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Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality 
control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardio-
myocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans 
rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient deg-
radation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form 
of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy 
is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of 
mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mecha-
nisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead 
to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of 
mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
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Introduction

Mitochondria are not only the powerhouse of the cell but 
also a hub for signaling activities that determine the cell’s 
fate and functionality. Thus, the quality and quantity of mito-
chondria need to be regulated precisely. Various stress con-
ditions that lead to mitochondrial damage result in leakage 
of mitochondrial proteins and cause cell death [38, 162]. 
Repairing damaged mitochondria and eliminating dysfunc-
tional mitochondria are critical to maintaining homeosta-
sis and preventing cell death. Mitophagy is a process by 
which damaged or unnecessary mitochondria are specifi-
cally removed through autophagy-mediated lysosomal deg-
radation, and it is the most well-studied type of selective 
autophagy [6, 135]. Impaired mitophagy and accumulation 

of damaged mitochondria lead to cell and tissue damage and 
are associated with a broad spectrum of pathologies, includ-
ing neurodegeneration, myopathies, metabolic disorders, 
inflammation, autoimmune disorders, and cancer [135, 205]. 
Mitophagy is crucial for maintaining cardiovascular homeo-
stasis and protecting the myocardium. Defects in mitophagy 
are observed in cardiovascular diseases such as myocardial 
infarction, cardiac hypertrophy, heart failure, ischemia/rep-
erfusion, and diabetic cardiomyopathy (DCM) [10, 112]. 
In this review, we focus on the molecular mechanisms that 
orchestrate selective removal of mitochondria and discuss 
the role of mitochondrial fission and fusion in mitochondrial 
quality control mechanisms during myocardial ischemia/rep-
erfusion injury, hypertrophy, and diabetic cardiomyopathy.

Molecular mechanism of mitophagy

The general steps mediating the selective degradation of 
mitochondria through mitophagy include the identification 
and tagging of damaged mitochondria, compartmentaliza-
tion of the mitochondria by autophagosomes, fusion of the 
autophagosomes with lysosomes, and proteolysis of the 
mitochondrial components in the fused autolysosomes [135].
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Mechanism of autophagosome biogenesis

One of the most well-characterized conditions promoting 
mitophagy is energy stress, where an energy deficiency is 
sensed and signaled by mammalian target of rapamycin 
complex 1 (mTORC1) and AMP-activated protein kinase 
(AMPK) [75]. AMPK and mTORC1 post-translationally 
modify the unc-51-like kinase 1 (Ulk1) complex (which 
includes Ulk1, Atg13, Atg101, and FIP200) to initiate for-
mation of the phagophore, a double-membrane structure 
that sequesters the cargo to be degraded. Class III phos-
phatidylinositol 3-kinase (PI3KC3) complex I (PI3KC3-
C1), consisting of Atg6/Beclin 1, Atg14, PI3KC3/Vps34, 
and the regulatory subunit Vps15/p150, generates phos-
phatidyl inositol 3-phosphate (PI3P) to nucleate the pha-
gophore [137]. Autophagosome expansion and nuclea-
tion are facilitated by vesicles containing Atg9, the sole 
multi-membrane-spanning protein in the autophagosome-
forming machinery [128]. While autophagosomes are 
being established, Atg18 and WIPIs (WD-repeat proteins 
interacting with phosphoinositides), members of the 
PROPPIN (β-propellors that bind polyphosphoinositides) 
family of proteins, can directly interact with PI3P via a 
conserved FRRG motif and facilitate the recruitment of 
downstream Atg effector proteins Atg12-5-16/Atg12-5-
16L1 [128]. Atg8/LC3 is a well-known marker protein for 
traditional autophagy and a ubiquitin-like (Ubl) protein. 
Atg4 protease immediately processes newly translated 
LC3 (pro-LC3) proteins at the C-terminus to form LC3-I 
[176]. LC3 is then activated by Atg7 (E1 enzyme) and 
transferred to Atg3 (E2 enzyme), and the Atg12-5-16L1 
complex (E3 enzyme) facilitates the transfer of LC3 from 
Atg3 to phosphatidylethanolamine (PE) (Atg8/LC3 lipida-
tion) [130]. Membrane recruitment of the Atg12-5-16L1 
complex and Atg8/LC3 lipidation are controlled by the 
PI3P-binding protein WIPI2B under starvation conditions 
[128]. The double-membrane autophagosomes, decorated 
by Atg8 family proteins LC3/GABARAP (GABA type 
A receptor-associated protein), form isolation compart-
ments for sequestration of various cargos. The specific 
endosomal sorting complexes required for transport 
(ESCRT) proteins are recruited to autophagosomes by 
Atg8s to keep the membrane impermeable and sealed, 
allowing the autophagosomes to mature into degradative 
autophagic compartments [68]. In HEK293 and HeLa 
cells lacking Atg8s, autophagic organelles are permeable, 
arrest as amphisomes, and do not progress to functional 
autolysosomes [68]. The Atg8 family proteins, especially 
GABARAP, promote Pleckstrin homology domain-con-
taining protein family member 1 (PLEKHM1) recruit-
ment and govern autophagosome–lysosome fusion [103, 
124]. Phagophore expansion occurs through the action of 

