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Abstract
Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although 
device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate 
the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal 
neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus 
(PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs. We tested if chemogenetic activa-
tion of PVN-OXT neurons following MI would be cardioprotective. The PVN of neonatal rats was transfected with vectors to 
selectively express DREADDs within OXT neurons. At 6 weeks of age, an MI was induced and DREADDs were activated 
with clozapine-N-oxide. Seven days following MI, patch-clamp electrophysiology confirmed the augmented excitatory neu-
rotransmission from PVN-OXT neurons to downstream nuclei critical for parasympathetic activity with treatment (43.7 ± 10 
vs 86.9 ± 9 pA; MI vs. treatment), resulting in stark improvements in survival (85% vs. 95%; MI vs. treatment), inflammation, 
fibrosis assessed by trichrome blue staining, mitochondrial function assessed by Seahorse assays, and reduced incidence of 
arrhythmias (50% vs. 10% cumulative incidence of ventricular fibrillation; MI vs. treatment). Myocardial transcriptomic 
analysis provided molecular insight into potential cardioprotective mechanisms, which revealed the preservation of beneficial 
signaling pathways, including muscarinic receptor activation, in treated animals. These comprehensive results demonstrate 
that the PVN-OXT network could be a promising therapeutic target to quickly activate beneficial parasympathetic-mediated 
cellular pathways within the heart during the early stages of infarction.
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Introduction

Disruption of cardiac parasympathetic tone is a hallmark 
of cardiovascular disease, including myocardial infarction 
(MI) [115]. Marked autonomic imbalance with reduced 
parasympathetic cardiac vagal activity [54] that precedes 
sympathetic overactivity is observed early after the onset 
of disease, as described for heart failure [46, 83]. Reduced 
vagal drive to the heart is also a strong independent risk 
factor for life-threatening arrhythmias and sudden cardiac 
death post-MI [21, 37, 98]. Targeted elevations of cardiac 
vagal activity using implanted devices is cardioprotective 
during and after acute MI and heart failure [14, 80, 115]. 
Increased vagal activity improves survival and cardiac 
function following MI in small and large animal models, 
suggesting that activation of the cholinergic pathway is 
therapeutic [2, 63, 65, 75, 114, 115]. However, a rapid 
non-invasive approach to increase parasympathetic activ-
ity in patients with unanticipated acute onset cardiovascu-
lar events, such as MI, is lacking.

The paraventricular nucleus of the hypothalamus (PVN) 
is an important site of autonomic control, and there are 
direct excitatory projections from PVN oxytocin (OXT) 
neurons to parasympathetic cardiac vagal neurons (CVNs) 
in the brainstem. Targeted elevation of hypothalamic 
PVN-OXT neuron activity increases the downstream 
activity of brainstem CVNs that control parasympathetic 
drive to the heart [34]. In an animal model of heart fail-
ure, chronic chemogenetic elevation of PVN-OXT neuron 
activity improved left ventricular (LV) electrophysiology 
and contractile function, reduced hypertrophy and fibrosis, 
and improved LV sensitivity to β-adrenergic stimulation 
[29, 34, 131]. In an animal model of obstructive sleep 
apnea, chronic chemogenetic activation of PVN-OXT neu-
rons increased CVN activity and prevented the hyperten-
sion that occurred in untreated animals [49]. In animals 
that were exposed to chronic intermittent hypoxia (CIH) 
and developed hypertension, chronic chemogenetic acti-
vation of PVN-OXT neurons blunted the progression of 
hypertension and conferred cardioprotection during an 
additional 4 weeks of CIH exposure [97]. In obstructive 
sleep apnea patients, intranasal OXT increased indices of 
parasympathetic activity, including heart rate variability 
and total sleep time [47, 48]. These results highlight PVN-
OXT neurons as a source of therapeutic parasympathetic 
drive, yet it is unknown whether this treatment paradigm 
provides benefits during acute MI and what cellular and 
molecular changes occur in the heart following PVN-OXT 
neuron activation that would preserve cardiac function 
after MI.

To study the effects of PVN-OXT neuron activation 
following MI, a chemogenetic approach with selective 

expression of Designer Receptors Exclusively Activated 
by Designer Drugs (DREADDs) was used to chronically 
activate PVN-OXT neurons in rats [49]. In 1-week old 
pups, DREADDs and channelrhodopsin (ChR2) expres-
sion was targeted to PVN-OXT neurons using three viral 
vectors and Cre-Lox recombination [29, 49, 131]. At 
3 weeks of age, a telemetry device to measure the ECG 
was implanted subcutaneously in all rats to measure heart 
rate and detect arrhythmias. At 6 weeks of age, an MI was 
induced by permanent ligation of the LAD coronary artery. 
Seven days after MI or sham MI surgery, in vivo and ex 
vivo cardioprotective outcomes were assessed.

Materials and methods

Experimental design

PVN-OXT neurons were chronically activated in vivo using 
Cre-Lox recombination and an OXT promoter [49]. Axons 
projecting from those PVN-OXT neurons synapse with 
CVNs that reside within the dorsal motor nucleus of the 
vagus (DMNX) of the brainstem (Fig. 1A). Our prior work 
has demonstrated that DREADDs-mediated activation of 
PVN-OXT neurons causes acute reductions in heart rate and 
blood pressure that are the result of increased cardiac vagal 
tone [34, 49]. This approach, combined with a surgically 
induced LV MI, was implemented in male Sprague–Dawley 
rats in an experimental protocol beginning at 1 week of age 
and ending at 7 weeks of age (Fig. 1B). All animal proce-
dures were completed in agreement with the George Wash-
ington University institutional guidelines and in compliance 
with the panel of Euthanasia of the American Veterinary 
Medical Association and the National Institutes of Health 
(NIH) Guide for the Care and Use of Laboratory Animals.

DREADDs and ChR2 expression

Three viral vectors and Cre-Lox recombination were used 
for selective and robust expression of DREADDs and chan-
nelrhodopsin (ChR2) within PVN-OXT neurons (Fig. 1A) 
[29, 49, 131]. Expression of the enzyme Cre recombinase 
was exclusively driven by the OXT promoter of an adeno-
virus (AAV1-OXT-Cre) that was co-injected with vectors 
for floxed ChR2 (AAV1-EF1a-DIO-hChR2, H134R) and 
floxed excitatory DREADDs (AAV2-hSyn-DIO-hM3D(Gq)-
mCherry) [49]. Previous work showed, using immunohisto-
chemical analysis, that this viral system elicits high selec-
tivity (83.1 ± 2.1% and 93 ± 2.0%) for the expression of 
DREADDs and ChR2, respectively, in PVN-OXT neurons 
[49, 91]. At 1 week of age, all animals were anesthetized 
by hypothermia and mounted in a stereotactic apparatus 
(Stoelting). The skull was opened and a calibrated pipette 
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containing the adenoviral cocktail was directed into the 
PVN and 30–50 nL of viral mixture was microinjected over 
20 min. The pipette was left in place for 5 min prior to care-
ful and slow retraction. Within 2 weeks, PVN-OXT neurons 
stably expressed DREADDs, and activation of DREADDs in 
PVN-OXT neurons by the ligand clozapine-N-Oxide (CNO, 
1 mg/Kg) increased neuronal firing and reduced heart rate 
and blood pressure [34, 49].

Experimental groups

One week after administering the adenoviral cocktail 
to the PVN, each animal was randomly assigned to one 
of four groups: Sham (sham MI and saline injections), 
Sham + OXT (sham MI and CNO injections), MI (MI and 
saline injections), and Treatment (MI and CNO injections). 
Investigators were double blinded. DREADDs expressed 
in PVN-OXT neurons were activated in Sham + OXT and 
Treatment animals via intraperitoneal injections of CNO 
(1  mg/Kg, 200–250 μL), the DREADDs ligand. Sham 
and MI animals received saline-only intraperitoneal injec-
tions (200–250 μL) that did not activate DREADDs. To 

determine if CNO had any off-target effects, we studied 
two supplemental groups of MI animals that did not have 
DREADDs expression. One group received saline (n = 8), 
the other group received CNO (n = 8). Results from these 
two untreated MI groups that did not express DREADDs 
did not differ from the untreated MI group that did express 
DREADDs, indicating that any off-target effects of CNO 
were insignificant. Results from MI animals that did not have 
DREADDs expression are presented in Supplemental Fig 5.

The initial CNO injection for all animals was given 
within 15 min after sham or LAD artery ligation. One CNO 
injection was given daily thereafter for 7 days, after which 
animals were sacrificed for ex vivo assessments and tissue 
analysis (Fig. 1B). Animal numbers for each experimental 
group (excluding the two supplemental groups) for each 
assessment are listed in Table 1.

Telemetry device implantation and induction of MI

At 3 weeks of age, a device (DSI ETA-F10) to measure the 
ECG was implanted subcutaneously (Lead II configura-
tion) in all rats to measure heart rate, detect arrhythmias, 

Fig. 1   A In  vivo activation of brainstem parasympathetic neurons. 
Selective expression of excitatory hM3D(Gq) DREADDs within 
PVN-OXT neurons, and subsequent activation via CNO, increases 
the firing rate of PVN-OXT neurons, which co-release OXT and 
GLUT at synapses on parasympathetic DMNX neurons of the 
medulla. Elevated release of synaptic OXT and GLUT increases 
excitatory neurotransmission to DMNX parasympathetic neurons, 
elevating their firing rate to increase downstream activation of post-
ganglionic parasympathetic ganglia neurons that release acetylcholine 
at their target tissue. Ultimately, the increased release of acetylcho-
line within the myocardium elevates the level of myocyte muscarinic 
pathway activation via cholinergic muscarinic (Chrm2/M2) recep-
tors. B Protocol timeline from animal birth to sacrifice at 7 weeks 
of age with subsequent ex vivo assessments. Three viruses encoding 
DREADDs, ChR2, and OXT-Cre were injected into the PVN of all 

rats at 1 week of age, followed by surgical implantation of an ECG 
transmitter at 3 weeks of age. Baseline ECG and HRR data were col-
lected at 5 weeks, followed by either sham MI or MI surgery. Imme-
diately following surgery, and daily for 7 days, animals were injected 
with either saline or CNO. At 7 weeks of age (or 1-week post-MI), 
animals were sacrificed, and brains and hearts were collected for ex 
vivo assessments. C The four animal groups with the assigned inter-
ventions are shown in the table. Abbreviations: PVN, paraventricu-
lar nucleus of the hypothalamus; DMNX, dorsal motor nucleus of 
the vagus; DREADDs, designer receptor exclusively activated by 
designer drugs; CNO, clozapine-N-oxide; OXT, oxytocin; GLUT, 
glutamate; CVN, cardiac vagal neuron; AAV, adeno-associated virus; 
ChR2, channelrhodopsin; EPSC, excitatory post-synaptic current; 
EM, electron microscopy
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and assess QRST morphology (Fig. 1B). At 6 weeks of age, 
a thoracotomy was performed in all rats to induce MI by 
permanent ligation of the LAD coronary artery. A 6–0 silk 
suture was passed around the left coronary artery two thirds 
of the way between its origin near the pulmonary conus and 
the cardiac apex. The suture was tied to ligate the artery in 
all MI and Treatment rats. LAD occlusion was confirmed 
upon observing a well-defined area of epicardial cyanosis 
with regional hypokinesia and ECG changes. In all Sham 
and Sham + OXT rats, the suture was not tied and was 
removed (sham MI).

