Skip to main content
Log in

Novel GSDMD inhibitor GI-Y1 protects heart against pyroptosis and ischemia/reperfusion injury by blocking pyroptotic pore formation

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Activation of gasdermin D (GSDMD) and its concomitant cardiomyocyte pyroptosis are critically involved in multiple cardiac pathological conditions. Pharmacological inhibition or gene knockout of GSDMD could protect cardiomyocyte from pyroptosis and dysfunction. Thus, seeking and developing highly potent GSDMD inhibitors probably provide an attractive strategy for treating diseases targeting GSDMD. Through structure-based virtual screening, pharmacological screening and subsequent pharmacological validations, we preliminarily identified GSDMD inhibitor Y1 (GI-Y1) as a selective GSDMD inhibitor with cardioprotective effects. Mechanistically, GI-Y1 binds to GSDMD and inhibits lipid- binding and pyroptotic pore formation of GSDMD-N by targeting the Arg7 residue. Importantly, we confirmed the cardioprotective effect of GI-Y1 on myocardial I/R injury and cardiac remodeling by targeting GSDMD. More extensively, GI-Y1 also inhibited the mitochondrial binding of GSDMD-N and its concomitant mitochondrial dysfunction. The findings of this study identified a new drug (GI-Y1) for the treatment of cardiac disorders by targeting GSDMD, and provide a new tool compound for pyroptosis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data in this study are available upon reasonable request from the corresponding author.

References

  1. Chen Y, Luo R, Li J, Wang S, Ding J, Zhao K, Lu B, Zhou W (2022) Intrinsic radical species scavenging activities of tea polyphenols nanoparticles block pyroptosis in endotoxin-induced sepsis. ACS Nano 16:2429–2441. https://doi.org/10.1021/acsnano.1c08913

    Article  CAS  PubMed  Google Scholar 

  2. Dai S, Ye B, Zhong L, Chen Y, Hong G, Zhao G, Su L, Lu Z (2021) GSDMD mediates LPS-induced septic myocardial dysfunction by regulating ROS-dependent NLRP3 inflammasome activation. Front Cell Develop Biol 9:779432. https://doi.org/10.3389/fcell.2021.779432

    Article  Google Scholar 

  3. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99:1765–1817. https://doi.org/10.1152/physrev.00022.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fröhlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ (2013) Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J 34:1714–1722. https://doi.org/10.1093/eurheartj/eht090

    Article  CAS  PubMed  Google Scholar 

  5. Han B, Xu J, Shi X, Zheng Z, Shi F, Jiang F, Han J (2021) DL-3-n-butylphthalide attenuates myocardial hypertrophy by targeting gasdermin D and inhibiting gasdermin D mediated inflammation. Front Pharmacol 12:688140. https://doi.org/10.3389/fphar.2021.688140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han J, Dai S, Zhong L, Shi X, Fan X, Zhong X, Lin W, Su L, Lin S, Han B, Xu J, Hong X, Huang W, Ye B (2022) GSDMD (gasdermin D) mediates pathological cardiac hypertrophy and generates a feed-forward amplification Cascade via mitochondria-STING (stimulator of interferon genes) Axis. Hypertension 79:2505–2518. https://doi.org/10.1161/hypertensionaha.122.20004

    Article  CAS  PubMed  Google Scholar 

  7. Han J, Shi X, Xu J, Lin W, Chen Y, Han B, Wang Y, Xu J (2022) DL-3-n-butylphthalide prevents oxidative stress and atherosclerosis by targeting Keap-1 and inhibiting Keap-1/Nrf-2 interaction. Eur J Pharmaceut Sci 172:106164. https://doi.org/10.1016/j.ejps.2022.106164

    Article  CAS  Google Scholar 

  8. Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, Kloner RA, Ovize M, Yellon DM, Garcia-Dorado D (2017) Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 38:935–941. https://doi.org/10.1093/eurheartj/ehw145

