Mechanistically, PI3K/AKT pathway induces cardiomyocyte 
proliferation by coordinating with other signaling pathways 
to regulate downstream molecules. For example, acting 
as a downstream effector, PI3K subunit beta (PIK3CB) 
has been identified to mediate the effect of YAP on the 
activation of the PI3K-AKT pathway and thus the induction 
of CM proliferation [113]. As an upstream regulator, AKT 
phosphorylates and inhibits glycogen synthase kinase-3β 
(GSK-3β), which also plays central role in regulating 
Wnt signaling pathway. Deletion of GSK-3β in mice 
causes upregulated expression of GATA4, cyclin D1 and 
c-Myc, leading to cardiomyocyte hyperproliferation [85]. 
Cardiomyocyte-specific knockout of GSK-3β significantly 
promotes cardiomyocyte proliferation and preserves the 
cardiac function in mice after MI [202].

In addition, Jiang et al., have also shown that the Wnt/β-
catenin signaling pathway can stimulate cardiomyocyte 
proliferation and cardiac development [81, 175]. In their 
study, activation of β-catenin decreases the ploidy and 
nuclear number of cardiomyocytes both in  vitro and 
in vivo in mice, suggesting that β-catenin could promote 

cell division completion of polyploid and multinucleated 
cardiomyocytes. Similarly, overexpression of serine/
threonine‐protein kinase 3 (SGK3) or its direct activator 
CDK9 can promote cardiomyocyte proliferation mainly 
through inactivating GSK-3β and upregulating β-catenin 
expression. As new potential therapeutic targets, 
overexpression of SGK3 or CDK9 after myocardial injury in 
mouse in vivo promotes cardiac repair and aims to partially 
restore the cardiac function [107, 166]. In addition, low-
density lipoprotein receptor-related protein 5 (LRP5) and 
low-density lipoprotein receptor-related protein 6 (LRP6), 
co-receptors of Wnt signaling, are key regulators of 
cardiomyocyte cell cycle activity. Cardiac-specific knockout 
of LRP5 inhibits myocardial regeneration in the mouse after 
injury, whereas specific deletion of LRP6 in cardiomyocytes 
induces robust regeneration in mouse heart after MI and 
promoted recovery of cardiac function [191, 206].

The neuregulin-1 (NRG1)/ErbB signaling pathway, 
consisting mainly of growth factor NRG1 and its tyrosine 
kinase receptors ErbB2 and ErbB4, has been demonstrated 
to regulate cardiomyocyte proliferation [205]. Injection 
of recombinant NRG1, cardiac-specific overexpression of 
ErbB4 or transient overexpression of activated ErbB2 can 
all promote adult cardiomyocyte proliferation in mouse 
in vivo. Further studies in mouse disease models show that 
exogenous NRG1 or activated ErbB2 can induce cardiac 
regeneration, reduce the scar size and improve cardiac 
function by activating downstream PI3K or YAP after 
cardiac injury [3, 19].

The Notch signaling pathway regulates the activity of 
bone morphogenetic protein 10 (BMP10) and expression 
of NRG1, therefore it is essential for cardiomyocyte 
proliferation [55, 59]. Inhibition of Notch pathway impairs 
cardiac regeneration in zebrafish [204]; loss of BMP10 in 
mouse also leads to elevated expression of p57 and inhibited 
cardiomyocyte proliferation [33]. Consistently, activation of 
Notch pathway induces expression of cyclin D1 and cell 
cycle re-entry in quiescent neonatal murine cardiomyocytes 
[26]. However, hyperactivation of Notch signaling also 
blocks cardiomyocyte proliferation in zebrafish [204]. 
These findings indicate that the activity of targeted signaling 
pathway should be precisely controlled if it is to be used as 
therapeutic targets for cardiac regeneration. Summary of the 
information is shown in Table 2.

Apart from these canonical signaling pathways, many 
genes have been shown to promote cardiomyocyte re-entry 
into cell cycle, leading to cardiomyocyte proliferation. For 
example, overexpression of E2F1 or E2F2 in mouse heart 
induces cardiomyocyte cell cycle re-entry through regulat-
ing the expression of CDK4 or cyclin A and E respectively. 
However, overexpression of E2F1 leads to apoptosis [2], 
whereas E2F2 induces hypertrophic cell growth in cardio-
myocytes [43]. Another important family of transcription 
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factors in cardiomyocyte proliferation is T-box (TBX) gene 
family. Overexpression of TBX20 or TBX6 in adult mouse 
heart induces cardiomyocyte proliferation by regulating the 
expression of multiple cell cycle regulators, TBX20 over-
expression also promotes cardiac repair and improves heart 
function in mouse after MI [61, 192]. A recent study reports 
that double knockdown of RB1 and Meis homeobox  2 
(MEIS2) increased proliferation rate of human induced 
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) 
in vitro and in rat in vivo [5]. Similarly, double knockout of 
Meis homeobox 1 (MEIS1) and HOXB13 in mouse in vivo 
can promote cardiomyocyte proliferation and improve car-
diac function after MI [127]. As a deacetylase of p21, sir-
tuin1 (SIRT1) has been shown to positively regulate car-
diomyocyte proliferation and protect cardiac function in 
mouse in vivo after MI via regulating p21 [99]. In addition, 
the anti-inflammatory cytokine interleukin 13 (IL-13) and 
the critical subunit of its type II receptor interleukin4Rα 
(IL4Rα) are also involved in regulating cardiomyocyte cell 
cycle and heart regeneration in neonatal mice [129, 187]. 
Another cytokine oncostatin M (OSM) and its receptor het-
erodimers oncostatin M receptor (OSMR)/glycoprotein 130 
(gp130) are essential for cardiomyocyte proliferation, when 
activated can improve heart regeneration and function in 
mouse in vivo after MI [106]. Moreover, nuclear lamina 
filament Lamin B2 can promote cardiomyocyte M-phase 
progression and cytokinesis in neonatal mice [63]. Further-
more, knockout of the RNA binding protein muscleblind-
like 1 (MBNL1) can promote cardiomyocyte proliferation 
in mouse heart after MI [14], and osteopontin (OPN) was 
found to enable cardiomyocyte re-entry into cell cycle in 
mouse heart, but also to stimulate other cells to improve scar 
formation and left ventricular remodeling [152].

