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Abstract
Immune checkpoint inhibitors (ICIs) exhibit remarkable antitumor activity and immune-related cardiotoxicity of unknown 
pathomechanism. The aim of the study was to investigate the ICI class-dependent cardiotoxicity in vitro and pembrolizumab’s 
(Pem’s) cardiotoxicity in vivo, seeking for translational prevention means. Cytotoxicity was investigated in primary cardio-
myocytes and splenocytes, incubated with ipilimumab, Pem and avelumab. Pem’s cross-reactivity was assessed by circular 
dichroism (CD) on biotechnologically produced human and murine PD-1 and in silico. C57BL6/J male mice received IgG4 
or Pem for 2 and 5 weeks. Echocardiography, histology, and molecular analyses were performed. Coronary blood flow 
velocity mapping and cardiac magnetic resonance imaging were conducted at 2 weeks. Human EA.hy926 endothelial cells 
were incubated with Pem-conditioned media from human mononuclear cells, in presence and absence of statins and viability 
and molecular signaling were assessed. Atorvastatin (20 mg/kg, daily) was administered in vivo, as prophylaxis. Only Pem 
exerted immune-related cytotoxicity in vitro. Pem’s cross-reactivity with the murine PD-1 was confirmed by CD and dock-
ing. In vivo, Pem initiated coronary endothelial and diastolic dysfunction at 2 weeks and systolic dysfunction at 5 weeks. At 
2 weeks, Pem induced ICAM-1 and iNOS expression and intracardiac leukocyte infiltration. At 5 weeks, Pem exacerbated 
endothelial activation and triggered cardiac inflammation. Pem led to immune-related cytotoxicity in EA.hy926 cells, which 
was prevented by atorvastatin. Atorvastatin mitigated functional deficits, by inhibiting endothelial dysfunction in vivo. We 
established for the first time an in vivo model of Pem-induced cardiotoxicity. Coronary endothelial dysfunction precedes 
Pem-induced cardiotoxicity, whereas atorvastatin emerges as a novel prophylactic therapy.
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CTLA-4  Cytotoxic T lymphocyte-associated anti-
gen 4

CVAEs  Cardiovascular adverse events
E. coli  Escherichia coli
E/A ratio  Left ventricular relaxation in early dias-

tole (E wave) to peak velocity flow in late 
diastole in atrial contraction (A wave) 
ratio

ED  Extracellular domain
EF %  Ejection fraction %
EMA  European medicines agency
eNOS  Endothelial NO synthase
FDA  Food and Drug Administration
HF  Heart failure
IC  Immune cell
IC50  Half maximal inhibitory concentration
ICAM-1  Intercellular adhesion molecule 1
ICIs  Immune checkpoint inhibitors
IFN-γ  Interferon-γ
IL-10  Interleukin 10
IL-17α  Interleukin 17α
IL-2  Interleukin 2
IL-4  Interleukin 4
IL-6  Interleukin 6
iNOS  Inducible NO synthase
Ipi  Ipilimumab
LAG-3  Lymphocyte activation gene 3
LDH  Lactate dehydrogenase
NO  Nitric oxide
Padi4  Protein arginine deiminase type 4
pAVCs  Primary adult ventricular cardiomyocytes
PBMCs  Peripheral blood mononuclear cells
PD-1  Programmed death 1
PD-L1  Programmed death ligand 1
Pem  Pembrolizumab
PPAR gamma  Peroxisome proliferator-activated receptor 

gamma
STAT3  Signal transducer and activator of tran-

scription 3
TGF-β  Transforming growth factor beta
Th17  T helper 17 cell
TNF-α  Tumor necrosis factor alpha
VCAM-1  Vascular cell adhesion molecule 1

Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized 
cancer therapy over the last decade [43], since the approval 
of the first ICI, ipilimumab, in 2011 [6]. Currently, antibod-
ies targeting four immune checkpoints, namely cytotoxic T 
lymphocyte-associated antigen 4 (CTLA-4), programmed 
death 1 (PD-1) and its ligand (PD-L1), and lymphocyte 

activation gene 3 (LAG-3), are approved by the United 
States and European regulatory authorities as antican-
cer agents, either as monotherapy or as adjuvant therapy. 
Near 50% of all patients with metastatic malignancies are 
under ICI therapy [25]. ICIs maintain a long-lasting antitu-
mor potential, whereas their combination therapies present 
increased efficacy [58]. Nevertheless, ICI-induced immune-
related adverse events are observed. These are triggered by 
the dysregulation of T-cell immunologic self-tolerance, 
which might affect multiple organs, including the myocar-
dium [21, 58, 82]. Although infrequent, cardiotoxicity may 
be life-threatening. The molecular basis of these immune-
related adverse events remains marginally understood, but 
immune mechanisms are highly implicated [80].

Current European Society of Cardiology (ESC) Cardio-
Oncology guidelines emphasize the cardiovascular compli-
cations of anticancer therapies. Cardiovascular diseases and 
cancer share common confounders and seem to be cross-
linked through cardiovascular toxicities [30]. Regarding ICI-
related cardiovascular adverse events (CVAEs), there is an 
unmet clinical need for efficient management [48]. The larg-
est observational, retrospective, pharmacovigilance study of 
122 patients with ICI-associated myocarditis presented an 
early onset of symptoms, which resulted in 50% mortality 
in affected patients [72]. Long-term CVAEs (> 90 days) are 
less well-characterized but are generally manifested in the 
form of noninflammatory heart failure (HF), accelerated 
atherosclerosis, and hypertension, resulting in increased 
mortality rates [14]. Prompt diagnosis and initiation of high-
dose corticosteroids within 24 h are important mitigation 
strategies to improve the outcomes of affected patients [86]. 
However, due to the shortage of evidence-based recommen-
dations, the monitoring and management of ICI therapy-
related CVAEs remain elusive [48].

Up-to-date, all established in vivo models of anti-PD-1 
cardiotoxicity have used anti-PD-1 antibodies that are not 
clinically applicable, but are reactive specifically with the 
murine PD-1 [22, 54, 84, 87]. Besides the limitation in trans-
lation, regarding the use of nonclinically relevant anti-PD-1 
antibodies, in vivo studies have also employed an aggressive 
dose regimen, that of 200 μg/animal, correlating to a human 
equivalent dose of 8 mg/kg, which is 4 times higher and near 
2 times higher than the approved dose for pembrolizumab 
(Pem) and nivolumab, respectively [23]. Consequently, basic 
science lacks appropriate preclinical models, to investigate 
ICI-induced CVAEs. Moreover, despite the fact that some 
underlying cardiotoxicity mechanisms have been proposed, 
including the imputation of ICI-related endothelial dysfunc-
tion [54], the exact pathomechanism of ICI-induced cardio-
toxicity remains elusive.

The scope of the current study was to establish a trans-
lational approach, elucidating ICI-induced cardiotoxicity, 
seeking to i) investigate the drug or class effect of ICIs on 
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cardiac homeostasis, ii) establish translational in vitro and 
in vivo models, with clinically used ICIs, by performing 
in vitro experiments on isolated primary adult murine car-
diomyocytes (pAVCs) and splenocytes and in vivo experi-
ments, implementing state-of-the-art functional analyses 
such as echocardiography, cardiac magnetic resonance 
imaging (cMRI) and Doppler coronary blood flow veloc-
ity (BFV) mapping, on nontumor-bearing mice, iii) verify 
the cross-reactivity of Pem with the respective murine 
epitopes, by biotechnological production of both mouse and 
human epitopes and circular dichroism (CD) and in silico 
analyses, with the human epitopes to be used as a positive 
binding control and to confirm it in vivo by flow cytom-
etry experiments, iv) scrutinize the underlying molecular 
mechanisms of ICI-induced cardiotoxicity, in a time- and 
dose-dependent manner and establish strong causal relations 
between molecular signaling and the observed phenotype, by 
immunoblotting, confocal microscopy and flow cytometry 
experiments, v) confirm the mechanistic findings in human 
cell-based in vitro studies on human peripheral mononuclear 
cells (PBMCs) and human endothelial EA.hy926 cells and 
vi) discover an evidence-based translational therapy against 
ICI-induced cardiotoxicity, which shall not hamper their 
antitumor potency, but concomitantly prevent cardiovascu-
lar complications.