In vivo ECG assessments

ECG and arrhythmia analysis

The ECG of each animal was recorded continuously for 24 h 
before and immediately after the MI or sham MI surgery 
(Fig. 1B). Five days after each surgery, the ECG was con-
tinuously recorded again for 24 h. All ECG recordings were 
then analyzed using LabChart software (AD Instruments) 
to measure standard QRST parameters, including ST seg-
ment height and QRS duration. The incidence of ventricular 
tachycardia (VT) and ventricular fibrillation (VF) was also 
measured for the 24-h interval immediately after each MI 
or sham MI surgery.

Heart rate recovery after peak running effort

Five days after MI surgery (Fig. 1B), rapid reductions in HR 
after animals reached their peak effort of treadmill running 

were analyzed to assess vagal activity [21]. Animals began 
with an initial warm up period of 5 min at a treadmill speed 
of 6 cm/sec. Speed was then increased to 12 cm/sec and 
increased by 6 cm/sec every 3 min until peak running effort 
was reached: the moment when animals would no longer 
run; at which time the treadmill was stopped. Heart rate 
recovery (HRR) was quantified by calculating the time 
required for HR to recover to 95%, 90%, and 85% of the HR 
that occurred during peak running effort.

Ex vivo function assessments

Seven days after MI or sham MI surgery, animals were sac-
rificed to either conduct (1) patch-clamp electrophysiology 
studies of brainstem CVNs or (2) flow cytometric and respi-
ration assays of mitochondria isolated from LV myocardium.

Brainstem excitatory post‑synaptic currents evoked 
by photostimulation of PVN‑OXT fibers that express ChR2

Neurotransmission from PVN-OXT neurons to CVNs is 
a major source of CVN excitatory input [24, 91, 92]. To 
measure changes in this neurotransmission, stimulation of 
PVN synaptic terminals that monosynaptically synapse 
upon DMNX neurons was achieved by selective expression 
of ChR2 in PVN-OXT neurons and their fibers surround-
ing DMNX neurons using a floxed ChR2 (AAV1-EF1a-
DIO-hChR2, H134R) vector, as described above and in our 
previous studies [24, 92]. Excitatory post-synaptic currents 
(EPSCs) evoked by photostimulation of ChR2-expressing 
PVN-OXT fibers were examined in ex vivo brainstem slices 

Table 1   Animal numbers for 
each experimental group for 
each assessment

*for the excitatory post-synaptic current measurements, Sham: n = 11 animals, 24 brainstem slices, 24 
cells, MI: n = 6 animals, 17 brainstem slices, 17 cells; Treatment: n = 5 animals, 14 brainstem slices, 14 
cells

Assessment Sham Sham + OXT MI Treatment

Post-MI survival 13 12 35 38
24 h ECG pre-MI (ST and QRS analyses) – – 12 13
24 h ECG post-MI (ST and QRS analyses) – – 14 13
24 h ECG 5 days post-MI (ST and QRS analyses) – – 14 15
Incidence of VT and VF analysis – – 14 12
Excitatory post-synaptic current measurements* 11 – 6 5
HRR assessments 24 – 9 13
Mitochondrial respiration measurements 3 – 4 4
Mitochondrial ROS assay 4 – 4 5
Mitochondrial scatter assay 4 – 4 5
Western blot of IL-1β 5 3 5 6
Western blot of Serca2a 5 3 5 6
Masson’s trichrome histology of collagen 3 2 5 5
EM assessments of mitochondria structure 4 – 4 4
Microarray transcriptomics (all expression profiles) 3 3 3 3
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to determine if the MI, and if daily activation of PVN-
OXT neurons in Treatment animals, altered this excitatory 
neurotransmission.

To obtain viable brain slices, animals were transcardially 
perfused with ice-cold glycerol-based artificial cerebrospi-
nal fluid containing (mmol/L): 252 glycerol, 1.6 KCL, 1.2 
NaH2PO4, 1.2 MgCl, 2.4 CaCl2, 26 NaHCO3, and 11 glu-
cose. The brain was carefully removed and brainstem slices 
of 300 μm thickness containing brainstem vagal neurons 
were obtained using a vibratome. Brain slices were trans-
ferred to a solution comprising (mmol/L): 110 N-methyl 
D-glucamine, 2.5 KCl, 1.2 NaH2PO4, 25 NaHCO3, 25 glu-
cose, 110 HCl, 0.5 CaCl2, and 10 MgSO4 equilibrated with 
95% O2–5% CO2 (pH 7.4) at 37 °C for 15 min. Slices were 
then transferred to a superfusion recording chamber contain-
ing (mmol/L) 125 NaCl, 3 KCl, 2 CaCl2, 26 NaHCO3, 5 
glucose, and 5 HEPES equilibrated with 95 O2–5% CO2 (pH 
7.4) at 25 °C. Each slice was equilibrated in this solution for 
at least 30 min before experiments commenced. Neurons in 
the dorsal motor nucleus of the vagus (DMNX), where para-
sympathetic CVNs are localized, were visualized using dif-
ferential interference contrast optics. Patch pipettes (2.5–3.5 
MΩ) were filled with a solution consisting of (mmol/L) 
135 K-gluconic acid, 10 HEPES, 10 ethylene glucol-bis 
(β-aminoethyl ether)-N,N,N′N′-tetraacetic acid, 1 CaCl2, 
and 1 MgCl2, and pH 7.35. Cell bodies in the DMNX were 
then patched and voltage clamp whole-cell recordings were 
made at a holding potential of  − 80 mV with an Axopatch 
200 B and pClamp 8 software (Axon Instruments). ChR2-
expressing PVN-OXT fibers were photostimulated using a 
blue laser (473 nm, CrystaLaser, Reno, NV, USA). Laser 
light pulses were applied for 3 ms duration at 1 Hz, intensity 
was maintained across all experiments at 10 mW. To con-
firm that the EPSCs were glutamatergic, at the end of each 
experiment, d-2-amino-5-phosphonovalerate (APV, 50 mM) 
and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX,50 mM) 
were applied to block glutamatergic NMDA and AMPA/
kainate receptors, respectively. Differences in post-synaptic 
transmission from PVN-OXT fibers between groups were 
assessed by comparing the amplitudes of the photoactivated 
EPSCs.

LV mitochondria isolation

In a separate set of animals, hearts were rapidly excised, 
the aorta was cannulated, and the coronary arteries were 
flushed of blood with ice-cold modified Krebs–Henseleit 
solution (mmol/L): 118 NaCl, 4.7 KCl, 1.25 CaCl2, 0.57 
MgSO4, 1.17 KH2PO4, 25 NaHCO3, and 6 glucose. The LV 
free wall distal to the suture was removed and processed for 
mitochondrial isolation as described by Makinen and Lee 
[76]. Briefly, tissue was weighed and placed in nine volumes 
of ice-cold isolation buffer (IB, in mmol/L): 280 sucrose, 10 

HEPES, 1 EDTA, 1 EGTA, and pH 7.2. Protease (Subtili-
sin A; Sigma-Aldrich) was added (5 mg per g wet muscle), 
and continually minced and mixed for 7 min. An equal vol-
ume of solution IB was added to end digestion. The mince 
was homogenized with an T25 digital ULTRA-TURRAX 
(IKA Works, Inc.) homogenizer for 30 s at 6000 rpm. The 
homogenate was then centrifuged at 700xg for 10 min in a 
refrigerated (4 °C) centrifuge (Beckman J2-21 M/E) to pellet 
down contractile protein and cellular debris. The supernatant 
was rapidly decanted through a double layer of cheesecloth 
and centrifuged at 10,000xg for 10 min to pellet down the 
mitochondrial fraction. The supernatant was discarded, and 
the mitochondrial pellet was resuspended and washed in a 
volume equal to the original homogenate in solution IB, and 
centrifuged at 7500xg for 10 min. The supernatant was dis-
carded, and the final mitochondrial pellet was suspended in 
500 μl of mitochondrial assay solution (MAS, mmol/L: 220 
mannitol, 70 sucrose, 10 KH2PO4, 5 MgCl2, 2 HEPES, and 
pH 7.4) for a yield of 19–24 mg/ml of mitochondrial protein.

Isolated mitochondria assays

Flow cytometric analysis of isolated mitochondria was 
performed to measure mitochondrial size, complexity, 
and superoxide production after labeling with 200  nM 
MitoTracker Green (Invitrogen) and 2.5 μmol/L MitoSOX 
red (Invitrogen) for 15 min at 37 °C. Mitochondrial size 
(forward scatter, FSC), complexity (side scatter, SSC), or 
superoxide production (MitoSOX red fluorescence intensity) 
were measured using a Cytek Aurora Flow Cytometer. Data 
are shown as histograms and as bar graphs of average signal 
intensity for ~ 120,000 ungated events.