Manipulation of non‑coding RNAs to induce 
cardiomyocyte proliferation

The ncRNAs are the functional RNAs without protein cod-
ing ability, including microRNA (miRNA), long non-coding 
RNA (lncRNA) and circular RNA (circRNA). These ncR-
NAs act as regulators to coordinate gene expression at the 
epigenetic, post-transcriptional, and translational levels [31]. 
A large number of ncRNAs have been reported to be associ-
ated with cardiomyocyte cell cycle regulation and cardio-
myocyte proliferation [201].

miRNAs are small RNAs that bind to 3'-untranslated 
regions (3'-UTR) of mRNAs, leading to the degradation or 
repression of targeted mRNAs. Recent studies have shown 
that a range of miRNAs can induce cardiomyocyte prolifera-
tion by targeting the cell cycle regulators. A high-through-
put functional phenotypic screen by using a whole-genome 
miRNA library has identified miR-199a, miR-302b, miR-
518, miR-590 and miR-1825 among 204 potential human 
miRNAs that can increase 5-ethynyl-2'-deoxyuridine (EdU)-
incorporation, Ki67, and pHH3 in mouse or rat cardiomyo-
cytes [45]. Moreover, miR-199a and miR-590 have been 
linked to the activation of cell cycle induction and progres-
sion, resulting in the enhancement of cardiomyocyte pro-
liferation in vitro and in vivo [45]. Further studies show 
that miR-199a directly targets two mRNAs, the upstream 
YAP inhibitory kinase TAOK1 and the E3 ubiquitin ligase 
β-TrCP, leading to YAP degradation [174]. Also, expres-
sion human microRNA-199a AAV serotype 6 (AAV6) in 
infarcted pig hearts can rescue and repair cardiac function 
via stimulating endogenous cardiomyocyte proliferation 
[53]. Another independent proliferation screen has been per-
formed in hiPSC-CMs, and 96 miRNAs have been identified 
as drivers of DNA synthesis and cell division in cardiomyo-
cytes, and 67 of the 96 miRNAs stimulate cardiomyocyte 
proliferation in a YAP-dependent manner [41]. Overexpres-
sion of miR-25 can increase the percentage of EdU and 
Ki67 positive cardiomyocytes by targeting FBXW7 and 

Table 2  Signal transduction 
pathways in cardiomyocyte 
regeneration and heart failure

OE overexpression; CM cardiomyocyte; YAP yes-associated protein; PI3K phosphoinositide 3-kinase; AKT 
protein kinase B; NRG1 neuregulin-1

Pathway (effector) Species Application Effects References

HIPPO (YAP) Mouse
Pig

OE or activation CM proliferation ↑
Post-injury cardiac function ↑
Post-injury scar size ↓

[70, 71, 84, 114, 179, 193]

PI3K (AKT) Mouse OE CM proliferation ↑ [60, 151]
Wnt (β-catenin) Mouse Activation CM cytokinesis completion ↑

Post-injury cardiac function ↑
[81, 107, 166, 175]

NRG1/ErbB Mouse OE CM proliferation ↑
Post-injury cardiac function ↑
Post-injury scar size ↓

[3, 19]

Notch Mouse Activation CM cell cycle reentry ↑ [26]
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regulating cell cycle genes in human embryonic stem cell 
derived cardiomyocytes, as well as in zebrafish [180]. miR-
106b ~ 25 cluster stimulates cardiomyocyte regeneration 
by targeting negative cell cycle regulators including E2F5, 
CDKN1C, CCNE1 and WEE1. Exogenous viral delivery 
of miR-106b ~ 25 induces cardiac regeneration and restores 
heart function after MI [146]. In addition, overexpression of 
miR-204 promotes cardiomyocyte proliferation in rat in vitro 
and mouse in vivo by targeting Jarid2 thus leading to the 
upregulation of cell cycle regulators Cyclin A, Cyclin B, 
Cyclin D2, Cyclin E, CDC2 and PCNA [109]. miR-499, 
a myocyte-specific miRNA (myomiR) expressed within 
one of the introns of β-myosin heavy chain (Myh7b) gene, 
can promote neonatal cardiomyocyte proliferation through 
regulating cyclin D1 and SRY-Box Transcription Factor 6 
(Sox6) [104]. Similarly, miR-1825 is able to induce both 
DNA synthesis and cytokinesis in adult rat cardiomyocytes 
and improve cardiac function in vivo following MI, pos-
sibly by regulating the expression levels of miR-199a and 
its downstream targets RB1 and MEIS2 [131]. The studies 
provide the potential targets for gene therapy for cardiac 
regeneration in human patients.