Methods

For complete methods, please refer to the supplemental 
materials online.

Animals

One hundred sixty male C57Bl/6 J mice, 12–14 weeks of 
age, were used for conducting this study (Supplemental 
Fig. 1). Experiments were performed in accordance with 
the “Guide for the Care and Use of Laboratory Animals” 
and experiments were approved by the Greek and Polish 
ethics committees (approval number: 166542–01/03/21 and 
#45/2023, respectively). Animals were housed and main-
tained in specific pathogen-free cages (8/cage; 25 ± 1 °C) 
at least for one week before the experiments, according to 
animal research reporting of in vivo experiments (ARRIVE) 
guidelines [38]. For the in vitro experiments, twelve animals 
were sacrificed for the isolation of pAVCs and splenocytes. 
For the in vivo protocols, mice were randomized as follows: 
i. control (IgG4) group: receiving human IgG4, kappa iso-
type control (#ab288148, Abcam, Cambridge, UK) (n = 9) 
and ii. Pem group: receiving Pem (KEYTRUDA® 25 mg/
ml, Merck & Co., Inc., Rahway, USA) (n = 9). Antibodies 
were administered at a dose of 2 mg/kg, weekly, intraperi-
toneally for five weeks. In a second experimental series 

and due to the identification of early cardiotoxicity of Pem, 
experiments were repeated for two weeks (n = 5/group) for 
tissue sampling. In a third and fourth experimental series, 
experiments were repeated up to two weeks for the con-
duction of coronary BFV mapping (n = 6/group) and cMRI 
(n = 6/group). In a fifth and sixth experimental series, ator-
vastatin (Atorv) (20 mg/kg) was administered daily via oral 
gavage as a potent prophylactic therapy for two weeks, con-
comitantly with IgG4 and Pem treatment (Supplemental 
Fig. 1) and mice underwent BFV mapping (n = 6/group) and 
cMRI (n = 6/group) and were subsequently sacrificed for tis-
sue and blood sampling. In a seventh experimental series, 
the Atorv cohort was repeated for 5 weeks (n = 6/group), and 
mice underwent echocardiography and molecular analysis 
at the endpoint.

Dose selection

The dose selection was performed according to currently 
approved recommendations for the Pem dose regimen in 
patients with melanoma and with non–small cell lung cancer 
(2 mg/kg every 3 weeks) [23]. The weekly administration 
of Pem in mice was chosen due to the relatively high meta-
bolic and renal filtration turnover of the mice compared to 
humans [64]. The maximal duration of 5 weeks was selected 
according to ARRIVE animal welfare criteria [38], in line 
with the previously established in vivo model of anti-PD-
1-induced cardiotoxicity [22, 54, 84, 87] and based on our 
weekly echocardiography analysis. Administrations were 
performed up to the point that that human IgG4 isotype 
control antibody did not deteriorate systolic cardiac func-
tion, due to cross-species autoimmune reactions. No inter-
species dose extrapolation between mice and humans was 
performed for the antibodies, in compliance with pharmacol-
ogy guidelines referring to the use of therapeutic antibodies 
in murine models [75]. The selection of this dose regimen 
and the use of Pem herein pivotally increased the transla-
tional value of our study, since all the up-to-now conducted 
preclinical studies employ mouse-reactive, nonclinically 
used anti-PD-1 antibodies and rely on high doses of the anti-
body (8 mg/kg) to induce the cardiotoxic phenotype [22, 
51, 54, 84]. Atorv dose regimen was selected according to 
previous cardio-oncology preclinical studies, investigating 
its prophylactic potential against doxorubicin-induced car-
diotoxicity in vivo [20, 61], which corresponds to a human 
equivalent dose of 80 mg [75]. The selected dose translates 
to the highest approved human dose of 80 mg, according to 
interspecies dose conversion formulas, taking into account 
the interspecies differences concerning the pharmacokinetics 
(metabolic rate, body surface, and volume of distribution) 
between humans and mice [60]. The selection of the high 
dose versus low dose of Atorv was also based on our in vitro 
studies on human PBMCs and endothelial EAhy.926 cells, 
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in which only the high concentration of Atorv exerted cyto-
protection against Pem-induced cytotoxicity.

Immune checkpoint inhibitors and chemicals

The clinically applicable immune checkpoint inhibitors Pem 
(anti-PD-1 antibody, Pem, KEYTRUDA® 25 mg/ml, Merck 
& Co., Inc., Rahway, USA), ipilimumab (anti-CTLA-4 anti-
body, Ipi, 5 mg/ml, YERVOY®, Bristol-Myers Squibb, NJ, 
USA), and avelumab (anti-PD-L1 antibody, Ave, BAVEN-
CIO®, 20 mg/ml, Merck & Co., Inc., Rahway, USA) were 
used in this study. ICIs were kindly donated by the Depart-
ment of Clinical Therapeutics, School of Medicine, National 
and Kapodistrian University of Athens. All other chemicals 
were purchased by Sigma Aldrich (Missouri, USA), unless 
otherwise stated.

Human in vitro studies

Ten volunteers kindly donated whole blood for PBMC 
isolation and one volunteer for cloning of the extracellu-
lar domain (ED) of the human PDCD1 gene. Studies were 
conducted in compliance with the human studies committee 
of “Alexandra” General Hospital, Department of Clinical 
Therapeutics, School of Medicine, National and Kapodis-
trian University of Athens (#216/ 16–3-2023), the FDA and 
EMA guidelines and 1964 Declaration of Helsinki and its 
later amendments. Volunteers signed a written informed 
consent. Identifying information, including volunteers’ 
names and initials, was omitted due to the general data 
protection regulation. PBMCs were further processed as 
described in the manuscript.

Statistical Analysis

Data are presented as means ± standard deviation (SD). Con-
tinuous variables were compared between two groups using 
parametric, unpaired student’s t-test without assumption of 
consistent means and among more than two groups using 
one-way analysis of variance (ANOVA) with Tukey’s post 

hoc comparisons. Two-way ANOVA was used in the time-
course assessment of Pem-induced systolic dysfunction, 
cytokine profiling using multiplex analyses, and time-course 
monitoring of circulating cardiac damage biomarkers, and 
Tukey’s post hoc comparisons were performed. No assump-
tion of equal variability of differences was performed, and 
data were corrected with Greenhouse–Geisser correction. 
A P-value of at least < 0.05 was considered statistically 
significant. All statistical analyses and graph preparation 
were performed using GraphPad Prism 8.5 analysis soft-
ware (GraphPad Software, Inc., La Jolla, CA, USA). No 
outliers due to biological diversity were excluded. Samples 
that did not meet our technical criteria were not included in 
the analyses a priori. The absence of outlying values was 
confirmed by GraphPad Prism analysis software, using the 
ROUT method and Q = 1%.