Atg9 [102]. Rab7 small GTPase directs the trafficking of 
autophagosomes along microtubules and facilitates fusion 
with lysosomes to degrade the cargo materials via acidic 
hydrolases [63]. The fusion of mature autophagosomes to 
lysosomes is also facilitated by SNARE proteins [177]. 
The lysosome-associated membrane proteins (LAMP-1 
and LAMP-2) promote acidification of lysosomes by 
directly interacting with and inhibiting the lysosomal cat-
ion channel TMEM175, thereby maintaining the acidic pH 
required for hydrolase activity [221]. Conventional forms 
of mitophagy utilize a similar mechanism of autophago-
some formation as that used for non-selective autophagy, 
as described above. However, the mechanisms of phago-
some initiation and progression differ in unconventional 
forms of mitophagy and are discussed in Sect. “Alternative 
mitophagy and mechanism”.

Mode of selection of mitochondria

The selection of mitochondria for degradation via mitophagy 
can be classified as (a) ubiquitin dependent or (b) ubiquitin 
independent or receptor mediated [73] (Fig. 1).

Ubiquitin‑dependent mitophagy

 i. PINK1–Parkin-mediated mitophagy
   One of the most well-studied mechanisms of tar-

geting mitochondria for mitophagy occurs through 
the mitochondrial membrane kinase PTEN-induced 
putative kinase-1 (PINK1) and the cytosolic E3 ubiq-
uitin ligase Parkin [139]. In functional mitochondria, 
PINK1 is transported to the inner mitochondrial mem-
brane (IMM) and cleaved by several proteases [156]. 
During mitochondrial damage and mitochondrial 
membrane potential dissipation, the translocation to 
the IMM does not take place and PINK1 is stabilized 
on the outer mitochondrial membrane (OMM) [156]. 
This leads to autophosphorylation and activation of 
PINK1. PINK1 phosphorylates both polyubiquitin at 
Ser65 and Parkin at Ser65 in the Ubl domain, which in 
turn induces mitochondrial recruitment and activation 
of Parkin E3 ubiquitin ligase activity in a feed-forward 
loop that polyubiquitinates OMM proteins [55, 133].

   Recent studies have shed further light on the 
molecular mechanism regulating PINK1. Adenine 
nucleotide translocase 1 and 2 (ANT1 and 2) present 
on the IMM can induce mitophagy independently of 
their nucleotide exchange activity by forming a com-
plex with Tim23 and Tim44, leading to stabilization 
of PINK1 on the OMM [61]. Mitochondrial GSNOR 
(S-nitrosoglutathione reductase) denitrosylates ANT1 
at Cys160, and GSNOR downregulation in cardio-
myocytes aggravates mitochondrial dysfunction in 
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the presence of hypertrophic stimuli, accompanied 
by downregulation of mitophagy [175]. However, 
how S-nitrosylation of ANT1 at Cys160 negatively 
regulates mitophagy remains to be clarified. Signaling 
by RhoA, a small GTPase, promotes stabilization of 
PINK1 independently of mitochondrial depolarization 
in cardiomyocytes, thereby promoting mitophagy and 
protecting the heart against ischemia [163]. In addi-
tion, AMPKα2 phosphorylates PINK1 at Ser495 and 
promotes mitophagy in cardiomyocytes [190].