In contrast, a large number of miRNAs have recently been 
identified that suppress the cell cycle in cardiomyocytes, 
such as miRNA let-7i-5p, miR-1/133a, miR-15 family, miR-
26a, miR-29a/b, miR-34a and miR-128. miRNA let-7i-5p 
inhibits cardiomyocyte proliferation via targeting E2F2 
and CCND2, while inhibition of let-7i-5p promotes mouse 
cardiomyocytes proliferation and enhance cardiac function 
after MI [74]. Similarly, miR-1/133a can prevent re-entry of 
adult rat cardiomyocytes into the cell cycle by suppressing 
FGFR1 and OSMR, while its inhibition promotes cardio-
myocytes proliferation in mouse in vivo [176]. The miR-15 
family (including miR-15a, miR-15b, miR-16-1, miR-16-
2, miR-195 and miR-497), modulates cardiac regenerative 
capacity in neonatal mice and adult myocyte proliferation by 
regulating cell cycle genes and mitochondrial genes [139]. 
Overexpression of miR-195 impairs the cardiomyocyte pro-
liferation and regenerative capability of P1 mouse heart after 
MI by repressing a number of cell cycle genes, including 
checkpoint kinase 1 (Chek1) in vivo [138, 139]. Inhibition of 
miR-26a enhances neonatal mouse cardiomyocyte prolifera-
tion through the regulation of cell cycle inhibitors in vitro 
and in vivo [39]. Overexpression of miR-29a suppresses car-
diomyocyte proliferation, while its inhibition promotes cell 
division via upregulating the expression level of cyclin D2 
in neonatal rat cardiomyocytes [28]. Similarly, inhibition of 
miR-29b promotes cardiomyocyte proliferation by targeting 
notch receptor 2 (NOTCH2) in mouse in vitro and zebrafish 
in vivo [195]. In addition, inhibition of miR-34a also results 
in enhanced cardiomyocyte proliferation and improved 
cardiac function after MI by regulating silent information 

regulator factor 2 related enzyme 1 (Sirt1), B-cell lymphoma 
2 (Bcl2) and Cyclin D1 [196]. Likewise, inhibition of miR-
128 promotes cardiomyocyte proliferation and improves car-
diac function in response to MI through activating cyclin E 
and CDK2 [76].

lncRNAs are noncoding RNA molecules with nucleo-
tides longer than 200, functioning through interactions with 
DNA, RNA or proteins. Similar to miRNAs, lncRNAs also 
engaged in the process of cardiomyocyte proliferation. As 
evidence, endogenous cardiac regeneration-associated regu-
lator (ECRAR) was discovered to provoke myocardial regen-
eration and heart repair in rat in vivo after MI by activating 
cyclin D1 and cyclin E1 through E2F1-ECRAR-ERK1/2 
signaling [35]. In addition, the downstream target of RNA-
binding protein LIN28a, long noncoding RNA-H19, medi-
ated the reprogramming of cardiomyocyte metabolism and 
enhancing of cell cycle activity, thereby protecting mouse 
heart from MI [150]. Conversely, cardiomyocyte prolifera-
tion regulator (CPR), LncDACH1 and natriuretic peptide A 
antisense RNA 1 (NPPA-AS1) are recently reported to nega-
tively regulate cardiomyocyte proliferation through binding 
and interacting with DNMT3A, PP1A/YAP1, splicing factor 
proline and glutamine rich (SFPQ), respectively. Deletion of 
CPR, LncDACH1 or NPPA-AS1 can restore cardiac function 
by promoting cardiomyocyte regeneration in mouse after 
MI [25, 52, 136]. These studies suggested lncRNA-based 
approaches as potential therapeutic treatments for heart 
failure.

circRNAs are stable RNA molecules formed closed loop 
structure by back-splicing. Although circRNAs are reported 
to be involved in regulation of many biological processes, 
the current scientific evidence supporting the role of cir-
cRNAs in regulating the cardiomyocyte cell cycle remains 
scarce. In the past years, only a few studies linked cicrRNAs 
to cardiomyocyte proliferation: overexpression of circNfix 
repressed cyclin A2 and cyclin B1 expression by inducing 
Y-box binding protein 1 (YBX1) ubiquitin-dependent degra-
dation; it also increased miR-214 activity to promote GSK3β 
expression thus inhibiting cardiomyocyte proliferation. In 
contrast, downregulation of circNfix facilitated mouse heart 
regeneration and repair after MI [75]. Similar to circNfix, 
circMdc1 plays negative role in cardiomyocyte prolifera-
tion by blocking translation of MDC1 and when silenced 
can improve cardiomyocyte regeneration and heart func-
tion in vivo after injury [117]. The exploration of circRNAs 
in heart regeneration is still in the early stage, and deeper 
understanding of the molecular mechanisms underlying is 
required. Summary of the information is shown in Table 3.

Although initially considered as junk RNAs, more and 
more evidence highlights the indispensable role of ncR-
NAs in cellular processes including cardiomyocyte prolif-
eration. Discovering potential ncRNAs targets in cardiac 
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regeneration and understanding the mechanisms will help 
developing innovative strategies for heart regeneration.

Manipulation of metabolism to induce 
cardiomyocyte cell cycle

During maturation, mammalian cardiomyocytes gradu-
ally exit the cell cycle and lose their regenerative potential, 
accompanied by a metabolic shift from glycolysis to fatty 
acid oxidation to meet the energy requirements of adult car-
diomyocytes [115]. This highlights the critical role of car-
diac metabolism in cardiac regeneration and further studies 

have identified potential metabolic targets that can be regu-
lated to promote cardiomyocyte proliferation.