Extracellular flux (XF) assays were performed using an 
Agilent Seahorse XFe96 Analyzer. Isolated mitochondria 
were diluted in MAS with 0.2% (w/v) bovine serum albumin 
(Sigma-Aldrich A-7030; fatty acid content < 0.01%), for a 
final protein content of 4 ug per assay well. Altered mito-
chondrial respiration was assessed using tandem coupling 
and electron flow assays. The coupling assay measured func-
tion/dysfunction between the electron transport chain (ETC) 
and the oxidative phosphorylation (OXPHOS) machinery. 
The electron flow assay measured sequential electron flow 
through the complexes of the electron transport chain to 
identify sites of mitochondrial dysfunction or modulation.

Coupling assay: Isolated mitochondria were loaded into 
wells in a coupled state (State II) with 10 mmol/L succi-
nate and 2 μmol/L rotenone as substrate, then centrifuged 
at 2000xg for 20 min at 4 °C. Drug port injections were as 
follows: State III was initiated with ADP (4 mmol/L final), 
State IV induced with the addition of oligomycin (2.5 μg/ml 
final) (State IVo), and carbonyl cyanide-4 (trifluoromethoxy) 
phenylhydrazone (FCCP)-induced maximal uncoupled res-
piration (4 μmol/L) (State IIIu). Each state was sequentially 
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measured, allowing oxygen consumption rates to be assessed 
as previously described by others [15, 30].

Electron flow assay: Isolated mitochondria were loaded 
into wells in an uncoupled state with 10 mmol/L pyruvate, 
2 mmol/L malate ,and 4 μmol/L FCCP as substrate, then 
centrifuged at 2000xg for 20 min at 4 °C. Drug port injec-
tions were as follows: 2 μmol/L final rotenone, 10 mmol/L 
final succinate, 4 μmol/L final antimycin A, 10 mmol/L 
ascorbate, and 100 μmol/L N1, N1, N1, N1-tetramethyl-
1,4-phenylene diamine (TMPD). Oxygen consumption rate 
was measured after each port injection.

Western blots and transcriptomics

Seven days after MI or sham MI surgery, a separate set of 
animals was sacrificed to conduct western blots and tran-
scriptome profiling. Hearts were rapidly excised and rinsed 
of blood, as described above, and then flash frozen in liquid 
nitrogen. The ischemic (I) zone and the healthy or remote 
(R) zone were sectioned. The I zone consisted of the LV 
free wall located mid- to apically distal to the LAD ligature, 
including peri-infarct, core infarct, and minimal healthy tis-
sue. The R zone consisted of the base of the septum and 
right ventricle. These sections were then cryo-pulverized.

Protein extraction and western blotting

Cryo-pulverized tissue from the I and R zones was lysed in 
RIPA buffer with protease inhibitors (Roche) then sonicated 
and spun at 12,000xg at 4° for 15 min. 10–30 ug of total pro-
tein was loaded into 4–15% Criterion TGX precast BioRad 
gels and ran in reducing conditions. Protein was transferred 
onto BioRad PVDF membranes, blocked in 3% non-fat milk 
or 3% BSA at room temperature for 2 h, then incubated over-
night at 4 °C with primary antibodies for Serca2a (mouse 
monoclonal, 1:1000; Santa Cruz), IL-1β (mouse monoclo-
nal, 1:1000; Cell Signaling Technologies) or GAPDH (rabbit 
polyclonal,1:7000; Sigma). Membranes were then washed 
and incubated with an HRP conjugated anti-mouse or anti-
rabbit secondary antibody (BioRad) for 2 h at room tempera-
ture. Chemiluminescent blots were developed with Radiance 
ECL on an Azure c600 Western blot imaging system.

Because of the large number of animals in each group, 
not all samples could be loaded on the same gel. Two gels 
were, therefore, run that included samples from each of the 
four groups on each gel, having specific samples repeated 
on each gel. Signal intensity was then normalized between 
gels using the blot intensities of the repeated samples, as in 
our previous studies [29]. This method provides consistent 
normalization of all samples both within each group and 
across the minimum number of required gels.

RNA extraction and transcriptome profiling

Total RNA was isolated from cryo-pulverized tissue from 
the I zone using a Qiagen RNeasy Fibrous Tissue Mini Kit 
according to the manufacturer’s protocol. Extracted RNA 
was quantified spectrophotometrically with NanoDrop 
One/Onec (Thermo Fisher Scientific), and RNA quality was 
assessed using an Agilent 2100 Bioanalyzer. Transcriptome 
profiling was performed using the Affymetrix Clariom S 
GeneChip according to the manufacturer’s instructions. 
Raw data were analyzed using Affymetrix Expression Con-
sole and Transcriptome Analysis Console software prior to 
downstream analysis. Statistically significant differentially 
expressed genes (DEGs) were identified using an expression 
fold change (FC) > 1.7 or < − 1.7 and a false discovery rate 
of p < 0.08. Semi-quantitative real-time polymerase chain 
reaction (PCR) of select DEGs was performed to confirm 
the expression fold changes measured using the Affymetrix 
Clariom S GeneChip (Figs. S2 and S3).

Histological assessments

Seven days after MI or sham MI surgery, a separate set of 
animals was sacrificed to analyze myocardial tissue struc-
ture and mitochondrial ultrastructure within the ischemic 
zone. Hearts were rapidly excised and rinsed of blood, as 
described above.

Tissue histology

 Excised hearts were fixed in 4% paraformaldehyde, then 
embedded in paraffin, and 7 µm thick transverse sections 
were cut beginning distal to the LAD ligature and moving 
toward the apex. Sections containing the core of the ischemic 
zone were mounted on glass slides, stained with Masson’s 
trichrome stain to highlight collagen deposition, and scanned 
using a Panoramic III scanner (Epredia and 3D Histech) at 
20x. Digital images were analyzed using QuantCenter soft-
ware (3D Histech) to calculate the ratio of collagen fiber area 
to total tissue area per heart section.

Electron microscopy

Cubes of tissue (2–3 mm3) were harvested from the medial 
LV free wall of the I zone of each heart and processed for 
transmission electron microscopy (TEM), generally follow-
ing our previously described approach [51]. Immediately 
after harvest, each tissue cube was placed in fixative solution 
(2.5% glutaraldehyde and 1% paraformaldehyde in 0.1 M 
sodium cacodylate buffer). Cubes were then post-fixed for 
1 h in 1% osmium tetroxide solution and stained overnight 
with a 1% uranyl acetate solution. The following day, cubes 
were dehydrated in a series of ethanol washes and embedded 
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in Embed812 resin blocks. The blocks were ultrathin sec-
tioned (95 nm thickness) and sections were stained with 
uranyl acetate and lead citrate to enhance contrast. Trans-
mission electron micrographs were recorded using an FEI 
Talos F200X electron microscope at 4300 × magnification. 
Ten images per sample were randomly chosen for analysis, 
totaling approximately 823 μm2 of tissue and roughly 388 
mitochondria per heart. ImageJ (NIH) was used to quantify 
mitochondrial aspect ratio (major axis/minor axis), size, and 
quantity.

Statistics

Animal numbers for each experimental outcome are pro-
vided in each figure caption and listed in Table 1. All data 
are presented as mean ± standard deviation (SD) and ana-
lyzed using GraphPad Prism. Comparisons between groups 
were performed by one- or two-way ANOVA followed by 
Tukey’s multiple comparisons test, unless noted otherwise. 
For survival analysis, Kaplan–Meier curves were plotted and 
compared using the log-rank test. For ECG analyses, QRST 
indices and incidence of VT and VF were compared using 
one-way ANOVA with Tukey’s multiple comparisons test 
and two-way ANOVA with Sidak’s multiple comparisons 
test, respectively. Significance was accepted at p < 0.05 and 
denoted as * for p < 0.05, ** for p < 0.01, *** for p < 0.001, 
**** for p < 0.0001.

Results

Excitatory neurotransmission

Seven days after MI or sham MI surgery, the amplitude of 
excitatory post-synaptic currents (EPSCs) in DMNX neu-
rons upon photoexcitation of hypothalamic ChR2-expressing 
PVN-OXT fibers (Fig. 1A) was 83.5 ± 12pA (mean ± SEM) 
in Sham animals (Fig. 2A, B). EPSC amplitude was signifi-
cantly reduced in MI animals (43.7 ± 10 pA) yet there was 
no significant difference between Treatment (86.9 ± 9 pA) 
and Sham animals. We observed robust ChR2 expression in 
fibers from PVN–OXT neurons in the DMNX in each of the 
22 animals used for these experiments. These results indi-
cate that excitatory neurotransmission from hypothalamic 
PVN-OXT neurons to parasympathetic DMNX neurons was 
diminished in MI animals and was maintained in both Sham 
and Treatment animals.

Maintenance of excitatory parasympathetic activity to 
cholinergic receptors within the heart is vital for the car-
dioprotective outcomes of restoring autonomic balance. 
Gene expression levels for key components of the choliner-
gic synapse (Fig. 2C, D) indicated significant loss of mus-
carinic acetylcholine (ACh) receptor M2 (mAchR2/Chrm2) 

following MI and indicated its preservation in Treatment 
animals. Semi-quantitative real-time PCR confirmed this 
outcome (Fig S2). There was no change in expression of 
G-protein coupled receptor β or ϒ subunits; however, Gi/o 
subunits (Gnai1-3) were upregulated in MI with a trend 
toward their preservation in Treatment animals (Fig. 2D). 
Adrenergic α and β receptor (Adra1a-b, Adrb1) expres-
sion was downregulated in MI and preserved in Treatment 
animals. There were no changes in the gene expression of 
ACh synthesis or transport enzymes; however, butyrylcho-
linesterase (Bche), a homolog of acetylcholinesterase (Ache) 
was significantly reduced in MI animals and preserved in 
Treatment animals. The gene expression of several adeny-
lyl cyclase isoforms was dysregulated in MI and Treatment 
animals, suggesting a reduction in cAMP synthesis, and a 
blunted sympathetic response (Fig. 2D).