Results

Pembrolizumab induces a Th17‑type phenotype 
in primary splenocytes and an immune 
cell‑mediated cytotoxicity in pAVCs, treated 
with splenocytes pembrolizumab‑conditioned 
media

Initially, we sought to establish an in vitro model of ICI-
induced cardiotoxicity and to decipher whether the observed 
cardiotoxicity is class- and dose-dependent, as well as 
whether it is of immune origin or if it is directly induced 
on the primary cardiomyocytes. In order to investigate the 
effect of the drugs on the immune cell (IC) compartment in 
mice, primary splenocytes were treated with one antibody of 
each class of ICIs, namely Pem, Ipi, and Ave, used at clini-
cally relevant concentrations (0–100 μg/ml) (Supplemental 
Fig. 1a) [17, 32, 35]. Pem and Ave did not lead to any cyto-
toxicity in the splenocytes (Supplemental Fig. 2a), whereas 
Pem at the high doses led to a generalized inflammatory 
response and increased the Th17-type cytokines mRNA 
expression, namely Tnfa, Il6, Il10, Il17α, and Ifnγ [74]. Ave 
at the high doses led only to upregulation of Tnfa, Ifnγ, and 
Padi4 mRNA expression, with the latter being a surrogate 
marker of netosis (Supplemental Fig. 2b) [68]. The afore-
mentioned findings are possibly indicative of the divergent 
inflammatory pathways induced by the anti-PD-1 and anti-
PD-L1 antibodies. Interestingly, Ipi at 12.5–100 μg/ml led 
to primary splenocytes’ cytotoxicity, while this cytotoxicity 
was not associated with the induction of inflammation (Sup-
plemental Fig. 2a–b). This effect might be associated with 
the IgG1 class of Ipi [69] or with off-target phenomena of 
the antibody on murine splenocytes and does not correlate 
with Th17 cell activation that is observed in the clinical set-
ting [18], as only Il17α mRNA expression was increased in 

Fig. 1  Biotechnological production of human and murine PD-1-ED. 
Confirmation of pembrolizumab’s cross-reactivity. a Agarose gels 
of PCR-amplified cDNA fragment encoding the human and murine 
PD-1-ED. b Plasmid map of pet28a vector depicting the major plas-
mid genes and the multiple cloning site. SDS-PAGE of total proteins 
expressed and extracted from E. coli expression cells overexpressing 
c human and d murine PD-1-EDs. SDS-PAGE of the purification of 
e human PD-1 and f. murine PD-1-EDs with gradient elution. Repre-
sentative circular dichroism (CD) graphs of pembrolizumab binding 
with the g. murine and h human PD-1-ED at 15 °C and 37 °C. Rep-
resentative CD graphs of i murine and j human PD-1-ED conforma-
tional stability at 15–37 °C. k-l Lowest energy conformational mod-
els of Pem and murine PD-1-ED binding in silico. ED extracellular 
domain, PD-1 programmed death 1, Pem pembrolizumab

◂
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Fig. 2  Pembrolizumab leads to 
a progressive cardiac dysfunc-
tion, intracardiac immune 
cell infiltration, and acute 
Th17-type cytokine storm. 
a Representative M-mode 
images from 5 weeks and b 
time-course graph of % ejection 
fraction in the IgG4-treated 
controls and Pem-treated mice 
(n = 9/group). Representative 
hematoxylin–eosin histology 
images (white bar corresponds 
to 100 μm, scale shown on 
images) from the c 2- and d 
5-week groups. Graph of the 
flow cytometry subpopulation 
analysis of the myocardial tissue 
at e 2- and f 5-week cohorts. 
Time course graphs of the 
multiplex analysis of circula-
tory g Th17-type cytokines (pg/
ml) and h IL-17α (pg/ml) in the 
IgG4-treated controls and Pem-
treated mice (n = 6/group). Data 
are presented as mean ± SD. 
*P < 0.05,**P < 0.01 vs con-
trols, ††††P < 0.001 vs Base-
line. Unpaired Student’s t-test or 
two-way ANOVA of variance, 
Tukey’s post hoc analysis. 
IFN-γ interferon gamma, IL 
interleukin, Pem pembroli-
zumab, TNF-α tumor necrosis 
factor alpha
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the absence of Ifnγ overexpression (Supplemental Fig. 2b) 
[57]. Therefore, Ipi was excluded from subsequent experi-
ments. Thereupon, we investigated whether Pem and Ave 
can induce direct toxicity on pAVCs; however, no direct 
impairment of pAVCs’ viability was observed by these ICIs 
(Supplemental Fig. 2c). On the contrary, transfer of sple-
nocytes’ conditioned media, previously treated for 24 h with 
Pem, onto pAVCs, led to pAVCs toxicity at 50 and 100 μg/
ml, while Ave-conditioned media did not show any toxic-
ity (Supplemental Fig. 2d). Pem’s IC-mediated cytotoxic-
ity was accompanied by the induction of inflammation, as 
shown by the increased Il6, Tnfa, Tgf-β, Il8 and Rela mRNA 
expression favorably at 100 μg/ml, and autophagy and ER 
stress both at 50 and 100 μg/ml as shown by Lc3b/a, Atg5 
and Canx, Ddit3, respectively (Supplemental Fig. 2e–f).

Pembrolizumab binds to the murine 
PD‑1‑ED, similar to the human PD‑1‑ED, 
in a conformational‑dependent manner

Based on our in vitro model of ICI-induced cardiotoxicity 
and our results on Pem-induced Th17-type activation in sple-
nocytes (Supplemental Fig. 2), we sought to verify Pem’s 
binding with the murine PD-1-ED in vitro, using human PD-
1-ED as a positive binding control, both biotechnologically 
produced in an E. coli system (Fig. 1a–f). The recombinant 
PD-1-EDs presented similar CD spectra at 15 °C, whereas 
secondary structure content % was similar for the two pro-
tein equivalents, as estimated by BeStSel analysis (Sup-
plemental Table 1) [56]. Regarding Pem’s interaction with 
the murine and human PD-1-ED, Pem incubation with both 
PD-1-EDs induced the same structural rearrangements to the 
antibody’s secondary structure, thus confirming its binding 
to both recombinant proteins at 15 °C (Fig. 1g–h). Neverthe-
less, in the case of the murine PD-1-ED, CD spectral shifts 
were evident only at 15 °C, while binding between its human 
counterpart and Pem was also observed at 37 °C, indicating 
that the affinity of the antibody for the murine epitope is 
temperature- and conformation-dependent. A comparison 
of the CD spectra, acquired for the murine and human PD-
1-ED, confirmed the reduced stability of the murine epitope 
at 37 °C (Fig. 1i–j). The specificity of Pem’s binding to PD-
1-ED was confirmed using IgG4 as a negative control, which 
showed no structural rearrangements upon interaction with 
either the human or the murine PD-1-ED (Supplemental 
Fig. 3). In silico protein–protein docking confirmed the bind-
ing of Pem with the murine PD-1-ED between the heavy and 
light chains of Pem, which was similar to what was already 
shown for the Pem and human PD-1-ED binding in literature 
[66] and in line with the similar secondary structure content 
% previously shown for the two protein equivalents (Sup-
plemental Table 1, Fig. 1k–l). Taking into account i. the 
induction of Th17-type phenotype in primary splenocytes 

(Supplemental Fig. 2) and ii. the novel confirmation of Pem 
binding to the murine epitope, we subsequently sought to 
establish an in vivo cardiotoxicity model.

Pembrolizumab leads to transient T helper cell 
infiltration and a progressive decline in cardiac 
function

Based on the translational dose regimens, we subsequently 
established the in vivo murine model of Pem-induced car-
diotoxicity (Supplemental Fig. 1b). Weekly Pem admin-
istration led to an early systolic dysfunction, evident as a 
significant decline in ejection fraction % (EF %) compared 
to baseline at 2 weeks. The impairment of systolic function 
was further exacerbated at 5 weeks of treatment, compared 
to IgG4-treated controls and baseline (Fig. 2a–b, Supple-
mental Table 2–3). Histological evaluation of the myocar-
dium at 2 and 5 weeks indicated an early intracardiac and 
perivascular IC infiltration (vasculitis) at 2 weeks (Fig. 2c) 
and a shrinkage of cardiomyocytes, accompanied by signs 
of myocytolysis and disruption of the coronary arterial wall 
at 5 weeks, indicative of exacerbated histological damage 
(Fig. 2d) [62]. Flow cytometry indicated an early increase 
in CD4 T helper cells in the myocardium at 2 weeks which 
shifted to increased  Ly6Clow macrophages at 5  weeks 
(Fig. 2e–f, Supplemental Fig. 4).