The metabolic shift during maturation suggests a negative 
correlation between cardiac regeneration and fatty acid oxi-
dation, and a positive correlation with glycolysis. Despite the 
energetic advantage for adult cardiomyocytes, the increased 
production of ROS resulting from fatty acid oxidation can 
induce DNA damage and activate DNA damage response 
pathway, thus contributing to cardiomyocyte cell cycle arrest 
[123]. As reported by Cardoso et al., conditional knockout 
of pyruvate dehydrogenase kinase 4 (PDK4) in cardiomyo-
cytes, which results in increased glucose relative to fatty 

Table 3  ncRNAs in 
cardiomyocyte regeneration and 
heart failure

OE overexpression; MI myocardial infarction; KD knock down; KO knock out; CM cardiomyocyte; 
ECRAR  endogenous cardiac regeneration-associated regulator; CPR cardiomyocyte proliferation regulator; 
NPPA‑AS1 natriuretic peptide A antisense RNA 1; circNfix Circ_nuclear factor I X

ncRNAs Species Application Effects References

miR-199a, miR-302b, 
miR-518, miR-590

Mouse
Rat

OE CM cell cycle reentry ↑ [45]

miR-1825 Mouse
Rat

OE CM proliferation ↑
Post-MI cardiac function ↑

[45, 131]

miR-25 hiPSC-CM
Zebrafish

OE CM cell cycle reentry ↑ [180]

miR-106b ~ 25 cluster Mouse OE CM cell cycle reentry ↑
Post-MI cardiac function ↑

[146]

miR-204 Mouse
Rat

OE CM cell cycle reentry ↑ [109]

miR-499 Rat OE Neonatal CM proliferation ↑ [104]
let-7i-5p Mouse Inhibition CM proliferation ↑

Post-MI cardiac function ↑
[74]

miR-1/133a Mouse Inhibition CM proliferation ↑ [176]
miR-195 Mouse OE CM proliferation ↓ [138, 139]
miR-26a Mouse Inhibition Neonatal CM proliferation ↑ [39]
miR-29a Rat Inhibition Neonatal CM proliferation ↑ [28]
miR-29b Mouse

Zebrafish
Inhibition CM proliferation ↑ [195]

miR-34a Mouse Inhibition CM proliferation ↑
Post-MI cardiac function ↑

[196]

miR-128 Mouse Inhibition CM proliferation ↑
Post-MI cardiac function ↑

[76]

ECRAR Rat OE CM proliferation ↑
Post-MI cardiac function ↑

[35]

CPR Mouse KO CM proliferation ↑
Post-injury cardiac function ↑

[136]

LncDACH1 Mouse
hiPSC-CM

KO or KD CM cell cycle reentry ↑
Post-MI cardiac function ↑
Post-MI infarct size ↓

[25]

NPPA-AS1 Mouse KO CM proliferation ↑
Post-MI cardiac function ↑
Post-MI infarct size ↓

[52]

circNfix Mouse KD CM proliferation ↑
Post-MI cardiac function ↑
Post-MI infarct size ↓

[75]

circMdc1 Mouse KD CM cell cycle reentry ↑
Post-injury cardiac function ↑

[117]
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acid oxidation, is able to reduce DNA damage and promote 
cardiomyocyte proliferation as well as cardiac function in 
response to MI in mouse in vivo [29]. In addition, inhibition 
of succinate dehydrogenase (SDH) by malonate promoted 
mouse cardiac regeneration after MI through stimulating 
metabolic switch to glycolysis [12]; knockdown of acyl 
CoA synthase long chain family member 1 (ACSL1), the key 
enzyme regulating lipid metabolism, can effectively induce 
myocardial regeneration after MI [108]. Recent study shows 
that blocking fatty acid oxidation in mouse cardiomyocytes 
by genetically deletion of carnitine palmitoyltransferase 1b 
(Cpt1b) reshapes epigenetic landscape thereby promoting 
cardiomyocyte proliferation and enabling cardiac regenera-
tion after injury [105]. These studies further demonstrate 
that inhibition of the fatty acid utilization or acceleration 
of glycolysis can promote cardiomyocyte proliferation and 
provide potential therapeutic targets for heart failure.

Further, it has been reported that overexpression of 
pyruvate kinase muscle isozyme M2 (PKM2), an enzyme 
involved in the final step of glycolysis, using a novel 
cardiomyocyte-targeting strategy with modified RNA 
in mouse in  vivo after MI can successfully promote 
cardiomyocyte cell division thereby improving cardiac 
function and long term survival [119]. Controversially, 
another study has shown that PKM2 inactivation in mouse 
heart promotes cardiomyocyte proliferation in the infarct 
zone after MI, thus indicating the opposite antiproliferative 
function of PKM2 [69]. Although more experiments are 
needed to clarify the function of PKM2, both of the studies 
show that PKM2 interacts with β-catenin to regulate 
cardiomyocyte proliferation, highlighting the crosstalk 
between metabolism and signaling pathway.

Epigenetic regulation of cardiomyocyte cell cycle

In addition to the metabolic shift, an increase in global 
methylation was observed during rat heart development, 
suggesting a potential role of epigenetic modification in 
cardiomyocyte differentiation and proliferation [90]. As 
DNA methylome and histone modifications can regulate the 
chromatin condensation, resulting in differential chromatin 
accessibility and ultimately affecting the gene expression, 
epigenetics play an essential role in molecular networks and 
biological processes. In recent decades, increasing evidence 
has linked epigenetics to cardiomyocyte cell cycle re-entry.