    Article  CAS  PubMed  Google Scholar 

  9. Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y

    Article  PubMed  Google Scholar 

  10. Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, Ruan J, Luo X, Lou X, Bai Y, Wang J, Hollingsworth LR, Magupalli VG, Zhao L, Luo HR, Kim J, Lieberman J, Wu H (2020) FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol 21:736–745. https://doi.org/10.1038/s41590-020-0669-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang LS, Hong Z, Wu W, Xiong S, Zhong M, Gao X, Rehman J, Malik AB (2020) mtDNA activates cGAS signaling and suppresses the YAP-mediated endothelial cell proliferation program to promote inflammatory injury. Immunity 52(475–486):e475. https://doi.org/10.1016/j.immuni.2020.02.002

    Article  CAS  Google Scholar 

  12. Ibáñez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471. https://doi.org/10.1016/j.jacc.2015.02.032

    Article  PubMed  Google Scholar 

  13. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discovery 3:935–949. https://doi.org/10.1038/nrd1549

    Article  CAS  PubMed  Google Scholar 

  14. Kuang S, Zheng J, Yang H, Li S, Duan S, Shen Y, Ji C, Gan J, Xu XW, Li J (2017) Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc Natl Acad Sci USA 114:10642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL (2017) Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol 57:535–565. https://doi.org/10.1146/annurev-pharmtox-010715-103335

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Shen J, Fang M, Huang X, Yan H, Jin Y, Li J, Li X (2018) The promising antitumour drug disulfiram inhibits viability and induces apoptosis in cardiomyocytes. Biomed Pharmacother Biomed Pharmacother 108:1062–1069. https://doi.org/10.1016/j.biopha.2018.09.123

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Wang C, Yang J, Zhou B, Yang R, Ramachandran R, Abbott DW, Xiao TS (2019) Crystal structures of the full-length murine and human gasdermin D reveal mechanisms of autoinhibition, lipid binding, and oligomerization. Immunity 51:43-49.e44. https://doi.org/10.1016/j.immuni.2019.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, Wang J, Wu RP, Gomez F, Loo JA, Wohlschlegel JA, Vondriska TM, Pelletier J, Herschman HR, Clardy J, Clarke CF, Huang J (2009) Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA 106:21984–21989. https://doi.org/10.1073/pnas.0910040106

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mali VR, Deshpande M, Pan G, Thandavarayan RA, Palaniyandi SS (2016) Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes. Cell Signal 28:1–6. https://doi.org/10.1016/j.cellsig.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  21. Nobuhiko K, Stowe IB, Lee BL, Karen OR, Keith A, Søren W, Trinna C, Benjamin H, Merone RG, Phung QT (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671

    Article  Google Scholar 

  22. Pan G, Deshpande M, Thandavarayan RA (2016) ALDH2 inhibition potentiates high glucose stress-induced injury in cultured cardiomyocytes. J Diabetes Res 2016:1390861

    Article  PubMed  PubMed Central  Google Scholar 

  23. Platnich JM, Chung H, Lau A, Sandall CF, Bondzi-Simpson A, Chen HM, Komada T, Trotman-Grant AC, Brandelli JR, Chun J, Beck PL, Philpott DJ, Girardin SE, Ho M, Johnson RP, MacDonald JA, Armstrong GD, Muruve DA (2018) Shiga toxin/lipopolysaccharide activates Caspase-4 and gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Rep 25:1525-1536.e1527. https://doi.org/10.1016/j.celrep.2018.09.071

    Article  CAS  PubMed  Google Scholar 

  24. Rathkey JK, Zhao J, Liu Z, Chen Y (2018) Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol. https://doi.org/10.1126/sciimmunol.aat2738

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ren YS, Li HL, Piao XH, Yang ZY, Wang SM, Ge YW (2021) Drug affinity responsive target stability (DARTS) accelerated small molecules target discovery: principles and application. Biochem Pharmacol 194:114798. https://doi.org/10.1016/j.bcp.2021.114798