Regarding the circulatory Th17-type cytokine profile, 
Pem led to the increase in Th17-type cytokines, namely 
TNF-α, IFN-γ, IL-4, IL-6, and IL-10, except from IL-2, 
which remained unchanged at 1 week of administration. 
Notably, the Th17-type cytokines’ increase was rapidly 
resolved at 2 weeks and remained unchanged until the 5th 
week of the experiments. Only an increase in IL-4 was 
observed in IgG4-treated control mice after 1  week of 
administration. Additionally, a profound increase in IL-17α 
was observed only in Pem-treated mice, after 1 week of 
administration (Fig. 2g–h). Therefore, Pem exhibited an 
early activation of Th17-type cells at 1 week, which led 
to a mild systolic function impairment and intracardial T 
helper cell infiltration at 2 weeks, which further proceeded 
to exacerbated systolic dysfunction,  Ly6Clow macrophages 
infiltration, and histologically defined cardiac deficits at 
5 weeks. Additionally, we assessed circulatory biomarkers 
of cardiac damage, namely cardiac troponin I (cTnI), lactate 
dehydrogenase (LDH) and creatine phosphokinase-MB (CK-
MB). We found a significant increase in TnI at 1 week of 
Pem administration, compared to IgG4-treated controls and 
a significant TnI increase at 5 weeks of Pem administration, 
compared to baseline and to controls. LDH was found to be 
increased at 5 weeks compared to controls, whereas LDH 
and CK-MB levels did not increase throughout the serial 
administrations neither in the Pem nor in the IgG4-treated 
group compared to baseline (Supplemental Fig. 5).
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In order to validate our in vitro data, originating from 
the CD and in silico experiments, we sought to confirm 
Pem’s cross-reactivity by investigating its effect on T-cell 
expansion in vivo at 5 weeks. The time point was selected 
according to clinical data, indicating a Pem-induced T-cell 
expansion, at least 4 weeks after the initial administra-
tion of the drug [36]. We observed an increase in the total 
T-cell population, characterized by a concomitant increase 
in  CD4+ and  CD8+ cells, without a parallel increase in 
B-cell or NK-cell populations (Supplemental Fig. 6). 
Taking into account that anti-PD-1 therapy specifically 
targets  CD4+ and  CD8+ T-cell population, without directly 
affecting B-cell and NK-cells in humans [11, 78], our flow 
cytometry data reinforce our finding of Pem’s cross-reac-
tivity in the murine model.

Pembrolizumab leads to early and progressive 
coronary endothelial inflammatory activation

Since Pem-induced acute increase in IL-17α in the cir-
culation and intracardiac IC infiltration suggest coronary 
endothelial dysfunction [2, 49], we focused our mecha-
nistic studies on endothelial-related pathways and inflam-
matory mediators in the myocardium. At 2 weeks, Pem 
administration led to an increase in intercellular adhesion 
molecule 1 (ICAM-1) and inducible NO synthase (iNOS) 
and a possibly compensatory increase in endothelial NO 
synthase (eNOS) phosphorylation (Fig. 3a–c). At 5 weeks, 
Pem administration led to further endothelial activation, as 
shown by the significant E-selectin, ICAM-1, and eNOS 
upregulation (Fig. 3d–e) and a concomitant increase in 
the inflammatory markers iNOS, IL-6, IFN-γ, and signal 
transducer and activator of transcription 3 (STAT3) phos-
phorylation (Fig. 3f). The upregulation of ICAM-1 in the 
intracardiac coronary vessels and IFN-γ in the sarcomeres 
of the cardiomyocytes was confirmed by confocal micros-
copy at 5 weeks after Pem administration (Fig. 3g-h).

Pembrolizumab leads to alterations in coronary 
endothelial function and early diastolic and systolic 
cardiac dysfunction

Pem increased basal BFV at 2 weeks, whereas decreased 
acetylcholine (Ach)-mediated hyperemic BFV was observed, 
without changes in adenosine-mediated hyperemic BFV. 
Both Ach- and adenosine-mediated BFV reserves were 
decreased in Pem-treated mice at 2 weeks. Therefore, our 
results strongly confirmed the contribution of microvascular 
endothelial dysfunction in the early stages of Pem-induced 
cardiotoxicity, taking under consideration the endothelial-
dependent vasodilation induced by Ach (Fig. 4a–f) [41].

Since cMRI is the state-of-art technique for ICIs cardio-
toxicity diagnosis [19], we employed the technique in our 
in vivo model, to obtain a comprehensive analysis of Pem’s 
cardiotoxicity in terms of systolic and diastolic dysfunc-
tion at 2 weeks. Pem led to a significant reduction in EF %, 
stroke volume, % filling rate, cardiac output, an increase in 
end-systolic volume and concomitant impairment in % peak 
longitudinal and circumferential strain, confirming the early 
systolic dysfunction as previously identified by echocardiog-
raphy. Additionally, Pem led to a significant decrease in E/A 
ratio, a surrogate marker of diastolic function (Fig. 4g–i). 
Conclusively, cMRI and Doppler imaging revealed that Pem 
at 2 weeks led to microvascular coronary dysfunction and to 
systolic and diastolic dysfunction in vivo.

Pembrolizumab induces IC‑mediated cytotoxicity 
in human endothelial cells. Protective effect 
of atorvastatin

To investigate whether Pem-induced endothelial impair-
ment could be recapitulated in  vitro, we studied the 
endothelial damage in EA.hy926 human endothelial 
cells. PBMC incubation with Pem at 100 μg/ml for 72 h, 
corresponding to the antibody’s concentration in human 
plasma after one dose of Pem [17], led to the activation 
of PBMCs, as indicated by immunofluorescence analyses 
of IFN-γ, CD44, and iNOS (Fig. 5a). On a translational 
approach to reveal a preventive strategy and taking under 
consideration the endothelial-targeted pharmacological 
action of statins [83], we employed two statins, pravas-
tatin (Prav) and Atorv, with different lipophilicity and 
intensity profiles (Supplemental Fig. 1c). Initially, we 
tested Prav and Atorv cytotoxicity on EA.hy926 cells in 
order to identify their half maximal inhibitory concentra-
tion  (IC50) concerning cellular viability. We found that 
Atorv presented an  IC50 value of 83 μM, while Prav did 
not show any cytotoxicity at the tested range of concentra-
tions  (IC50 > 5 mM) (Fig. 5b). Thereupon, we tested the 
concentrations of 5 and 10 μM [16], according to literature 
in the presence of non-stimulated PBMCs’ supernatant in 

Fig. 3  Pembrolizumab leads to early and progressive coronary 
endothelial inflammatory activation. a Representative Western blot 
images and relative densitometry analysis of b endothelial and c 
inflammation markers at 2  weeks (n = 5/group). d Representative 
Western blot images and relative densitometry analysis of e endothe-
lial and f inflammation markers at 5 weeks (n = 9/group). Representa-
tive confocal microscopy images of DAPI (blue), F-actin (green), and 
g ICAM-1 (red) or h IFN-γ (magenta) in the myocardium at 5 weeks 
(bar corresponds to 100 μm; scale is shown on images). Data are pre-
sented as mean ± SD. *P < 0.05,**P < 0.01, ***P < 0.005 vs controls. 
Unpaired Student’s t-test. eNOS endothelial nitric oxide synthase, 
ICAM-1 intercellular adhesion molecule 1, IFN-γ interferon gamma, 
IL-6 interleukin 6, iNOS inducible nitric oxide synthase, STAT3 sig-
nal transducer and activator of transcription 3, VCAM-1 vascular cell 
adhesion molecule 1