N6-methyladenosine (m6A) is one of the most common 
modifications of messenger RNAs (mRNAs), and recent 
studies have shown that targeting m6A methylation can effi-
ciently regulate cardiomyocyte re-entry into the cell cycle 
[64, 102, 207]. The knockdown of methyltransferase-like 3 
(METTL3) has also been shown to reduce m6A-mediated 
pri-miR-143 maturation into miR-143-3p, thus promotes car-
diac regeneration after MI through miR-143-YAP/CTNND1 

(catenin delta-1) axis [57]; whereas forced expression of 
m6A demethylase ALKBH5 also promotes cardiac regenera-
tion after MI in mice and CM proliferation in hiPSC-CM by 
improving the mRNA stability of YTH N6-methyladenosine 
RNA-binding protein 1 (YTHDF1) and consequently pro-
moting the translation of YAP [64]. In addition, deletion of 
abraxas brother 1 (ABRO1) improved cardiac regeneration 
and mouse heart function after MI by targeting METTL3-
mediated m6A methylation of PSPH mRNA and down-
stream CDK2 [182].

In contrast, mitochondrial transmembrane protein 
11 (TMEM11)-mediated N7-methylguanosine (m7G) 
methylation negatively regulates cardiomyocyte 
proliferation and cardiac function in mouse in vivo after 
MI via targeting TMEM11-methyltransferase 1, tRNA 
methylguanosine (METTL1)-activating transcription factor 
5 (ATF5)-inhibitor of CDK, cyclin A1 interacting protein 1 
(INCA1) axis[34]. Several potential epigenetic targets for 
cardiomyocyte cell cycle regulation have also been recently 
reported. As shown by Paola Cattaneo et al., DOT1L was 
involved in cardiomyocyte cell cycle exit by catalyzing 
H3K79me2 and subsequently regulating transcriptional 
networks [30]. Moreover, knockdown of dual-specificity 
tyrosine regulated kinase 1A (DYRK1A) can enhance 
cardiomyocyte cell cycle activity via epigenetic modification 
of H3K4me3 and H3K27ac [95]. Furthermore, ablation of 
chromobox 7 (CBX7), a polycomb group (PcG) protein, 
can promote cardiac regeneration in both neonatal and adult 
injured hearts by targeting TAR DNA-binding protein 43 
(TARDBP) and RNA binding motif protein 38 (RBM38) 
[38].

Taken together, the evidence to date highlights the 
importance of chromatin structure in cardiac cell cycle and 
identifies key factors with potential therapeutic value.

Extrinsic factors driving the cardiomyocyte cell cycle

In the cellular context, cardiomyocytes reside in a complex 
and dynamic microenvironment with multiple cell types. 
Although the cardiomyocytes are the primary population 
and are responsible for the contractile function in the heart, 
proper cardiac function requires the cooperation of various 
cell populations. Recently, a number of extrinsic factors 
affecting cardiomyocyte cell-cycle arrest has recently been 
identified, including the oxygen concentration, extracellular 
matrix and the immune system.

The postnatal high oxygen level has been reported to 
be an important driver of mammalian cardiomyocyte cell 
cycle arrest after birth, mainly through the increase of 
reactive oxygen species (ROS) generated by the increased 
mitochondrial oxidative metabolism accompanied by a 
temporal shift from glycolytic to oxidative metabolism 
and the subsequent DNA damage response (DDR) [144]. 
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On top of which, hypoxia or ROS scavenging can delay the 
cell cycle exit, thus prolonging the postnatal proliferative 
window of cardiomyocytes [144]. In adult mouse, gradual 
exposure to severe systemic hypoxemia  (O2 is gradually 
decreased by 1% and maintained at 7% for 2 weeks) induces 
cardiomyocyte hypertrophy and promotes right ventricular 
cardiomyocyte proliferation [82], while in MI mouse, it 
promotes cardiac regeneration and thus improves cardiac 
function [126]. However, in the fetal rat heart, hypoxia (1% 
 O2) inhibits cardiomyocyte proliferation [172]. In addition to 
this, maternal hypoxia (10.5%  O2) decreases cardiomyocyte 
proliferation in both fetal and neonatal rat hearts [173]. 
The role of hypoxia in cardiomyocyte cell cycle regulation 
remains controversial. As shown by Ye et  al., only the 
moderate range of hypoxia can promote cardiomyocyte cell 
cycle activities in both hiPSC-CMs and human heart samples 
[197]. They also showed that hypoxic treatment (10%  O2) 
promotes the proliferation of neonatal rat cardiomyocytes, 
but inhibits cell cycle activities of fetal cardiomyocytes, 
suggesting that the role of hypoxia is related to development 
stage [168]. Taken together, the level of hypoxia and the 
phase or duration of cardiomyocytes experiencing hypoxia 
are key factors in regulating cardiomyocyte cell cycle.