One functional benefit of potentially maintained mus-
carinic pathway activation in Treatment animals was the 
maintenance of rapid HRR after peak running effort, consist-
ent with the correlation between Chrm2 gene polymorphism 
and HRR in humans [38]. The HRR of MI animals was 
significantly slower than Sham animals at each measured 
percentage of the maximum heart rate during peak effort 
while the HRR of Treatment animals was no different than 
Sham (Fig. 2E). These results suggest that parasympathetic 
transmission from hypothalamic PVN-OXT fibers to cardiac 
cholinergic synapses was similar for Sham and Treatment 
animals and was impaired for MI animals.

Transcriptome profiling

To identify potential mechanisms responsible for func-
tional improvements following PVN-OXT neuron activa-
tion post-MI, we assessed differential gene expression in 
the left ventricular (LV) free wall, distal to the left anterior 
descending (LAD) coronary artery ligation. Raw expres-
sion, fold change, and p values for all reported genes are 
provided in Supplemental Data 1. The 23,188 probes pre-
sent on the Clariom S rat microarray were assessed. A 
principal component analysis (PCA) showed that Sham 
and Sham + OXT groups clustered together as one group, 
as expected. The Sham groups, MI group, and Treatment 
group all clustered distinctly from one another, indicat-
ing that the expression pattern between these three groups 
was different (Fig. 3A). Transcriptome Analysis Console 
(TAC; ThermoFisher Scientific) software was used for 
further analysis, where differentially expressed genes 
(DEGs) between groups were defined as a fold change 
(> 1.7 or < − 1.7) that satisfied a false discovery rate of 
p < 0.08. We performed a pairwise analysis of groups for 
DEGs and visualized upregulated vs. downregulated genes 
using volcano plots (Fig. 3B). Zero DEGs were identi-
fied for the Sham vs. Sham + OXT groups (Fig S1A) so 
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Fig. 2   Daily activation of PVN-OXT neurons after MI maintained 
excitatory neurotransmission to parasympathetic neurons in the 
DMNX and rapid HRR. A Typical voltage clamp recordings of 
evoked EPSCs upon photoexcitation of ChR2-expressing PVN-OXT 
neurons show diminished EPSC amplitude for MI animals. B Dis-
tribution of evoked EPSC amplitudes recorded 7 days after MI for 
each group illustrates maintenance of EPSC in Treatment and loss 
of EPSC in MI animals. EPSC amplitude was significantly lower in 
MI animals (−  44 ± 10 pA) compared to Sham (−  84 ± 12 pA) and 
Treatment animals (− 87 ± 9 pA) (Kruskal–Wallis test with post hoc 
Dunn’s test, mean ± SEM, p = 0.0045; *p = 0.02 and **p = 0.007). 
Sham: n = 24 cells, 24 brainstem slices, 11 animals; MI: n = 17 cells, 
17 brainstem slices, 6 animals; Treatment: n = 14 cells, 14 brainstem 
slices, 5 animals. (C) A cholinergic synapse showing ACh production 
and release and the pathways that are activated by the primary Gi/o 
coupling of the muscarinic ACh type 2 receptors (m2AChRs) of the 
post-synaptic cell. Preserved gene expression of myocyte m2AChRs 

and elevated release of ACh from cardiac cholinergic axon vari-
cosities could activate cellular cardioprotective pathways that would 
reduce sarcoplasmic reticulum (SR) stress and mitochondrial ROS, 
inhibit activation of the mitochondrial permeability transition pore 
(MPTP), and reduce nuclear production of inflammatory cytokines. 
Small blue arrows indicate increased or decreased abundance/activity. 
D Gene expression profiles of proteins that are integral for myocyte 
muscarinic signaling (n = 3 per group; student’s t test; mean ± SD; 
*p < 0.05). E HRR time 5  days after MI as a percentage of HR at 
peak running effort (the maximum HR). Recovery time to 95%, 90%, 
and 85% of maximum HR was significantly longer for MI animals. 
HRR time was not significantly different between Treatment and 
Sham animals (Sham n = 24; MI, n = 9; Treatment, n = 13; two-way 
ANOVA; mean ± SD, *p < 0.05, **p < 0.01). Abbreviations: PVN, 
paraventricular nucleus; OXT, oxytocin; CVN, cardiac vagal neuron; 
ChR2, channelrhodopsin; EPSC, excitatory post-synaptic current; 
HR, heart rate; HRR, heart rate recovery
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the Sham group was used as the control in subsequent 
transcriptome analyses. Compared to Sham, the MI group 
had significantly more DEGs than the Treatment group 
(19% vs. 2%; 4482 vs. 507 DEGs). Of the 2474 MI DEGs 
that were upregulated vs. Sham, 401 genes were com-
monly upregulated between MI and Treatment groups, 
and of the 2026 DEGs that were downregulated vs. Sham, 
only 88 were common between MI and Treatment groups 
(Fig. 3C). The increased number of transcripts that were 

dysregulated in MI than in Treatment animals suggest that 
the final injury following LAD ligation was greater in MI 
than Treatment animals.

Ingenuity Pathway Analysis (IPA; Qiagen) identified 
pathways that were differentially upregulated or downregu-
lated between groups. The top ten canonical pathways identi-
fied are shown in Fig. 3B. When comparing DEGs between 
Treatment and MI groups, six of the ten top pathways were 
integral components of cellular or mitochondrial metabolism 

Fig. 3   Transcriptome analysis of LV myocardium DEGs. A PCA 
of each group (Sham, n = 3; Sham + OXT, n = 3; MI, n = 3; Treat-
ment, n = 3). B Volcano plots of DEGs between groups (left; 
1.7 < FC < −  1.7, FDR < 0.08), and top ten corresponding differen-
tially regulated canonical pathways represented by the DEGs (right). 
The stacked bar chart depicts the percentage (upper x-axis) of path-
way genes up-, down-, or not differentially expressed (bar color), 
with the total number of pathway genes shown on the right of each 

bar, and the -log significance of the differential pathway regulation 
(orange line; lower x-axis). Only transcripts with FDR < 0.08 were 
entered into the analysis; all pathways depicted exhibit p < 0.05. C 
Venn diagrams of differentially upregulated or downregulated genes 
compared to Sham. Abbreviations: FC, fold change; FDR, false dis-
covery rate; MI, myocardial infarction; MMPs, matrix metallopro-
teases; MP, macrophage; MNC, monocyte
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and were all upregulated in Treatment vs. MI animals. The 
remaining canonical pathways were related to tissue remod-
eling and fibrotic processes, which were downregulated in 
Treatment vs. MI. Integrin and inflammatory signaling were 
also downregulated in Treatment vs. MI. In the volcano plot 
of Treatment vs. MI, two of the most significantly down-
regulated genes were components of matrix remodeling and 
inflammatory responses, MMP12 and Lgals3, respectively. 
Mrpl35, which encodes the large mitochondrial ribosomal 
subunit, and Adck3 (Cox8a), which is integral in mitochon-
drial respiration, were the top upregulated genes in Treat-
ment vs. MI animals. These findings suggest that chronic 
PVN-OXT neuron activation after MI may protect mito-
chondrial function and reduce inflammation, remodeling, 
and fibrosis.

Mitochondrial respiration

Transcriptome profiling indicated that cellular energetic 
pathways were significantly altered in Treatment and MI ani-
mals, so the expression of enzymes and transporters involved 
in glycolysis, the tricarboxylic acid cycle (TCA) cycle, oxi-
dative phosphorylation (OXPHOS), and beta-oxidation was 
analyzed. Hierarchical clustering of essential genes associ-
ated with each of these processes suggested a significant 
reduction in MI vs. Treatment, Sham, and Sham + OXT 
animals (Fig. 4A). In addition to reduced expression of 
enzymes involved in cellular respiration, drastically reduced 
expression of carnitine transporters involved in fatty acid 
transport was also observed in MI animals.

The reduced expression of mitochondrial genes could 
be attributed to either decreased global mitochondrial 
content or a decline in mitochondrial respiratory capacity. 
This ambiguity was addressed using Seahorse XFe assays 
of isolated mitochondria. When complex II function was 
tested, ADP-stimulated respiration (State III) and maximal 
respiration (FCCP stimulated; State IIIu) were significantly 
impaired in MI vs. Sham and Treatment animals (Fig. 4B, 
D). Sequential electron flow through the complexes was also 
examined (Fig. 4C). Complex-I-stimulated basal respiration 

was not significantly different between groups, although 
a trend (p = 0.07) of increased oxygen consumption was 
apparent in Treatment vs. MI animals. Semi-quantitative 
real-time PCR of Ndufs2, the 49 kDa subunit of complex 
I, confirmed that expression of this subunit was higher in 
Treatment animals (Fig S2). Complex-II-driven (succinate) 
respiration was significantly different between all groups, 
but complex-IV-stimulated (ascorbate/TMPD) respiration 
only differed between Sham and MI animals (Fig. 4C). 
These electron flow assay results support the coupling assay 
results (Fig. 4B) and suggest that complex II is the most 
compromised component of the ETC 7 days post-MI and is 
also significantly protected in Treatment animals.

Mitochondrial superoxide

Mitochondrial production of reactive oxygen species (ROS) 
is elevated following MI, with detrimental effects on mito-
chondrial function [106, 108]. The rate of superoxide pro-
duction of mitochondria isolated from the LV was meas-
ured by flow cytometry to determine if the rate was lower in 
Treatment animals. Mitochondria that were positive for both 
mitoTRACKER (live mitochondria) and mitoSOX (super-
oxide detection) were analyzed. Mitochondria from Treat-
ment animals produced significantly less superoxide radicals 
compared to those of MI animals (mitoSOX fluorescence 
of 605 ± 20 and 679 ± 16; p = 0.0005) (Fig. 4E). This result 
was supported by decreased gene expression of the mito-
chondrial antioxidant enzymes superoxide dismutase (Sod2), 
catalase (Cat), and glutathione peroxidase in MI animals and 
their preserved expression in Treatment animals (Fig. 4F). 
Semi-quantitative real-time PCR of Sod2 confirmed this 
outcome (Fig. S2).