◂
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Fig. 4  Pembrolizumab induces 
early systolic and diastolic 
dysfunction and microvascular 
endothelial dysfunction. a–f 
Representative images and 
Doppler blood flow velocity 
mapping analysis of the IgG4-
treated controls and Pem-treated 
mice (n = 6/group) at baseline 
and after acetylcholine (144 µg/
kg/min) and adenosine (144 µg/
kg/min) hyperemia. g–i Rep-
resentative cMRI images, SV 
rate and cMRI analysis of the 
IgG4-treated controls and Pem-
treated mice (n = 6/group). Data 
are presented as mean ± SD. 
*P < 0.05,**P < 0.01, 
***P < 0.005, and **** 0.001 
vs controls. Unpaired Student’s 
t-test. Ach acetylcholine, SV 
stroke volume
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Fig. 5  Pembrolizumab induces 
immune cell-mediated toxicity 
in human endothelial EA.hy926 
cells. Preventive role of high 
concentration of atorvasta-
tin. a Immunofluorescence 
images of human PBMCs 
treated with Pem (100 μg/
ml) for 72 h stained for IFN-γ, 
CD44, and iNOS. b Graph of 
cytotoxicity  IC50 for Prav and 
Atorv (0.5μΜ–5 mM) (n = 6/
group) c Graph of cellular 
viability assessed by MTT 
assay in EA.hy926 endothe-
lial cells treated with PBMC 
IgG4-conditioned media in the 
presence of Atorv and Prav 
(5–10 μM) (n = 6/group) and d 
in EA.hy926 endothelial cells 
treated with PBMC Pem-
conditioned media (100 μg/
ml) for 24 h (n = 6/group) in 
the presence and absence of 
Atorv and Prav (5–10 μM). e 
Representative Western Blot 
images and f Relative densitom-
etry analysis of the endothelial 
markers E-selectin, (phospho-)
eNOS, ICAM-1, and VCAM-1 
in EA.hy926 endothelial cells 
treated with PBMC Pem-
conditioned media (100 μg/
ml) for 24 h (n = 6/group) in the 
presence and absence of Atorv 
(10 μΜ) (n = 5–9/group) g Rep-
resentative immunofluorescent 
images and h relative immuno-
fluorescence intensity normal-
ized to DAPI signal of ICAM-1 
in EA.hy926 endothelial cells 
treated with PBMC Pem-con-
ditioned media (100 μg/ml) for 
24 h (n = 5/group) in the pres-
ence and absence of Atorv. Data 
are presented as mean ± SD. 
*P < 0.05, **P < 0.01, 
***P < 0.005, ****P < 0.001, 
one-way ANOVA of variance, 
and Tukey’s post hoc analysis. 
Atorv atorvastatin, CD44 cluster 
differentiation molecule 44, 
eNOS endothelial nitric oxide 
synthase, ICAM-1 intracel-
lular adhesion molecule 1, 
IFN-γ interferon gamma, iNOS 
inducible nitric oxide synthase, 
PBMCs peripheral blood 
mononuclear cells, Pem pem-
brolizumab, Prav pravastatin, 
VCAM-1 vascular cell adhesion 
molecule 1
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order to confirm the absence of cytotoxicity. We observed 
no significant cytotoxicity of either Prav or Atorv in the 
tested concentrations (Fig.  5c). Nevertheless, transfer 
of Pem-activated PBMCs’ supernatant onto EA.hy926 
cells for 24 h led to cytotoxicity (Fig. 5d), confirming 
the Pem-related, IC-mediated endothelial damage in the 
human in vitro setting. [12]. Only the high concentration 

of Atorv, prevented IC-mediated endothelial toxicity by 
Pem, which was accompanied by upregulation of eNOS 
and downregulation of ICAM-1 in vitro (Fig. 5e–f). The 
prevention of Pem-induced ICAM-1 increase by Atorv was 
also confirmed by immunofluorescence microscopy in the 
EA.hy926 cells (Fig. 5g–h).

Fig. 6  Atorvastatin mitigates 
early and late cardiac systolic 
dysfunction, histological 
deficits, and acute Th17-type 
cytokines’ storm induced by 
pembrolizumab. a Representa-
tive M-mode images at baseline 
and 5 weeks and b graph of % 
ejection fraction in the IgG4-
treated controls and Pem-treated 
as well as IgG4 + Atorv-treated 
and Pem + Atorv-treated mice 
(n = 5–6/group). c Repre-
sentative hematoxylin–eosin 
histology images at 5 weeks 
of treatment (white bar cor-
responds to 100 μm; scale is 
shown on images). d Graph 
of the multiplex analysis of 
circulatory Th17-type cytokines 
(pg/ml) at 1 week of admin-
istration (n = 6/group). Data 
are presented as mean ± SD. 
*P < 0.05,**P < 0.01 
***P < 0.005 vs controls, one-
way ANOVA of variance, and 
Tukey’s post hoc analysis. Atorv 
atorvastatin, IFN-γ interferon 
gamma, IL interleukin, Pem 
pembrolizumab, TNF-α tumor 
necrosis factor alpha
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Atorvastatin mitigates progressive cardiac 
dysfunction, cardiac injury, and acute Th17 cytokine 
storm induced by pembrolizumab

In order to confirm our in vitro findings on the preventive 
role of Atorv against Pem-induced endothelial dysfunction, 
the cardioprotective potential of high-dose Atorv at 20 mg/
kg [33] was studied in vivo (Supplemental Fig. 1d). Atorv 
prevented the progressive Pem-induced cardiac systolic dys-
function, as shown by the preserved EF % at 2 and 5 weeks, 
respectively (Fig. 6a–b, Supplemental Table 4–5). Moreo-
ver, Atorv abrogated the histological signs of Pem-induced 
cardiac injury, such as cardiomyocyte shrinkage and vascu-
litis (Fig. 6c). Concerning the Th17-type cytokine profile at 
1 week of administration, Atorv coadministration led to the 
inhibition of IFN-γ, TNF-α, IL-2, IL-6, IL-4, and IL-17α 
release in comparison with the Pem group, in line with its 
already known immunomodulatory effect (Fig. 6d) [37].

Atorvastatin prevents microvascular coronary 
endothelial and diastolic and systolic cardiac 
dysfunction induced by pembrolizumab

To confirm that Atorv prophylaxis against Pem-induced car-
diotoxicity in vivo was related to effects on microvascular 
coronary endothelial dysfunction, Atorv was co-adminis-
tered with Pem up to the 2nd week and cMRI and Doppler 
coronary BFV mapping were conducted. Atorv coadmin-
istration, successfully mitigated Pem-induced basal BFV 
increase and depressed Ach-mediated hyperemic BFV, with-
out affecting adenosine-mediated hyperemic BFV, revealing 
a potent microvascular coronary endothelium protection of 
Atorv against Pem-induced damage at 2 weeks. Atorv miti-
gated both the decreases in Ach- and adenosine-mediated 
BFV reserve (Fig. 7). Additionally, Atorv preserved EF %, 
end-diastolic volume, stroke volume, peak circumferential 
strain and E/A ratio, which were significantly compromised 
by Pem. Moreover, it significantly restored peak longitudi-
nal strain compared to Pem group, indicating that an early 
prophylactic treatment with Atorv prevented the coronary 
microvascular dysfunction and systolic and diastolic cardiac 
function impairment induced by Pem (Fig. 8).