The extracellular matrix (ECM), including structural 
proteins, matricellular proteins and carbohydrates, provides 
structural support to cells in the heart and mediates the 
cellular interactions, thus playing a vital role in regulating 
cell events [18, 49, 50]. A growing body of evidence suggests 
that the composition and rigidity of ECM are critical for 
the regulation of cardiomyocyte proliferation and cardiac 
regeneration [128, 164, 181, 183, 190]. It has been reported 
that the ECM proteins secreted by mouse embryonic cardiac 
fibroblasts including fibronectin, collagen and heparin-
binding EGF-like growth factor, promote cardiomyocyte 
proliferation through β1 integrin and cell cycle-related genes 
[77]. Another separate study comparing the rat embryonic 
and postnatal cardiac fibroblast-derived ECM found that two 
embryonic ECM proteins SLIT2 and nephronectin (NPNT) 
can promote cardiomyocyte cytokinesis both in vitro and 
in vivo [190]. Individual ECM protein is also able to induce 
cardiac regeneration. For example, periostin has been shown 
to facilitate cardiomyocyte cell cycle re-entry and mitosis, 
thereby improving cardiac function after MI, in rat via 
activation of integrins and PI3K pathway [92]. However, 
the function of periostin in mouse remains controversial. 
In neonatal mice, knockout of periostin inhibits post-MI 
cardiac regeneration [36]; whereas in adult mice both 
overexpression and knockout periostin show no change in 
cardiomyocyte proliferation in the peri-infarct area [116]. 
Agrin, found in neonatal ECM, is able to drive hiPSC-CM 
proliferation and promote post-MI cardiac regeneration, 

thereby improving cardiac function via Yap signaling in 
both adult mice and pigs [13, 15]. Recently, the versican, a 
cardiac fibroblast–derived ECM protein, has been reported 
to promote hiPSC-CM proliferation. Intramyocardial 
injection of versican after MI results in reduced fibrosis 
and increased cardiomyocyte proliferation along with 
improved cardiac function in adult mice through activation 
of β1 integrin and downstream ERK1/2 and Akt [47]. These 
studies highlight the clinical potential of targeting ECM 
components for the treatment of heart failure. Meanwhile, 
ECM stiffness is also involved in the regulation of 
cardiomyocyte proliferation. As reported, compliant elastic 
matrices promote mouse cardiomyocyte dedifferentiation 
and cytokinesis in mice via regulating organization of the 
myoskeleton [194]. Correspondingly, decreased stiffness 
of ECM achieved by pharmacological inhibition of cross-
linker enzyme lysyl oxidase (LOX) preserves the cardiac 
regenerative capacity in 3-day-old mice and enhances post-
injury cardiac regeneration which induced by exogenous 
fetal ECM through increasing YAP localization to nuclei 
[128, 183].

In addition to fibroblast and ECM, the cardiac 
microenvironment consists of various cell types such as 
immune cells, adipocytes, vascular cells and neurons. 
Immune cells play an essential role in remodeling and 
inflammation after cardiac injury, and recent studies suggest 
that they also play an important role in cardiomyocyte 
proliferation. Specific ablation of  CD4+ T-cells after MI by 
monoclonal antibody promotes cardiomyocyte proliferation 
in juvenile mice but not in adult mice [101]. Consistent 
with this, infarcted 1-day-old mice reconstituted with 
adult T cells have more monocyte-derived macrophage 
recruitment and show irreversible impairment of cardiac 
function along with increased fibrosis[42]. Furthermore, 
deletion of macrophages in neonatal mice blocks cardiac 
regeneration after MI [11]. Although immune cells show 
significant impact in regulating cardiomyocyte proliferation, 
the mechanisms involved remain unclear. Therefore, further 
efforts are needed to link immune cells to cardiomyocyte 
cell cycle. In addition, human adipose-derived stromal cells 
primed under hypoxic and pro-inflammatory conditions can 
facilitate the proliferation of rat neonatal cardiomyocytes via 
secreted interleukin-6 (IL-6) and activation of downstream 
Janus kinase-signal transducer and activator of transcription 
(JAK/STAT) and mitogen-activated protein kinases (MAPK) 
mitogenic pathways [142].

To date, studies of extrinsic factors show great clinical 
promise for the treatment of heart failure and highlight the 
importance of cardiac microenvironment which must be 
carefully considered when trying to develop interventional 
therapeutic strategies of cardiac regeneration.
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Different approaches of monitoring 
cardiomyocyte proliferation rate

Adult mammalian cardiomyocytes are terminally 
differentiated cells with limited mitotic activity. Similar 
to many terminally differentiated cell types, most of 
adult mammalian cardiomyocytes are polyploid or 
multinucleation [88, 97, 120]. Multiple genome copies 
resulted by polyploidization may enable cardiomyocytes 
to acquire elevated energy level thus increasing contractile 
force and enhance the tolerance to stress [9, 24, 97]. 
The polyploidization is induced by two different issues, 
karyokinesis failure and cytokinesis failure, during cell 
cycle [88]. Karyokinesis failure during which cell exit 
cell cycle without nuclear division results in polyploidy in 
single nuclear. While cytokinesis failure after successful 
karyokinesis generates multinucleated cell [24, 98].

Although a small proportion of the cardiomyocytes 
are able to enter cell cycle, the majority fail to complete 
karyokinesis or cytokinesis leading to polyploidization 
instead of authentic division into two new daughter cells 
[134]. Thereby, cardiac regeneration requires precise control 
of cardiomyocyte cell division and polyploidization. Even 
though numerous studies in the adult mammalian context 
have claimed successful regulation of cardiomyocyte 
re-entry into the cell cycle, the proliferation markers and 
indicators used have obvious limitations in identifying 
authentic cell division from polyploidization.