Mitochondrial morphology

Mitochondrial OXPHOS is governed by the availability 
of substrate and the pathways that transport and prepare 
substrates for the TCA cycle (Fig. 5A). The expression of 
13 genes (i.e., Glut4, CD36, hexokinase, among others) 
involved in rate-limiting steps for pathways involving glu-
cose, fatty acids, branched-chain aminos acids (BCAAs), 
and ketones was compared between groups. The expression 
of each gene was reduced in MI animals and preserved in 
Treatment animals (Fig. 5A), with semi-quantitative real-
time PCR confirmation of reduced Slc2a4 (Glut4) expres-
sion in MI animals (Fig. S2).

Changes in mitochondrial function and ultrastructure 
are bidirectionally linked. Mitochondrial fusion is largely 
dependent upon a potential across the inner membrane, 
suggesting that OXPHOS capacity may affect local mito-
chondrial size [64]. Additionally, glucose availability, mito-
chondrial membrane potential, and ROS can differentially 

Fig. 4   Mitochondrial respiration was preserved in hearts of Treat-
ment animals. A Transcriptome expression heat maps and hierarchi-
cal clustering of key genes involved in mitochondrial respiration: 
TCA cycle, OXPHOS, glycolysis, fatty acid beta-oxidation, and fatty 
acid entry. B Seahorse analysis of substrate-stimulated respiration of 
isolated mitochondria with succinate or (C) uncoupled respiration 
with pyruvate and malate. D Quantitation of oxygen consumption 
rate (OCR) for succinate-stimulated respiration. For all respiration 
assays: Sham, n = 3; MI and Treatment, n = 4 each; one-way ANOVA; 
mean ± SD; *p < 0.05. E Flow cytometric analysis of isolated mito-
chondrial superoxide (mitoSOX; Sham and MI, n = 4; Treatment, 
n = 5; one-way ANOVA; mean ± SD; *p < 0.05), and F microarray 
expression of mitochondrial antioxidant enzymes (n = 3 per group; 
one-way ANOVA; mean ± SD; *p < 0.05)

◂



	 Basic Research in Cardiology (2023) 118:43

1 3

43  Page 12 of 27

impact mitochondrial inner membrane vs. outer membrane 
fusion [128]. To assess the ultrastructural consequences 
of reduced substrate pathway gene expression and dimin-
ished mitochondrial function (Fig. 4D), mitochondria from 

the MI border zone and core of the infarct were analyzed 
by TEM and flow cytometry. TEM examination of border 
zone tissue revealed no significant differences in the num-
ber of mitochondria (per um2) between groups (Fig. 5B). 
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Mitochondria were larger in Treatment compared to MI or 
Sham groups; however, the aspect ratio was no different 
than Sham, indicating that the mitochondria were not swol-
len (Fig. 5B). Flow cytometry of MitoTRACKER-positive 
mitochondria revealed that mitochondria were larger and had 
increased complexity in Treatment vs. Sham and MI animals 
(Figs. 5C, D, S4), confirming the TEM results.

Key genes involved in mitochondrial fusion, fission, 
biogenesis, and mitophagy were differentially expressed 
between groups (Fig. 5E), with downregulation of genes in 
MI animals; although Pten, involved in Akt pathway inhi-
bition, and Bak1, associated with apoptosis, were upregu-
lated. The expression of genes associated with fusion (Opa1, 
Mfn1, and Mfn2) was upregulated in Treatment vs. MI while 
only the fission gene Mff was upregulated. These results 
indicate that Treatment mitochondria may respond to injury 
by promoting fusion while inhibiting fission, thereby attenu-
ating LV dysfunction and infarct size [78, 79]. Genes that 
regulate mitochondrial DNA synthesis (Polg and Polg2) 
were not differentially expressed between groups (Fig. 5E).

Another important aspect of mitochondrial regulation 
is derived from a family of evolutionarily conserved nico-
tinamide adenine dinucleotide-dependent deacetylases, 
the sirtuins. Sirtuins (encoded by genes Sirt1-7) regulate 
mitochondrial protein networks, orchestrate mitochondrial 
function, and allow cells to adapt to metabolic stress. The 
sirtuin pathway was one of the top ten canonical pathways 
dysregulated between MI and Sham animals, with upregula-
tion in Treatment vs. MI, and differential clustering of MI 
animals apart from Treatment, Sham, and Sham + OXT ani-
mals (Fig. 5F). The genes Sirt3, Sirt4, and Sirt5 are localized 
to the mitochondria and regulate metabolism in response 
to mitochondrial stress [19, 116, 126]. Sirt3 deacetylates 
various proteins to regulate amino acid metabolism, fatty 
acid oxidation, the TCA cycle, the ETC, mitochondrial 
DNA replication, transcription, and translation. Sirtuins 

also regulate autophagy, a process by which damaged pro-
teins and organelles are degraded and recycled to provide 
metabolic intermediates necessary for protein synthesis and 
metabolism. Maintained expression of key sirtuin genes fur-
ther establishes that mitochondrial health may have been 
preserved in Treatment animals compared to MI.

Immune response

Genes associated with macrophages and monocytes were 
dramatically increased in MI vs. Sham animals, with a 
decrease in Treatment vs. MI animals (Fig. 6A). Accord-
ingly, increased gene expression associated with pro-
inflammatory cytokines and chemokines (IL-18 [121], Ifng, 
Mcp1/Ccl2, Mip-1a/Ccl3) was evident in MI vs. Treatment 
animals, with increased angiogenic (Vegfa, Vegfb) gene 
expression in Treatment animals (Fig. 6B). This differential 
gene expression suggests that in Treatment animals, 7 days 
post-MI, there was either a timelier repression/resolution of 
the inflammatory response, or a decreased injury response. 
This was further supported by a reduction (compared to 
MI) in Treatment animal gene expression for IL-8 signal-
ing (Fig. 6C), a pathway clinically associated with larger 
infarct size, lower ejection fraction, and larger increase in 
LV end-diastolic volume [104]. In contrast, IL-8 signaling 
was one of the top ten canonical pathways activated in MI 
animals (Fig. 3B).

The macrophage-secreted cytokine IL-1β is a piv-
otal cytokine following MI [25]. We found significantly 
increased levels of the active form of IL-1β in MI vs. Sham 
animals, yet found no significant elevation in Treatment 
animals (Fig. 6D). IL-1β and endothelin-1 (Edn1; 3.5-fold 
increase in MI vs. Sham, 1.4-fold increase in Treatment vs. 
Sham) have been shown to contribute to the production of 
nerve growth factor (NGF) [33, 43, 70], and increased NGF 
is a mechanism responsible for nerve sprouting and sym-
pathetic hyperinnervation following MI [127]. NGF gene 
expression (Ngf) was significantly elevated in MI but not 
in Treatment animals (Fig. 6B), aligning with the reduced 
levels of IL-1β and Edn1 measured for Treatment animals. 
These immune response observations suggest that MI ani-
mals, compared to Sham and Treatment, experienced more 
severe injury signals after MI and responded with a more 
robust recruitment of immune cells to the injury, which 
likely increased pathologic remodeling, autonomic imbal-
ance, and incidence of arrhythmia.

Fibrosis and matrix remodeling

Ischemic cell death after MI initiates a multiphase repara-
tive response where fibroblasts and myofibroblasts replace 
damaged tissue with a fibrotic scar. Although the initial 
reparative fibrosis is crucial for preventing rupture of the 

Fig. 5   LV mitochondria respiration and morphology were preserved 
in Treatment animals. A Schematic of myocyte substrate utilization 
and substrate-specific key processes that drive ATP production (top), 
with expression of genes involved in each component for each group 
(bottom, n = 3 per group; one-way ANOVA; mean ± SD; *p < 0.05). 
B Representative electron micrographs of mitochondrial ultrastruc-
ture with derived measurements of mitochondrial content and aspect 
ratio (n = 4 animals per group; one-way ANOVA; **p < 0.01). C Rep-
resentative flow cytometric mitochondrial forward scatter (FSC, left 
panel) and side scatter (SSC, right panel) depicting size and granu-
larity, respectively. Counts are 50,000 ± 200 mitochondria per group. 
(Sham and MI, n = 4; Treatment, n = 5). D Representative forward 
vs. side mitochondrial scatter indicating increased size and complex-
ity (Q6 – top right quadrant) in Treatment animals. E Expression of 
genes involved in mitochondrial fusion and fission (left), biogenesis 
(middle), and mitophagy (right) (n = 3 per group; one-way ANOVA; 
mean ± SD; *p < 0.05, **p < 0.01). F Microarray heat map expression 
and hierarchical clustering of the sirtuin pathway involved in regula-
tion of mitochondrial dynamics (n = 3 per group)

◂
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ventricular wall, an exaggerated fibrotic response and reac-
tive fibrosis outside the infarct zone may lead to progressive 
impairment of cardiac function. Trichrome-stained sections 
containing infarct and border zone tissue illustrated smaller 
infarcts for Treatment animals, with reduced collagen con-
tent in the infarct and border zones (Fig. 7A). Infarct area, 
quantified as collagen area per area of tissue, was signifi-
cantly less in Treatment vs. MI animals (12.8 ± 5.6 and 
22.1 ± 4.6, respectively; Fig. 7B). Transcriptome profiling 
identified that gene transcripts associated with LV remod-
eling and fibrosis were markedly increased 7 days after 

MI. Four of the top ten canonical pathways represented 
by pairwise analysis of MI vs. Sham DEGs were related 
to LV remodeling (Fig. 3B), including hepatic fibrosis/
stellate cell activation, hepatic fibrosis signaling (Fig. 7D), 
epithelial adherens junction signaling, and remodeling of 
epithelial adherens junctions (Fig. 7E). Semi-quantitative 
real-time PCR confirmed increased presence of Mmp12 in 
MI vs. Sham and Treatment animals (Fig S2). Treatment 
animals also had significantly fewer DEGs associated with 
LV remodeling and fibrosis, and genes that inhibit matrix 
metalloproteins were upregulated (Figs. 3B and 7C).