Atorvastatin mitigates coronary endothelial 
activation and cardiac inflammation induced 
by Pembrolizumab

Subsequently, we found that Atorv prevented the increase in 
ICAM-1, STAT3, and IL-6 at 2 weeks (Fig. 9a–c), whereas 
it inhibited the upregulation of ICAM-1, iNOS, and STAT3 
phosphorylation at 5  weeks in the myocardium. Atorv 
increased eNOS expression, whereas Atorv coadministra-
tion with Pem increased eNOS phosphorylation, compared 

to IgG4-treated controls. Interestingly, Atorv and its coad-
ministration with Pem reduced myocardial IL-6 expression 
compared to the Pem group (Fig. 9d–f). The preventive 
potential of Atorv against Pem-induced ICAM-1 upregula-
tion, at 5 weeks, was also confirmed by confocal microscopy 
in the intracardiac coronary vessels (Fig. 9g). Conclusively, 
Atorv acts prophylactically against Pem-cardiotoxicity both 
at a functional and molecular level.

Discussion

Herein, we investigated the class and drug effect of ICIs on 
cardiac function and we have established, for the first time, 
a translational in vivo model of Pem-induced cardiotoxic-
ity, successfully identifying an evidence-based and clinically 
applicable prophylactic therapy. Our in vitro findings sug-
gest that among the anti-PD-1, anti-PD-L1 and anti-CTLA-4 
antibodies, only Pem exerted notable IC-mediated toxicity 
in murine pAVCs. The rationale for the use of primary sple-
nocytes relies on the fact that we sought to prove that Pem 
does not lead to direct cytotoxicity on primary adult cardio-
myocytes, while treatment of pAVCs with Pembrolizumab-
conditioned media from splenocytes, consisting primarily of 
immature B and T cells [13], led to significant cytotoxicity 
in the cardiomyocytes in vitro, confirming the IC-mediated 
nature of Pem’s cardiotoxicity. This finding is in line with 
clinical observations, as anti-PD-1 therapy presents the high-
est incidence of CVAEs compared to the other ICIs classes 
[70]. Since we observed that Pem’s pharmacological effect 
on primary splenocytes was clinically relevant to the T-cell 
activation observed in humans [67], we investigated whether 
the observed effect was on- or off-target.

In vitro studies have previously shown that Pem does 
not cross-react with the murine PD-1, which up-to-now 
hindered the establishment of translational in vivo models 
[44]. However, in all the aforementioned studies, enzyme-
linked immunosorbent assays have been employed to test the 
cross-reactivity of the drug [44]. Herein, we biotechnologi-
cally engineered both the human and murine PD-1-EDs, to 
investigate the cross-reactivity of the antibody in a tempera-
ture- and conformational-dependent manner by CD. Initially, 
we investigated the similarity of the murine and human PD-
1-EDs, concerning the estimated secondary structure con-
tent %. We found that both proteins have similar secondary 
structure content %. Taking into account that human PD-
1-ED deranges its secondary structure in order to bind to 
Pem, similar secondary structures of the human and murine 
PD-1-EDs facilitate the putative cross-reactivity of the anti-
body [85]. Nevertheless, we observed that murine PD-1-ED 
undergoes conformational changes at 37 °C, which greatly 
affects the binding of Pem on the murine epitope. Taking 
into consideration that enzyme-linked immunosorbent 
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Fig. 7  Atorvastatin inhibits 
early microvascular endothe-
lial dysfunction induced by 
pembrolizumab. a Representa-
tive images and b–f Doppler 
blood flow velocity mapping 
analysis of the IgG4-treated 
controls and Pem-treated as 
well as IgG4 + Atorv-treated 
and Pem + Atorv-treated mice 
(n = 6/group) at baseline and 
after acetylcholine (144 µg/kg/
min) and adenosine (144 µg/
kg/min) hyperemia. Data 
are presented as mean ± SD. 
*P < 0.05,**P < 0.01 vs controls 
one-way ANOVA of variance, 
and Tukey’s post hoc analysis. 
Ach acetylcholine, Atorv atorv-
astatin, Pem pembrolizumab
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assays often require long incubation time at room tempera-
ture or 37 °C [44], our findings on the temperature stabil-
ity of the protein might explain the reported absence of 

cross-reactivity of Pem. Previous studies have shown that 
Pem’s stability and its antigen–antibody binding with the 
PD-1-ED are affected by stressors such as temperature 

Fig. 8  Atorvastatin prevents 
early cardiac systolic and 
diastolic dysfunction induced 
by pembrolizumab. a Repre-
sentative cMRI images at end-
diastole and end-systole and 
b–m cMRI analysis concerning 
cardiac systolic and diastolic 
function of the IgG4-treated 
controls and Pem-treated as 
well as IgG4 + Atorv-treated 
and Pem + Atorv-treated 
mice (n = 6/group). Data 
are presented as mean ± SD. 
*P < 0.05,**P < 0.01 vs 
controls, one-way ANOVA of 
variance, and Tukey’s post hoc 
analysis. Atorv Atorvastatin, LV 
left ventricular, Pem Pembroli-
zumab
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(≥ 40 °C) [79]. However, the epitope’s temperature stability 
is not yet investigated and constitutes a novelty of the cur-
rent study. Therefore, the up-to-now limitations in Pem’s 
cross-reactivity should be further scrutinized. Additionally, 

Pem’s binding to murine PD-1-ED, similar to the human 
PD-1-ED, was confirmed by in silico protein–protein dock-
ing experiments, which additionally supported our previ-
ous CD findings. Importantly, we sought to confirm Pem’s 

Fig. 9  Atorvastatin mitigates 
early and late endothelial activa-
tion and inflammatory signaling 
upregulated by pembrolizumab. 
a Representative Western blot 
images and relative densitom-
etry analysis of b endothelial 
and c inflammation markers at 
2 weeks (n = 6/group). d Repre-
sentative Western blot images 
and relative densitometry analy-
sis of e endothelial and f inflam-
mation markers at 5 weeks 
(n = 6/group). g Representative 
confocal microscopy images of 
DAPI (blue), F-actin (green), 
and ICAM-1 (red) at 5 weeks 
(bar corresponds to 100 μm, 
scale shown on images). Data 
are presented as mean ± SD. 
*P < 0.05,**P < 0.01, and 
***P < 0.005 vs controls. One-
way ANOVA of variance and 
Tukey’s post hoc analysis. Atorv 
atorvastatin, eNOS endothelial 
nitric oxide synthase, ICAM-1 
intercellular adhesion molecule 
1, IL-6 interleukin 6, iNOS 
inducible nitric oxide synthase, 
Pem pembrolizumab, STAT3 
signal transducer and activator 
of transcription 3, and VCAM-1 
vascular cell adhesion molecule 
1
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cross-reactivity in vivo at 5 weeks. We found that in compli-
ance with humans [11, 78], Pem increased the total T-cell 
count in the whole blood, compared to the IgG4 isotype 
control, without affecting the B- and NK-cell population. 
The latter solidifies Pem’s cross-reactivity in our murine 
model of cardiotoxicity, as Pem induced a clinically relevant 
immune response in vivo, in line with its pharmacological 
effect in cancer patients.

Taking into account that i. Pem induced a Th17-type 
cell activation in primary splenocytes, which is similar to 
the T-cell activation observed in humans [67] and led to 
IC-mediated cardiotoxicity in the pAVCs, ii. human and 
murine PD-1-EDs presented similar estimated secondary 
structure content % facilitating the pharmacodynamic inter-
action of both PD-1-EDs with Pem, iii. the similar CD shift 
of Pem’s spectrum upon incubation with the human and 
murine PD-1-EDs, iv. the in silico confirmation of Pem’s 
binding with the human and the murine PD-1-EDs originat-
ing from low-energy models, and v. our in vivo confirmation 
of Pem-induced T-cell expansion at 5 weeks of administra-
tion, we can safely suggest the cross-reactivity of Pem with 
the murine PD-1-ED, regarding its binding capacity to its 
ligand PD-L1. These results are of utmost translational sig-
nificance, as they permit, for the first time, the conduction 
of in vivo experiments with anti-PD-1 therapeutics, using 
Pem as a prototype. As for the Pem dosage, the previous 
preclinical studies have used i) anti-PD-1 antibodies that are 
not clinically applicable and ii) 4 times higher doses than 
the approved dose for Pem. Herein, we established for the 
first time an in vivo model directly translating the human 
dose into our murine in vivo model on a bench-to-bedside 
approach.