    Article  CAS  PubMed  Google Scholar 

  26. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 10:1689. https://doi.org/10.1038/s41467-019-09397-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruan J, Xia S, Liu X, Lieberman J, Wu H (2018) Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557:62–67. https://doi.org/10.1038/s41586-018-0058-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  29. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  30. Shi H, Gao Y, Dong Z, Yang J, Gao R, Li X, Zhang S, Ma L, Sun X, Wang Z, Zhang F, Hu K, Sun A, Ge J (2021) GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury. Circ Res 129:383–396. https://doi.org/10.1161/circresaha.120.318629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu J, Zhang B, Chu Z, Jiang F, Han J (2021) Wogonin alleviates cisplatin-induced cardiotoxicity in mice via inhibiting gasdermin D-mediated pyroptosis. J Cardiovasc Pharmacol 78:597–603. https://doi.org/10.1097/fjc.0000000000001085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang J, Liu Z, Wang C, Yang R, Rathkey JK, Pinkard OW, Shi W, Chen Y, Dubyak GR, Abbott DW, Xiao TS (2018) Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc Natl Acad Sci USA 115:6792–6797. https://doi.org/10.1073/pnas.1800562115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang X, Wang Y, Byrne R, Schneider G, Yang S (2019) Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 119:10520–10594. https://doi.org/10.1021/acs.chemrev.8b00728

    Article  CAS  PubMed  Google Scholar 

  34. Ye B, Chen X, Dai S, Han J, Liang X, Lin S, Cai X, Huang Z, Huang W (2019) Emodin alleviates myocardial ischemia/reperfusion injury by inhibiting gasdermin D-mediated pyroptosis in cardiomyocytes. Drug Des Dev Ther 13:975–990. https://doi.org/10.2147/DDDT.S195412

    Article  CAS  Google Scholar 

  35. Ye B, Shi X, Xu J, Dai S, Xu J, Fan X, Han B, Han J (2022) Gasdermin D mediates doxorubicin-induced cardiomyocyte pyroptosis and cardiotoxicity via directly binding to doxorubicin and changes in mitochondrial damage. Transl Res 248:36–50. https://doi.org/10.1016/j.trsl.2022.05.001

    Article  CAS  PubMed  Google Scholar 

  36. Ye X, Zhang P, Zhang Y, Luan J, Xu C, Wu Z, Ju D, Hu W (2022) GSDMD contributes to myocardial reperfusion injury by regulating pyroptosis. Front Immunol 13:893914. https://doi.org/10.3389/fimmu.2022.893914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu Q, Jiang Y, Sun Y (2020) Anticancer drug discovery by targeting cullin neddylation. Acta pharmaceutica Sinica B 10:746–765. https://doi.org/10.1016/j.apsb.2019.09.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Professor Lufeng Hu from the Department of Pharmacy of First Affiliated Hospital of Wenzhou Medical University for his help in chromatographic analysis. We are grateful to Lingli Hou, Tongliang Huang, Yanni Dong, Jiansong Lin and Mengxin Zhang from the scientific research center of Wenzhou Medical University for their help in echocardiography and immunofluorescence experiment.

Funding

This study was supported by the National Natural Science Foundation of China (No. 82003750 to B.Z. Ye, No. 82202380 to S.S. Dai, No. 82070446 to W.J. Huang), Zhejiang Provincial Natural Science Foundation of China (No. LQ21H020009 to B.Z. Ye, No. LQ23H310005 to S.S. Dai, No. LGD21H020003 to J.B. Han, No. LY22H02004 to Z.Q. Huang), the Key Research and Development Program of Zhejiang (No.2019C03012 to W.J. Huang), Zhejiang Provincial Health Bureau Science Foundation (No. 2022RC046 to S.S. Dai), Wenzhou Science and Technology Bureau (No. Y20220082 to S.S. Dai) and Zhejiang Provincial Science and Technology Innovation Program (New Young Talent Program) for College Students (No. 2022R413C081 to L.F. Zhong).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijian Huang, Shanshan Dai or Bozhi Ye.

Ethics declarations

Conflict of interest

All the authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5178 KB)

Supplementary file2 (PDF 677 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Han, J., Fan, X. et al. Novel GSDMD inhibitor GI-Y1 protects heart against pyroptosis and ischemia/reperfusion injury by blocking pyroptotic pore formation. Basic Res Cardiol 118, 40 (2023). https://doi.org/10.1007/s00395-023-01010-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-023-01010-4

Keywords

Navigation