Fig. 6   Cardiac inflammation was reduced 7 days after MI in Treat-
ment animals. Microarray expression and hierarchical clustering of 
A cardiac monocyte and macrophage markers, B cytokines (n = 3 
per group; one-way ANOVA; mean ± SD; *p < 0.05, **p < 0.01) 

and C the IL-8 signaling pathway. D Western blot of IL-1β expres-
sion in ischemic (I) and remote (R) areas of the infarct (Sham, n = 5; 
Sham + OXT, n = 3; MI, n = 5; Treatment, n = 6; one-way ANOVA; 
mean ± SD, **p < 0.01)
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ECG morphology and arrhythmias

Immediately following MI surgery, MI and Treatment ani-
mals displayed similar magnitudes of ST elevation, confirm-
ing a similar degree of ischemic damage after LAD liga-
tion in both groups (Fig. 8A). The ECG was continuously 
recorded during the first 24 h after MI surgery in considera-
tion of the high incidence of arrhythmia and sudden cardiac 
death (SCD) during this period [50]. Within the first 24 h, 
survival rate dropped to 85% and 95% for MI and Treatment 
animals, respectively (Fig. 8B), with Treatment animals hav-
ing significantly lower cumulative incidence and frequency 
of VF and VT compared to MI (Fig. 8C). Ischemic arrhyth-
mia mechanisms during the acute phase of infarction are 
multifaceted and include substrate alterations [50, 57, 111, 
130] (depolarized resting membrane potential, increased 
dispersion of refractoriness, and slowed conduction) that 
disrupt excitation wavefronts and initiate reentry [73, 87], 
triggered electrical activity [55, 93, 122], and increased cat-
echolaminergic activity [16, 61]. Compared to pre-MI, QRS 
duration for MI and Treatment animals was significantly 
longer in the first 24 h post-MI, suggesting reduced repolari-
zation currents or slowed ventricular conduction (Fig. 8D). 
At 5 days post-MI, this QRS prolongation persisted for MI 
but was significantly less for Treatment animals Fig. (8D).

At 7 days after MI, we observed differential gene expres-
sion for many proteins that regulate cardiomyocyte excita-
tion and contraction (Fig. 8E, F). While at the transcript 
level, Atp2a2 showed minor changes, Serca2a protein level 
was significantly lower in the ischemic (I) zone for MI vs. 
Sham animals yet there was no difference in Serca2a pro-
tein level for Treatment vs. Sham (Fig 8E), indicating a 
potentially higher risk for Ca2+-mediated triggered arrhyth-
mias in MI animals. Expression for proteins responsible for 
excitation–contraction coupling (Atp2a2/Serca2a, Cav1.2/
Cacna1c, Ryr2) was dysregulated in MI animals (Fig. 8F), 
consistent with pathological remodeling associated with MI 
and progression to heart failure.

Altered resting membrane potential will promote sponta-
neous electrical activity and arrhythmias. Several classes of 
genes for proteins that maintain resting membrane potential 
were downregulated in MI vs. Sham and Treatment animals. 
For example, gene expression for inward rectifier K + chan-
nel subunits (Kir2.1/Kcnj2, Kir6.2/Kcnj11, Kir2.2/Kcnj12) 
and the Na + /K + ATPase (Atp1a2) was reduced. The ratio 
of transcripts for the funny current main subunits Hcn2/
Hcn4 was also reduced, consistent with myocyte reversion to 
a more immature phenotype [105]. Altogether, these changes 
increase the propensity for ectopic activity and arrhythmia.

Transcriptome profiling also indicated dysregulation 
of myocyte excitability and repolarization. Isoform gene 
expression of Kcnip2, a purported master transcriptional 
regulator of cardiac excitability [84], was reduced in MI 

vs. Sham and Treatment animals, as was expression for the 
main depolarizing ion channel, the voltage-gated Na + chan-
nel (Nav1.5/Scn5a) (Fig. 8F). Prolonged QRS duration in MI 
vs. Sham and Treatment could be the result of reductions in 
the rapid delayed rectifier K + channel Kv11.1/Kcnh2 and 
reduced cellular coupling via gap junctions, as indicated by 
lower expression of Gja1 (Connexin 43) (Fig. 8F), a result 
confirmed by semi-quantitative real-time PCR (Fig S2). 
Such altered expression of sarcolemmal proteins likely con-
tributed to a pro-arrhythmic increase in dispersion of repo-
larization and slowed conduction in MI animals. In total, 
these results support increased prevalence of arrhythmia 
mechanisms in MI animals that involve altered membrane 
excitability, increased triggered activity, increased disper-
sion of repolarization, and slow conduction.

Discussion

Altered autonomic balance, with increased sympathetic 
drive and decreased parasympathetic tone, is a hallmark 
of cardiovascular disease including MI, heart failure, sleep 
apnea, and diabetes [22, 31, 110, 115, 118]. Although 
implantable device-based activation of parasympathetic 
drive provides potent cardioprotection during disease, there 
is no non-invasive rapid approach for parasympathetic acti-
vation during an acute MI. Our previous work has shown 
that CVNs receive powerful excitation from a population 
of hypothalamic PVN-OXT neurons that co-release OXT 
and GLUT to excite CVNs [28, 49, 92]. Activation of those 
PVN-OXT neurons reduces blood pressure and heart rate in 
conscious unrestrained animals, and those effects are para-
sympathetically mediated [34, 97]. In this report, we present 
new evidence that activation of PVN-OXT neurons soon 
after an MI is cardioprotective during the 7 days following 
an MI. We also provide new insight into the molecular basis 
of the multifaceted aspects underlying that cardioprotection.

Neurotransmission

The present study underscores the profound bidirectional 
interaction between the central nervous system and the 
heart after an MI. We found that an MI results in diminished 
excitatory neurotransmission from PVN-OXT neurons to 
brainstem parasympathetic neurons, leading to reduced car-
dioprotection. We also demonstrated that daily activation 
of PVN-OXT neurons maintains excitatory neurotransmis-
sion to brainstem parasympathetic neurons and sustains 
the expression of muscarinic receptors (Chrm2) within the 
myocardium, thereby supporting muscarinic-mediated car-
dioprotective outcomes of the autonomic parasympathetic 
network.
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LV gene expression analysis revealed that activation 
of PVN-OXT neurons after an MI maintained signaling 
pathways and transcriptional responses that are protective 
against myocardial injury. As indicated in Fig. 2C, many 
of the cardioprotective effects of parasympathetic drive 
are due to post-ganglionic release of ACh and subsequent 
activation of inhibitory pathways within myocytes, which 
was potentially mediated in Treatment animals by increased 
expression of Chrm2. This result is consistent with others 
who have reported increased Chrm2 expression in HF rats 
treated with carvedilol (an α- and β-blocker), indicating that 
the upregulation of muscarinic receptors is consistent with 
cardioprotection [124]. Long-term treatment with carvedilol 
also restored autonomic tone in patients with moderate HF 
[77]. Furthermore, multiple pre-clinical studies have shown 
cardioprotection following ischemia/reperfusion injury by 
activating cholinergic muscarinic receptors (mAChRs), as 
well as nicotinic receptors (nAChRs), either pharmacologi-
cally or by direct-current electrical stimulation [45].

Expression of the muscarinic M2 receptor via Chrm2 
transcriptional activity is tightly regulated by the gene 
silencing transcription factor Rest/Nrsf (RE-1 silencing tran-
scription factor), which may act via epigenetic remodeling 
to repress neural genes in non-neural cells [42, 132]. Rest 
expression was significantly upregulated (2.1-fold) in MI 
vs. Sham animals (FDR p = 0.01) but was non-significantly 
downregulated (1.1-fold) in Treatment vs. Sham animals. 
This suggests that excitatory signals mediated by PVN-OXT 
neuron activity may alter Chrm2 abundance through epige-
netic actions of Rest/Nrsf. Additionally, Rbm24, an RNA 
binding protein that drives various post-transcriptional pro-
cesses and is known to interact with Chrm2 transcript [69], 
was reduced after MI yet preserved in Treatment animals. 
Consistent with altered Chrm2 expression in the heart [38], 
we found that HRR was longer in MI animals while Treat-
ment animals had shorter HRR times that were no differ-
ent than Sham (Fig. 2E). HRR after peak effort is a com-
mon assessment of autonomic balance following adverse 

cardiovascular events, with a longer HRR time associated 
with increased mortality, sudden cardiac death, and arrhyth-
mic events [53, 85, 109]. As such, it was not unexpected to 
find that the untreated MI animals had longer HRR times and 
higher mortality than animals treated with PVN-OXT neu-
ron activation (Fig. 8B). Consistent with our results, work 
from others has shown pyridostigmine bromide, a reversible 
anticholinesterase agent that exerts cholinergic stimulation, 
improves HRR after exercise [4], increases heart rate vari-
ability, and decreases the density of ventricular arrhythmia 
in patients with heart failure [7].

Arrhythmia incidence

 In the first 24 h following LAD ligation, both MI and Treat-
ment animals exhibited similar ST segment elevations, indi-
cating a similar level of myocardial injury. In MI animals, 
there were frequent bursts of arrhythmia, including VF and 
VT, that often occurred in the first hour after LAD ligation. 
In Treatment animals, arrhythmias in the 24 h after LAD 
ligation were significantly less frequent, shorter in duration, 
and often absent (Fig. 8C). This is reflected in the increased 
survival of Treatment animals compared to MI (Fig. 8B). 
The higher mortality of MI animals is consistent with the 
lower EPSC amplitudes of the parasympathetic DMNX 
neurons observed for that group (Fig. 2A, B) and reports 
of reduced vagal drive to the heart being a strong independ-
ent risk factor for life-threatening arrhythmias and sudden 
cardiac death [9]. The reduced incidence of arrhythmias for 
Treatment animals is consistent with the cardioprotective 
effects of cholinergic muscarinic activation, as reported 
during ischemia/reperfusion injury, where hearts pretreated 
with choline had significantly decreased ischemia-induced 
arrhythmia, fewer ventricular premature beats, and a smaller 
infarct size [23, 133, 134]. Furthermore, expression of key 
genes responsible for cardiac excitation and contraction, 
such as connexin 43 (Gja1), Nav1.5/Scn5a, Cav1.2/Cac-
na1c, repolarizing K + channels, and the ryanodine receptor 
(Ryr2), were likewise preserved in Treatment animals com-
pared to MI (Fig. 8F). Significant preservation of ischemic 
zone Serca2 protein expression in Treatment animals at a 
level similar to Sham (Fig. 8E) indicates maintenance of the 
capacity of the sarcoplasmic reticulum to sequester Ca2+.