Endothelial activation and microvascular coronary 
endothelial dysfunction were identified as early mediators 
of Pem’s cardiotoxicity. Early reports indicate that endothe-
lial PD-L1 orchestrates  CD8+ T-cell-mediated injury in the 
myocardium, demonstrating an important role of the IFN-
γ-inducible PD-L1, in protecting the myocardium against 
ICIs immune-related adverse events. However, this finding 
was not further investigated in terms of anti-PD-1 therapy-
induced CVAEs [24]. A contemporary study confirmed the 
expression of PD-L1, mainly in the endothelial compartment 
of the myocardium and proposed that TNF-α is a key media-
tor of the early anti-PD-1-related cardiotoxicity [54]. Despite 
the fact that endothelial dysfunction is part of the early-on 
anti-PD-1-related cardiotoxicity, functional and molecular 
proofs of this mechanism are still elusive. Herein, we have 
provided novel evidence that Pem after 1 dose increases cir-
culatory Th17-type cytokines’ levels, leading to endothelial 
activation and microvascular coronary endothelial dysfunc-
tion, as proven by cMRI, Doppler coronary BFV mapping, 
and immunoblotting at 2 weeks, initiating the establish-
ment of cardiac injury. Circulating cytokines and especially 

IL-17α, IL-2, and TGF-β have high predictive value on 
immune-related toxicities in melanoma patients receiving 
anti-PD-1 therapies [50]. Therefore, a causal correlation of 
Th17-type cytokines’ acute release, in the first week, can 
be associated with endothelial homeostasis disruption and 
can later trigger Pem-induced CVAEs. Moreover, we have 
shown that endothelial dysfunction, which stands as a pre-
decessor of severe cardiac systolic dysfunction, is dose- and 
time-dependently aggravated by Pem’s administration and 
consequently leads to exacerbated coronary endothelial 
dysregulation and inflammation at 5 weeks. The establish-
ment of cardiotoxicity at 5 weeks was confirmed by the ele-
vated cTnI levels in the circulation, which was significantly 
increased compared to the controls and baseline at this time 
point. The elevation of cTnI upon the establishment of car-
diotoxicity is in line with the clinical observations [48, 81]. 
Importantly, ICAM-1 was identified as a novel biomarker of 
early endothelial activation in our in vivo model.

It is generally appreciated that various manifestations 
of HF, including ischemic cardiomyopathy, dilated car-
diomyopathy, coronary microembolization drug-related 
cardiotoxicity and tachyarrhythmias, share microvascular 
endothelial dysfunction as a common confounder [27, 29, 
40]. The identification and early intervention against acute 
endothelial dysfunction are regarded as a pivotal modality 
in maintaining cardiovascular homeostasis, as endothelial 
cells’ resilience to acute stress factors is crucial for prevent-
ing chronic cardiac dysfunction [77]. Moreover, documenta-
tion of molecular pathways, involved in endothelial dysfunc-
tion, can enable the identification of novel druggable targets 
against endothelial-related functional deficits in cardiovas-
cular diseases [39, 76]. Identification and management of 
Pem-related early coronary endothelial dysregulation are of 
great clinical value, as in a recent clinical study on ICI-
induced CVAEs, vascular-driven CVAEs, such as vasovagal 
syncope, acute myocardial infarction and microvascular dys-
function, were observed within the spectrum of ICI-induced 
cardiovascular complications [3]. Therefore, the pharmaco-
logical management of ICI-derived early coronary endothe-
lial dysregulation might serve as a druggable target for the 
mitigation of both cardiac dysfunction and vascular-driven 
CVAEs by anti-PD-1 therapy. Importantly, microvascular 
endothelial dysfunction is an independent predictor of can-
cer development and progression, as it is shown that patients 
with nonobstructive coronary artery diseases have a higher 
incidence of malignancies [34, 65]. Targeting microvascular 
coronary endothelial dysfunction in anti-PD-1 therapy might 
facilitate the parallel treatment of both cancer progression 
and CVAEs.

Therefore, subsequently, we challenged the prophylac-
tic potential of high-intensity statins against Pem-induced 
cardiotoxicity. Our rationale for selecting statins was sup-
ported by a recent clinical study, exhibiting that statins are 



 Basic Research in Cardiology

associated with improved antitumor efficacy of anti-PD-1 
therapy in malignant pleural mesothelioma and advanced 
nonsmall-cell lung cancer patients [7]. We employed two 
statins with proven endothelial protective potential [83] and 
different intensities as potential cardioprotective candidates. 
Our in vitro human-based studies deduced that only Atorv, 
at a high dose, mitigated Pem-induced endothelial toxicity, 
while it also prevented early and late cardiac histological, 
functional, and molecular deficits induced by Pem in vivo. 
The lack of Prav’s cardioprotective potential can be accred-
ited to the lower lipophilicity and intensity compared to 
Atorv leading to differential potency on the endothelium 
[83]. Though the putative antitumor potential of statins is 
already studied and might be attributed to their direct effect 
ontumor cells, downregulating PD-L1 [45] and suppressing 
tumor escape by inhibiting PD-L1 trafficking [10], statins’ 
effect on anti-PD-1-related CVAEs is not yet investigated. 
This is of great interest, considering the proven prophylac-
tic effect, especially of Atorv, against anthracycline-induced 
cardiotoxicity [63]. The potential prophylactic effect of 
Atorv against doxorubicin-induced cardiotoxicity is previ-
ously revealed by the STOP-CA clinical trial on 300 patients 
with lymphoma. In this study, Atorv 40 mg reduced the inci-
dence of cardiac dysfunction, as evaluated by left ventricular 
EF % decline [59]. The latter clinical trial reinforces the 
high prophylactic potential of Atorv in the cardio-oncology 
setting, regarding the anthracycline-induced cardiotoxicity. 
However, its impact on the cardiovascular function of ICI-
treated patients is not yet investigated. Taking under consid-
eration that anthracycline- and ICI-induced cardiotoxicity 
present differences in the mechanism and manifestation of 
CVAEs [42], our study is merited with novel findings on 
the prophylactic potential of Atorv also in ICI-induced car-
diotoxicity, besides its already supported beneficial effect 
against anthracycline-induced cardiomyopathy.

Approximately 30% of patients receive statins at the start 
of their cancer therapy [7, 15]. In a recent study of 14,902 
patients with breast cancer, it was presented that, compared 
with nonusers, patients receiving statins had a significantly 
lower risk of cancer-related mortality. The ratios of patients 
who experienced CVAEs, including cardiovascular death, 
HF, and arterial or venous events, were similar between 
statin users and nonusers [8]. However, it should be noted 
that patients receiving statins in the aforementioned study 
were relatively older and had a higher incidence of coro-
nary artery disease, hypertension, and diabetes. Addition-
ally, in the statin-receiving patients, a higher co-medication 
frequency with angiotensin-converting enzyme inhibitors/
angiotensin receptor blockers and antiplatelet agents was 
observed. Therefore, a linear conclusion on the protection 
of cancer patients by statin therapy cannot be drawn per 
se and the presence of cardiovascular comorbidities and 
comedications seems to complicate their cardiovascular 

benefits. Data on the effect of different statins on CVAEs 
in cancer patients are scarce. Among the studies investigat-
ing the effect of statins on cancer progression, lipophilic/
high-intensity statins seem to have a favorable effect [4, 46, 
47]. Specifically for anti-PD-1 therapy, it is shown that only 
high-intensity statins improve its clinical potential in the 
clinical setting [7]. However, regarding their prophylactic 
value in patients manifesting anticancer therapy-related car-
diovascular complications, both hydrophilic and lipophilic 
statins may also be cardioprotective during cancer therapy 
[26]. Since cardioprotection in cardio-oncology has raised a 
critical concern on the selection of cardioprotective modali-
ties in the presence of malignancies, it can be assumed that 
lipophilic/high-intensity statins, such as Atorv, exhibiting 
concurrent cardioprotective and anticancer potential should 
be preferred in the cardio-oncology setting.