A commonly used approach is to measure the DNA 
synthesis activity by using thymidine analogs, such as 
bromodeoxyuridine (BrdU) or EdU, which is incorporated 
into the replicating DNA during S phase. Other common 
markers such as the nuclear protein Ki67 which present from 
G1 to M phase, and pHH3, present from G2 to M phase 
and responsible for chromatin condensation, are all limited 
in that they do not indicate the completion of cytokinesis 
[8]. Thus, these assays could detect the DNA synthesis, 
but could not distinguish between the multinucleation, 
polyploidization, or de novo generation of cardiomyocytes. 
However, cardiomyocyte DNA replication often results in 
a polyploid cardiomyocyte and only rarely leads to a new 
cardiomyocyte by cell division. Besides, Aurora B is a 
quantifiable marker for cardiomyocytes that is ultimately 
localized to the cleavage furrow during cytokinesis [10]. 
However, it also has significant shortcomings. On the 
one hand, it is a very rare event with a short window of 
opportunity, only about 0–0.04% of adult mammalian 
cardiomyocytes are Aurora B positive as shown by in vivo 
studies [184, 192]. The extremely low proportion of Aurora 
B-positive cardiomyocytes makes it extremely difficult to 
quantify the proliferation rate. The complexity of cardiac 
tissue also makes it difficult to identify the cytokinetic 

furrow and associated cells in vivo. On the other hand, 
Aurora B-positive cardiomyocytes may also fail to complete 
cytokinesis, leading to multinucleation, as indicated by the 
position of midbody and the distance between the daughter 
nuclei [44, 73]. An additional marker, anillin, is necessary 
in this setting to assess if cardiomyocytes form multi-
nucleated cells or complete the cell cycle through formation 
of daughter cells. Multinucleation is characterized by the 
asymmetric constriction of the cleavage furrow and defective 
midbody formation, as indicated by Aurora B and Anillin 
colocalization [44, 98]. In conclusion, each of the markers 
used so far has served as an indicator of cell cycle activity, 
but none of them alone can be considered as definitive 
indicators of authentic cell division but not polyploidization 
in cardiomyocytes.

To date, many transgenic reporter mice have been 
generated based on tracking these proliferative indicators 
for real-time cell cycle monitoring. Kretzschmar et al. 
generate a mouse model to label Ki67 in cycling cells 
with red fluorescent tdTomato [91]. In addition, Raulf 
et al. generate the double transgenic Myh6-H2B-mCherry/
CAG-eGFP-Anillin transgenic mouse. By labeling 
cardiomyocyte nuclei with red fluorescence and Anillin 
with green fluorescence, the mouse model is able to show 
the kinetic localization of Anillin and thus indicate the 
proliferation status of cardiomyocytes [147]. Moreover, an 
Aurora B reporter–based mouse system with a tdTomato 
f luorescence labeling to monitor the proliferating 
cardiomyocytes has also been generated [51, 80]. 
However, these models using a single proliferative marker 
is not sufficient to quantify the authentic cytokinesis in 
cardiomyocytes.

In addition to these mouse systems, f luorescent 
ubiquitination-based cell cycle indicator (FUCCI) 
system has been specifically developed to study cell 
cycle dynamics and the cardiomyocyte proliferation. 
Cardiomyocyte-specific FUCCI system consists of two 
different fluorescent reporters driven by the α-myosin 
heavy chain (αMHC) promoter and relies on the 
ubiquitination and degradation of DNA replication 
factor Cdt1 and Geminin [8]. The FUCCI system allows 
the assessment of cycling and non-cycling cells, but 
the approach is limited by the rare activation of cycling 
cardiomyocytes in adult hearts after cardiac injury and the 
inability to label daughter cells to identify endoreplicative 
and authentic cell division in  vivo. In addition, 
another mouse model, mosaic analysis with double 
markers (MADM) system, has been developed to label 
cardiomyocytes that have completed cytokinesis. MADM 
system requires introduction of two reciprocal chimeric 
marker genes, each consisting of part of green and red 
fluorescent protein coding sequence separated by loxP site, 
to identical loci on homologous chromosomes. Based on 
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Cre-mediated recombination between loxP sites, 4 types 
of daughter cells are possible after mitosis including 
single-colored green, single-colored red, double colored 
yellow and colorless cells [208]. If mitotic recombination 
occurs during G0 or G1 phase, a double-labeled cell is 
produced without changing the genotype of the cells, only 
completed cytokinesis is capable of producing single-
colored daughter cells, making MADM a gold standard 
for lineage tracing in cardiomyocyte proliferation. 
Despite potential limitations of this model, such as Cre 
combination efficiency and the individual variability, 
MADM remains a powerful tool for investigating 
cardiomyocyte proliferation.

In conclusion, these newly developed systems allow 
distinguishing between authentic cell division and 
polyploidization thus offering an opportunity to validate 
previous research on the proliferation of cardiomyocytes. 
However, it is important to acknowledge the limitations 
of using only proliferative markers and address potential 
challenges by utilizing a combination of different 
approaches.

Challenges in cardiac regeneration research

The ultimate goal of improving cardiac regeneration is 
to repair damaged heart and improve cardiac function by 
increasing the number of cardiomyocytes. Although much 
effort has been put into understanding cell cycle regulation 
and gene or cell therapy to induce cardiomyocyte 
proliferation, therapeutic cardiac regeneration has not 
yet been achieved. Before translation, there are still 
several conceptual and technical challenges needed to be 
addressed to ensure the safety and efficacy of the gene 
therapy for the treatment of heart disease.