Our observations of reduced arrhythmia incidence and the 
associated preserved expression levels of key genes during 
PVN-OXT neuron activation in animals with an acute MI are 
supported by previous studies of electrical vagal nerve stim-
ulation (VNS) during MI. In one study, VNS demonstrated 
reduced incidence of VF during coronary artery occlusion in 
canines [27]. A more recent study found that chronic VNS, 
applied after permanent MI in Yucatan minipigs, stabilized 
the LV scar-border zone by reducing heterogeneity in acti-
vation and repolarization in vivo, drastically reducing lethal 

Fig. 7   Myocardial remodeling and infarct size were reduced in Treat-
ment animals 7 days after MI. A Representative Masson’s trichrome 
images of myocardial sections from Sham, MI, and Treatment ani-
mals are shown in each column. Large and small bounding boxes on 
images of the full section (top row) indicate the bounding area of the 
high-resolution images for the infarct zone (middle row) and border 
zone (bottom row). Blue denotes the presence of collagen. B Sche-
matic of the heart (left) illustrates the cross-section of histological 
assessment (dashed line). The dashed circle represents the location 
of the ischemic zone (area at risk) from which tissue was harvested 
for microarray analysis and Western blotting. Percent collagen con-
tent (right) within a region of the infarct zone was measured using the 
trichrome images (Sham, n = 3; Sham + OXT, n = 2; MI, n = 5; Treat-
ment, n = 5; one-way ANOVA; mean ± SD; *p < 0.05). Hierarchical 
clustering and heat map expression of genes involved in C inhibition 
of matrix metalloproteins, D fibrosis signaling, and E integrin-medi-
ated cell adhesion are provided (n = 3 per group)
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ventricular arrhythmias [36]. Although shown to be benefi-
cial in controlled experiments, VNS devices are not selec-
tive for cardiac cholinergic fibers and implanting the devices 
before, or at the onset of, unanticipated episodes of cardiac 
ischemia, and other triggers of sudden cardiac death, is not 
clinically feasible [17]. A recent clinical study demonstrated 
that low-level tragus stimulation reduced the incidence of 
reperfusion-related ventricular arrhythmias during the first 
24 h after acute MI [129]. Although highly encouraging, 
studies of human anatomy found that tragus distribution of 
the auricular branch of the vagus nerve is present in only 
45% of the cases [89], possibly limiting the efficacy of low-
level tragus stimulation in patients with different nerve sup-
plies of the tragus [40].

Mitochondria

Ischemia causes mitochondrial function and structure altera-
tions that impair ATP production and increase ROS produc-
tion [10, 13, 62, 112]. In healthy myocardium, substrate utili-
zation is tightly regulated to meet changes in energy demand 
and this metabolic regulation is impaired by ischemia and 
disease [44]. This involves reduced contribution of fatty acid 
oxidation to energy production and increased glycolysis, 
as described for hypertrophied and failing hearts [3, 120]. 
Increasing evidence suggests that the loss of metabolic sub-
strate flexibility is a major contributor to the development 
of cardiac dysfunction and heart failure [59].

We found that many genes for rate-limiting proteins 
integral for substrate utilization were reduced in MI and 
preserved in Treatment animals (Fig. 5A), suggesting that 
chronic PVN-OXT neuron activation supported the main-
tenance of metabolic flexibility after an MI. Furthermore, 
MI animals had reduced expression of crucial enzymes 
and intermediates involved in glycolysis, the TCA cycle, 
OXPHOS, and fatty acid beta-oxidation (Fig.  4A), and 
this was attributed to a decline in mitochondrial quality 
(Fig. 5B–D) and respiratory capacity rather than decreased 
mitochondrial content at 7 days post-MI. These results were 
confirmed by mitochondrial XF assays where we found that 
complex I and II of the ETC were compromised in response 
to MI, with complex II impacted more dramatically, and 
that the function of complex I and II was significantly pro-
tected in Treatment animals (Fig. 4B–D). Similar mitopro-
tection and fuel preference restoration have been observed in 
response to VNS following MI [74], isoproterenol-induced 
ischemia [125], and ischemia/reperfusion injury, and appears 
to be mediated through efferent fiber activation which is con-
sistent with our treatment paradigm [86].

The most differentially regulated upstream pathway 
between MI and Treatment groups identified by IPA was 
peroxisome proliferator-activated receptor gamma coac-
tivator 1-alpha (PGC-1⍺; Ppargc1a), with activation in 
Treatment and repression in MI animals (Fig. 5E). PGC-
1⍺ is a transcriptional coactivator that regulates metabolic 
genes and is the master regulator of mitochondrial bio-
genesis [26, 27]. The mitochondrial deacetylase, sirtuin 3 
(Sirt3), functions as a downstream target gene of PGC-1⍺ 
and mediates fatty acid metabolism [41], mitochondrial 
quality control and dynamics [102], and is postulated to 
regulate flux through the TCA cycle [117]. Evidence sug-
gests that Sirt3 also regulates the mitochondrial unfolded 
protein response and acts to sort moderately stressed from 
irreversibly damaged organelles by activating antioxidant 
machinery or mitophagy [60, 88]. We found that Sirt3 
gene expression was preserved in Treatment animals with 
a concomitant reduction in mitochondrial unfolded protein 
response and endoplasmic reticulum stress response (IPA 
results not shown). This is consistent with the preserved 
structure and function of our Treatment mitochondria 
(Figs. 4D, 5B) and prior reports of preserved endothelial 
cell mitochondria and endoplasmic reticulum after admin-
istering ACh following hypoxia/reoxygenation injury[8, 
123].

A mechanism of Sirt3-mediated cardioprotection is the 
preservation of Opa1 gene expression. Opa1 encodes a pro-
tein that is critical for inner mitochondrial membrane fusion 
and the maintenance of proper cristae structure [102]. In 
addition to Opa1, Treatment vs. MI animals had preserved 
expression of key mitochondrial genes involved in mito-
chondrial fusion and fission, biogenesis, and mitophagy 

Fig. 8   Arrhythmia incidence and mortality were reduced in Treat-
ment animals. A Average 24 h ST segment elevation immediately fol-
lowing MI and 5 days post-MI is similar between MI and Treatment 
animals, indicating that both groups experienced a similar degree of 
ischemic damage. Pre-MI: MI, n = 12; Treatment, n = 13. Post-MI: 
MI, n = 14; Treatment, n = 13. Five days post-MI: MI, n = 14; Treat-
ment, n = 15. One-way ANOVA; ****p < 0.0001. B Post-MI survival 
is significantly improved in Treatment animals compared to MI ani-
mals (Sham, n = 25; MI, n = 35; Treatment, n = 38; Kaplan–Meier; 
*p = 0.046). C In the 24  h immediately following MI, Treatment 
animals had lower incidence of arrhythmias (MI, n = 14; Treatment, 
n = 12; unpaired t test; **p < 0.01, *p < 0.05) VF ventricular fibril-
lation, VT ventricular tachycardia. D QRS duration significantly 
increased after MI in both groups but was significantly lower 5 
days post-MI in Treatment animals. Multiple comparisons of per-
cent increases in QRS duration from pre-MI values reveal that QRS 
widening was also significantly less for Treatment animals com-
pared to MI animals (same animal numbers as panel A, one-way 
ANOVA, **p < 0.01, ****p < 0.0001). E Western blots for Serca2a 
(Atp2a2) expression of LV tissue (I: ischemic) and RV tissue (R: 
remote) 7 days after MI are shown (left). Serca2a was reduced in the 
I zone for MI animals but not Treatment animals (right, Sham, n = 5; 
Sham + OXT, n = 3; MI, n = 5; Treatment, n = 6; one-way ANOVA; 
mean ± SD, **p < 0.01). F Expression and hierarchical clustering of 
genes that are key contributors to the cardiac action potential. MI 
animals cluster alone yet Treatment animals cluster with Sham and 
Sham + OXT animals, indicating preserved expression of key genes 
in Treatment animals (n = 3 per group)
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(Fig. 5E). Preservation of the aforementioned mitochon-
drial dynamics has been observed in multiple reports using 
direct ACh application, m2AChR agonist, and VNS, and 
attributed to preserved cell survival and function [107, 113]. 
Consistent with these findings, mitochondrial ultrastructure 
as well as flow cytometric forward and side scatter analysis 
suggested that Treatment mitochondria were larger, more 
granular, and maintained their elongated shape, further sup-
porting improved mitochondrial dynamics and OXPHOS 
in Treatment animals (Fig. 5C, D). Although the specific 
mechanisms for the preservation of mitochondrial structure 
and function conferred by PVN-OXT neuron activation after 
an MI remain to be rigorously tested, activation of Akt and 
AMPK (Fig. 2C) are likely candidates because these kinases 
have been implicated in the prevention of mitochondrial dys-
function by electronic VNS after ischemia/reperfusion injury 
[6, 86, 106, 125]. Altogether, our results demonstrate that 
the outcomes of PVN-OXT neuron activation immediately 
after an MI may include the preservation of mitochondrial 
OXPHOS, maintained mitochondrial fusion and biogenesis, 
reduced mitochondrial ROS, and conserved sirtuin pathway 
signaling components. These functional outcomes are sup-
ported by preserved expression of numerous genes involved 
in mitochondrial structure and function, and provide new 
molecular insight into potential cardioprotective pathways.

Inflammation

Although a temporary inflammatory response after MI is 
required to clear the myocardium of cellular debris and 
toxic metabolites, excessive chronic inflammation leads to 
adverse LV remodeling and heart failure. During MI, neu-
trophils, followed by Ly6Chigh (Ly6c) mononuclear cells, 
are quickly recruited to the infarct [32]. Circulating mono-
cytes, upon entry into tissues, give rise to dendritic cells 
and macrophages. Macrophages phenotypically differ from 
monocytes by increased expression of Cd68 as well as F4/80 
(Adgre1). These monocyte-derived macrophages produce 
both pro-inflammatory and anti-inflammatory mediators 
(cytokines, chemokines, matrix metalloproteinases, and 
growth factors), phagocytize dead cells, and promote angio-
genesis and scar formation.