The clinical arsenal lacks specific prophylaxis against 
anti-PD-1-related CVAEs. Preclinical studies have already 
proposed various prophylactic therapies against the observed 
cardiotoxicity, extending from anti-IL-17α and anti-CD4 or 
anti-CD8 to anti-TNF-α therapies [22, 54]. However, the 
interference of the prophylaxes with the antitumor effect of 
anti-PD-1 therapy seems to limit the safety and efficacy of 
these interventions. For instance, anti-CD8 therapy abro-
gates anti-PD-1 antitumor potential in vivo [54]. Therefore, 
targeting T-cell populations to combat ICI-related cardiotox-
icity appears to increase the risk of cancer relapse. Although 
anti-TNF-α therapy seems to mitigate the anti-PD-1-related 
AEs, without interfering with its antitumor effect [54], and 
PD-1 + TNF-α dual blockade might additionally reduce 
tumor resistance in vivo [5], combination therapy should be 
considered with caution. In the heart, it seems that TNF-α 
contributes to ischemia/reperfusion injury, post-myocardial 
infarction remodeling, and heart failure development making 
it a favorable target for cardioprotection [40]. Despite the 
fact that acute TNF-α blockade might present a short-term 
beneficial effect on anti-PD-1-related CVAEs, long-term 
TNF-α inhibition is implicated with CD8 + -T-cell senes-
cence and toxicity which might lead to a possible cancer 
relapse [9]. Therefore, extensive short- and long-term clini-
cal trials must be carefully designed and implemented for 
the establishment of a solid beneficial potential of the afore-
mentioned combination. Additionally, the pharmacokinetics 
and pharmacodynamics of the drugs in the combination regi-
mens should be scrutinized in future clinical studies. Herein, 
we provide for the first time solid evidence that Atorv, a 
widely used drug that does not interfere with the antitumor 
effect of Pem (as it has been shown in clinical studies) [7], 
can prevent anti-PD-1-related cardiotoxicity.

In our study, male mice were used for the conduction 
experiments. The use of male animals was selected, as 
male mice do not present the hormonal fluctuations due 
to the menstrual cycle observed in female mice, leading to 
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difficulties in data interpretation and increased variability of 
the results. However, according to sex relevance in cardio-
oncology studies [1], this is a limitation of the study and 
future studies should be conducted to investigate the sex 
differences in Pem-induced cardiotoxicity. Another short-
coming of the current study is that data were not validated 
in a tumor-bearing in vivo model. There is an imperative 
need to understand the pivotal biological crosstalk between 
cardiovascular morbidities and malignancies, as on the one 
hand they may enable the development of novel therapeutic 
and preventive modalities for both diseases [52], whereas 
on the other hand they may reveal novel challenges for car-
dioprotection [28]. Despite the fact that prophylactic ther-
apies against new-onset HF in cancer patients have been 
extensively investigated, studies and indications on cancer 
management in patients with preexisting HF and data on 
whether guideline-directed medical therapy for HF should 
be modified upon cancer diagnosis are still obscure and need 
further investigation [73]. It is described that endothelial 
dysfunction and cancer might share common confounders, 
namely activation of the Wnt signaling pathway and depres-
sion of peroxisome proliferator-activated receptor gamma 
(PPAR gamma) signaling [53], which might link endothe-
lial microvascular dysfunction and cancer. These links can 
facilitate the identification of high-risk individuals for devel-
oping malignancies and may permit the improved insight 
from healthcare providers to risk-stratify these patients. 
Also, they might further support the concept of joint phar-
macologic strategies against cardiovascular diseases and 
cancer [52]. Besides the interplay of cancer and microvas-
cular endothelial dysfunction, it is well-known that cancer 
has a direct negative impact on the myocardium. Cancer 
itself may pose a major burden to cardiovascular homeosta-
sis, with a significant impact on the manifestation of CVAEs, 
whereas cardiovascular disease may also accelerate tumor 
progression [55]. The interplay between cancer and cardio-
vascular outcomes is also evident in the clinical arena, as 
lung cancer patients with high tumor burden, receiving ICI 
therapy, manifested more frequently severe immune-related 
adverse events, than the low tumor burden individuals [71]. 
Therefore, the validation of our data on a murine model of 
malignancy is of utmost importance, regarding the complex 
regulatory circuits between the tumor, endothelial cells and 
cardiac dysfunction, which will be investigated in future pre-
clinical and clinical studies. Finally, to the best of our knowl-
edge, cardio-oncology preclinical and clinical studies have 
not yet identified the optimal dose regimen for atorvastatin 
cardioprotection, while only the high doses of statins are 
investigated in contemporary preclinical and clinical studies 
[20, 59, 61]. Additional studies on statins’ dose titration, for 
achieving prophylaxis against anticancer agent-related car-
diotoxicity, should be performed. In our study, only the high 
translational dose of atorvastatin was investigated according 

to previous preclinical studies [20, 61]. However, the lack 
of atorvastatin dose titration in our in vivo model of Pem-
induced cardiotoxicity is a limitation of the study.

Conclusions

Our findings provide novel in vitro and in vivo evidence of 
Pem’s cross-reactivity with the murine PD-1-ED, support-
ing the conduction of new translational studies on anti-PD-1 
therapies. Pem was found on a histological, functional, and 
molecular level to induce immune-related early endothelial 
activation and microvascular coronary endothelial dysfunc-
tion, whereas ICAM-1 emerged as a novel biomarker of 
Pem’s cardiotoxicity (Fig. 10). Atorv emerges as a novel 
cardioprotective modality, which successfully abrogated 
early and late signs of Pem-induced cardiotoxicity. Further 
clinical studies are required for the establishment of the dual 
anti-PD-1 and Atorv therapy as a new cornerstone in cancer 
immunotherapy.

Cardio-oncology prophylactic and therapeutic interven-
tions are limited and primarily focus on the management of 
anthracyclines-induced cardiotoxicity. It is already shown 
that multiple cardioprotective agents, including Atorv and 
cardioprotective maneuvers, such as remote ischemic pre-
conditioning can mitigate anthracycline-induced cardiotox-
icity in the preclinical and clinical setting [31]. Moreover, 
the application of cardioprotective strategies in the cardio-
oncology setting should be considered with caution, regard-
ing the effect of the cardioprotection on tumor progression. 
Therefore, translational preclinical models and carefully 
designed trials are of imperative need [28].
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Fig. 10  Bedside-to-bench investigation of pembrolizumab-induced 
cardiotoxicity. Prophylactic potential of atorvastatin. Central illus-
tration of the key findings of the study depicting the confirmation of 
pembrolizumab’s binding to the murine PD-1-ED, the establishment 
of the in  vivo model of pembrolizumab-induced cardiotoxicity, and 

the identification of the prophylactic role of atorvastatin. ICAM-1 
intracellular adhesion molecule 1, IFN-γ interferon gamma, IL-6 
interleukin 6, PD-1-ED programmed death 1 extracellular domain. 
Images were generated using templates from Servier Medical Art, 
licensed under a Creative Commons Attribution 3.0 Unported License
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