Most studies to date have only utilized in  vitro or 
small rodent models to study cardiomyocyte cell cycle 
regulation. However, despite their homology, there 
are significant differences between human and rodent 
genomes. The mouse genome is approximately 14% 
smaller than the human genome with approximately 
20% of genes having no identified orthologue in human 
genome, especially non-coding genes [125]. To bridge 
the gap between rodents and humans and to advance 
preclinical translational studies for cardiac regeneration, 
large animal models, such as dogs, pigs, sheep and non-
human primates are an indispensable step in translating 
basic research into clinical applications. So far, only the 
CCNA2, CCND2, YAP, Sav and miR-199a have been 
reached in pig studies [13, 53, 114, 157, 165]. Therefore, 
further investigations are needed to validate the potential 
therapeutic effects of the targets in large animal models 
before clinical translation. However, also need to be 

noted that, large animals such as pigs also have obvious 
limitations as preclinical research models for human 
translational medicine. Despite the similarities in terms 
of organ size and physiology of pig and human, they are 
different in heart development, anatomy and genome, 
especially ncRNAs [135, 156, 178]. Thus, the impact of 
regenerative strategies being tested in the pigs needs to 
be considered, but the use of the pig system for studies 
of cardiac regeneration still offers inspiring and exciting 
possibilities to improve clinical translation to humans.

In addition, the molecular cell cycle control system 
of cardiomyocytes involves proto-oncogenes and tumor 
suppressors, and regulation of these genes to induce cell 
cycle re-entry may result in uncontrolled cardiomyocyte 
proliferation and even tumorigenesis, and also may lead 
to cardiac dysfunction in the long term [67, 177]. For 
example, transient overexpression of Oct4, Sox2, Klf4, and 
c-Myc (OSKM) in adult mouse cardiomyocytes induces 
cell cycle re-entry and promotes non-tumorigenic cardiac 
regeneration, whereas prolonged expression of OSKM 
leads to cardiac tumor formation [36]. Despite promising 
improvement of gene therapy in cardiac regeneration, 
these studies have been limited by tumor formation, 
strong immunological response, and high mortality rate. 
Thus, the precise control of cardiomyocyte proliferation 
with respect to reversibility is required to prevent tumor 
formation and maintain cardiac function, and is critical for 
the advancement of gene therapy in the clinical setting.

In addition, the adult cardiomyocytes tend to fail 
karyokinesis or cytokinesis resulting in polyploidy or 
multinucleation during the cell cycle. Studies have shown 
that the transcription levels are different between the diploid 
and polyploid cardiomyocytes [186, 198]. Furthermore, 
recent studies have shown that polyploid and multi-nucleated 
cardiomyocytes are also able to re-enter into cell cycle and 
complete cell division [53, 169]. Therefore, it is important 
to investigate the molecular mechanisms regulating 
cardiomyocyte cell division and polyploidization in cardiac 
regeneration prior to clinical translation studies. Currently 
the single-cell RNA sequencing (scRNA-seq) can potentially 
characterize the individual cells and elucidate the biological 
mechanism at the cellular level, but it still does not have the 
sufficient depth to reveal all differences at the single cell 
level. Thus, the further studies including electromechanical 
coupling and contractile function are needed, and new tools 
also need to be developed.

Moreover, the efficiency of RNA delivery directly related 
to the efficacy of gene therapy. Therefore, the specific 
while efficient gene delivery to the heart is fundamental 
for the clinical application of cardiomyocyte regeneration. 
Most of the studies discussed above have relied on adeno-
associated virus (AAV), ultrasound-targeted microbubble 
destruction (UTMD) which combines ultrasound-mediated 
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delivery with microbubbles, exosome-mediated delivery or 
nanoparticle delivery [46, 149, 155, 203]. However, RNA 
delivery has the limitation of low gene transduction, and 
have resulted in orthotropic delivery of therapeutics into 
the myocardium via catheter or intracardiac injection, 
limiting the potential accessibility of such therapeutics 
[79]. Therefore, optimization of the delivery method and 
reduction of the off-target effects for gene therapy need to 
be addressed in the further investigations.

Finally, most studies are performed in young and healthy 
animals. However, heart failure in humans mostly affects 
older adults. Aging is also associated with an increase 
in deaths from heart disease [160]. Therefore, it is really 
important to know if the regenerative therapy can induce 
cardiomyocyte proliferation in aged animals as it does in 
young adults. Besides, experiments in chronic heart failure 
models are also required. Although in vivo studies show 
cardiomyocyte regeneration, almost all in vivo studies have 
been performed in the acute stage of MI. It remains unknown 
whether the therapy could be applied to chronic heart failure 
models. Therefore, the current regenerative therapy in the 
aged animals and chronic heart failure models need to be 
addressed before clinical setting.

In summary, although many challenges remain, the 
clinical application of cardiomyocyte proliferation induction 
by regulating cell cycle related targets may offer a bright 
future for the treatment of heart diseases.

Conclusion

The massive loss of cardiomyocytes after cardiac injury 
and their subsequent replacement by fibrotic tissue is the 
major cause of heart failure, while the cardiomyocytes have 
limited proliferative capacity. Therefore, inducing resident 
cardiomyocytes to re-enter the cell cycle and progress 
through mitosis and cytokinesis is the most physiological 
approach to achieve cardiomyocyte regeneration with 
improved cardiac function in the diseased heart. In this 
review, we have discussed several aspects targeting 
cardiomyocyte regeneration via cell cycle regulation. 
While research in these areas is promising, challenges 
remain in controlling authentic cardiomyocyte cell division 
and translating these approaches into clinical practice. In 
addition, a combinatorial approach to induce cardiomyocyte 
regeneration may need to be developed to overcome the 
current limitations and challenges for therapeutic cardiac 
regeneration in patients in the future.
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