Seven days after MI, leukocyte CD45 (Ptprc) marker 
expression and markers for cardiac macrophages and mono-
cytes were dramatically elevated in MI vs. Sham animals, 
with a corresponding decrease in Treatment vs. MI ani-
mals (Fig. 6A). Increased expression of pro-inflammatory 
cytokines and chemokines was evident in MI vs. Treat-
ment animals, with increased angiogenic gene expression 
in Treatment animals (Fig. 6B), suggesting either a timelier 
resolution of inflammation or reduced injury response in 
Treatment animals. These results are consistent with dif-
ferences between MI and Treatment animals in ischemic 

zone collagen content (Fig. 7B) and 24 h arrhythmia bur-
den (Fig. 8C), aligning with studies that identified a positive 
correlation between systemic inflammation in the first 5 days 
after MI with the size of the peri-infarct zone [94] and the 
incidence of ventricular arrhythmias [52].

Cholinergic anti-inflammatory pathways are potently acti-
vated by electrical VNS, as demonstrated in previous stud-
ies that prevented the release of pro-inflammatory cytokines 
such as TNF-⍺, IL-1β, IL-6, and IL-18 during endotoxemia 
[11], and in patients receiving tragus stimulus following 
acute MI [129]. In other studies, activation of cholinergic 
anti-inflammatory pathways through electrical VNS or mus-
carinic receptor agonists promoted macrophage M1 to M2 
polarization in ischemic heart and lung injury [20, 66], with 
AMPK signaling as a central regulator of the response [101]. 
Accordingly, in Treatment animals, we found increased 
M2-type reparative markers (Cd163, IL-10, Ly6c) and a 
decrease in pro-inflammatory M1 markers, cytokines, and 
chemokines (Mcp1/Ccl2, Mip-1a/Ccl3, Cd68) (Fig. 6A, B), 
suggesting that PVN-OXT neuron activation may promote 
timely inflammatory resolution and promotion of wound 
healing and tissue repair.

IL-1β protein was elevated in MI vs. Sham animals with 
no significant elevation in Treatment animals (Fig. 6D). 
This macrophage-secreted cytokine was shown to induce 
arrhythmias in metabolically compromised mice [82] and 
is a pivotal cytokine in neuroinflammation following MI 
[25]. Endothelin-1, and IL-1β contribute to the production 
of NGF in the rodent heart [1, 43], the pulmonary bronchi 
[33], and the non-neuronal cells of the sciatic [70]. Increased 
NGF is one of the immune-stimulated mechanisms respon-
sible for nerve sprouting, sympathetic hyperinnervation, and 
pathological rise in sympathetic activity following MI [127]. 
Regions of denervation and hyperinnervation may lead to 
heterogeneity of sympathetic nerve distribution and con-
tribute to cardiac arrhythmias [39]. Interestingly, previously 
identified underlying mechanisms of VNS-mediated electri-
cal stability include suppressing cardiac neuronal sprouting, 
inhibiting excessive sympathetic nerve sprouting, and pro-
inflammatory response by regulating gene expression [36, 
135]. Accordingly, Ngf transcript was significantly elevated 
in MI but not in Treatment animals.

Additionally, IL-8 signaling was one of the top ten canon-
ical pathways activated in MI animals but was significantly 
reduced in Treatment animals. IL-8 pathway activation is 
clinically associated with larger infarct size, lower LV ejec-
tion fraction, larger increase in LV end-diastolic volume, 
and higher frequency of microvascular obstruction [104]. 
Overall, these inflammatory outcomes suggest that during 
MI, untreated animals, compared to treated animals, may 
experience more severe tissue injury signals with a corre-
sponding robust and sustained recruitment of immune cells 
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to the injury, which likely increased pathologic structural 
remodeling and the incidence of arrhythmia.

Structural remodeling

Gene transcripts contributing to LV remodeling were mark-
edly increased following MI, with Treatment animals hav-
ing significantly fewer DEGs associated with fibrosis and 
an upregulation of genes that inhibit matrix metalloproteins 
(Figs. 3B and 7C). Infarct area, measured as collagen area 
per area of tissue, was also significantly greater in MI vs. 
Treatment animals. Activation of CVNs has been shown to 
reduce MI size, not only through heart rate reduction, but 
through a number of mechanisms including attenuated for-
mation of reactive oxygen species and inflammation, and 
improved mitochondrial function [40]. Previous studies indi-
cate that a lack of cardiomyocyte-secreted ACh can cause 
maladaptive remodeling and cardiac functional decline [96, 
100] and that over-expression of cardiomyocyte vesicular 
ACh transporter or choline acetyltransferase increases ACh 
synthesis which then inhibits ventricular remodeling [99]. 
Cholinesterase inhibitors, such as donepezil, are also known 
to improve autonomic balance, and can reduce myocardial 
infarct size and arrhythmia, and improve LV function fol-
lowing ischemia–reperfusion injury [56]. Interestingly, in 
many studies utilizing VNS, the infarct limiting effect is only 
observed when VNS is applied during ischemia, but not at 
the onset of reperfusion [17, 106]. Subsequent studies have 
shown that activation of cardiac Chrm2 receptors also exerts 
an infarct limiting effect [67, 90]. A proposed mechanism 
of these beneficial outcomes is the inhibition of endoplas-
mic reticulum stress-induced apoptosis through extracellular 
signal-regulated kinase (ERK1/2) and the phosphoinositide 
3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in 
combination with the inhibition of adenylyl cyclase activity 
via Gαi of the m2AChR, thereby reducing cAMP production 
and further attenuation of ER-stress and apoptosis (Fig. 2C)
[67].

In addition to OXT network activation and VNS, par-
asympathetic-mediated cardioprotection, particularly fol-
lowing ischemia reperfusion, is likely complex and may 
involve both vagus-dependent and independent mechanisms. 
Protection independent of the vagus may be mediated by 
GLP-1 receptors that act via M3 muscarinic receptor activa-
tion [5]. Consistent with the potential benefit of peripheral 
muscarinic receptor activation post-ischemia–reperfusion, 
studies have shown that acetylcholine activation of α7 nico-
tinic receptors (α7nAChR) on macrophages polarizes the 
pro-inflammatory into anti-inflammatory subtypes, activat-
ing the transcription 3 (STAT3) signaling pathway, inhibit-
ing the secretion of pro-inflammatory cytokines, limiting 
ischemic injury in the myocardium, and initiating efficient 
reparative mechanisms [20]. Furthermore, vagus-mediated 

ischemic preconditioning and cardioprotection may involve 
release of humoral factors which subsequently act on many 
downstream vagal targets and function [58], including a 
vago-splenic axis [68]. Clinical studies suggest remote 
ischemic conditioning-induced cardioprotection likely 
involves activation of sensory nerve fibers [81], while acute 
caffeine intake can possibly provide a cardioprotective effect 
through increased vagal tone [103]. In a mouse model of 
spared nerve injury (SNI) neuropathic pain, myocardial 
infarct size and apoptosis were reduced following MI, and 
this protection was dependent upon activation of the para-
ventricular thalamus and the autonomic nervous system, as 
shown by loss of SNI-induced cardioprotection by parasym-
pathetic nerve blockers [18].

Conclusion

These comprehensive results demonstrate that daily acti-
vation of PVN-OXT neurons, beginning soon after an MI, 
could provide potent cardioprotection against the deleteri-
ous effects of MI. PVN-OXT neurons and potentially other 
approaches to activate the oxytocin network may, therefore, 
be promising therapeutic targets to quickly activate benefi-
cial parasympathetic-mediated cellular pathways within the 
heart during the very early stages of infarction. These find-
ings are highly translational as our clinical work in patients 
with obstructive sleep apnea demonstrates that intranasal 
oxytocin administration is beneficial, in part, by increasing 
cardiac parasympathetic activity [47, 48].

Limitations

We studied a rat model of acute MI induced by permanent 
coronary occlusion, which has relevance to STEMI patients 
who do not receive timely (~ 25% of patients [72]) or suc-
cessful (~ 30% of patients [95]) reperfusion. While both rep-
erfused and non-reperfused MI animal models are clinically 
relevant [12, 71], our model represents a smaller proportion 
of patients. Even so, effective, rapid, and easy to administer 
treatments are needed to reduce mortality during and after 
an acute MI, even if the occlusion is subsequently removed. 
Therapies that demonstrate efficacy in reducing arrhythmia 
burden, inflammation, and infarct size would be relevant for 
MI at any early stage, including in-transit to the clinic to 
receive PCI, and even after PCI when incomplete reperfu-
sion may result in regions having permanent lack of flow. 
Molecular pathways activated in response to permanent 
occlusion, as we have described, could be different than 
those activated by ischemia reperfusion injury. Identifying 
the benefits of PVN-OXT neuron activation after ischemia 
reperfusion injury is the subject of future studies.
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Transcriptomic analysis is a powerful tool, yet differential 
mRNA expression does not always translate to differential 
protein expression or activity. In addition to epigenetic mod-
ifications, the transcriptional response is the initial cellular 
response to a stimulus, while the protein response could be 
altered by many post-transcriptional and post-translational 
mechanisms. We have reported primarily transcriptional 
alterations with protein confirmation of only key genes that 
are known to be regulated post-transcriptionally [119]. An 
analysis of protein levels associated with other differentially 
expressed genes and their active state would provide deeper 
insight into the many molecular mechanisms by which PVN-
OXT neuron activation imparts its cardioprotective effects, 
including its impact on non-neuronal cholinergic system 
dynamics, remodeling of neuronal circuitry, and infarct lim-
iting effects, which are the focus of future work.

Another limitation of the current work is that we activated 
the PVN-OXT network in the CNS using chemogenetics. 
Further work will need to explore the efficacy of activating 
the OXT network in the CNS with intranasal oxytocin (or 
other approaches), as well as exploring the role of oxytocin 
receptors outside the CNS, including oxytocin receptors in 
cardiac tissue and sensory neurons [35].
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