   Parkin ubiquitinates several OMM proteins, includ-
ing mitofusin1 (MFN1), mitofusin2 (MFN2), MIRO, 
and voltage-dependent anion channel (VDAC) [45, 
46, 141, 174, 192]. Unintentional ubiquitination and 
targeting for mitophagy is controlled by deubiquitinat-
ing enzymes, including USP8, USP15, USP30, and 
USP35 [24, 35, 47, 193]. However, phosphorylated 
ubiquitin and polyubiquitin chains are not recognized 
by deubiquitinases, thus stabilizing the mitophagy sig-
nal [55]. It is of great interest to clarify how endog-
enous deubiquitinating enzymes contribute to the 
regulation of mitophagy in the heart. PINK1-depend-
ent MFN2 phosphorylation also promotes the recruit-
ment of Parkin to mitochondria and mediates elimi-

nation of fetal cardiomyocyte mitochondria through 
mitophagy during perinatal development. This allows 
fetal mitochondria to be replaced with adult ones so 
that metabolic maturation of individual mitochondria 
is achieved [50].

   Taken together, accumulating evidence points to the 
importance of PINK1 and Parkin in targeting mito-
chondria for degradation in response to various devel-
opmental cues and under stress conditions. However, 
since some of the studies described above used car-
bonyl cyanide m-chlorophenyl hydrazone (CCCP), a 
chemical inducer of mitochondrial depolarization and 
integrated stress response [77], the degree to which 
PINK1–Parkin is involved under more physiologi-
cal stress conditions in various tissues is still largely 
unknown. It should be noted that Parkin-dependent 
mechanisms are also utilized in other forms of mito-
chondrial degradation, including those mediated 
through Rab5-positive early endosomes [53] and 
mitochondrial-derived vesicles (MDVs) [104].

   Although PINK1 plays a crucial role in Parkin-
mediated mitophagy, increasing evidence suggests 
that Parkin translocation to mitochondria can occur 
through other molecular mechanisms as well. Heat 

Fig. 1  Mechanisms of mitophagy. A Ubiquitin-dependent mitophagy. 
In the PINK1–Parkin pathway of mitophagy, PINK1 is stabilized 
on the OMM following stress, which then stimulates Parkin recruit-
ment. Several components of the outer membrane are ubiquitinated 
by Parkin. Following this, PINK1 phosphorylates poly-Ub chains, 
acting as an "eat me" signal for the autophagic machinery. Phospho-
rylated poly-Ub chains on mitochondrial proteins are recognized by 
adaptor proteins (p62, OPTN, TAX1BP1, NBR1, NDP52, HDAC6, 
and ABIN-1 or TNIP1), which then bind to LC3 to start the forma-
tion of autophagosomes. TNIP1 has been shown to inhibit TAX1BP1 
by competition and downregulate mitophagy. By phosphorylating 
OPTN, TBK1 increases the protein's ability to bind to Ub chains. 
A feed-forward mechanism promoting mitochondrial clearance is 
established by the OPTN-TBK1 complex. Prior to mitophagy, alter-
native E3 ubiquitin ligases that target OMM proteins include Gp78, 

SMURF1, MUL1, SIAH1, ARIH1, MARCH5, HUWE1, p62-Keap1-
Rbx1, and TRAF2. B Receptor-mediated mitophagy. Mitophagy 
receptors BNIP3, NIX, FKBP8, BCL2L13, AMBRA1, ATAD3, and 
FUNDC1 localize to the OMM and interact with LC3 directly to 
mediate mitochondrial elimination. BCL2L13 has also been shown 
to activate mitophagy by recruiting the Ulk1/FIP200/Atg13/Atg101 
initiation complex and LC3B during starvation stress. Following 
mitochondrial depolarization, PHB2 and cardiolipin are externalized 
to the OMM and interact with LC3. Choline dehydrogenase (CHDH) 
accumulates in the OMM of depolarized mitochondria and interacts 
with p62 and LC3. FUNDC1 phosphorylation status is influenced 
by PGAM5 phosphatase, CK2 and Src kinases, all of which control 
mitochondrial dynamics during hypoxia. The figure was created with 
Biorender.com
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shock 70 kDa protein 1L (HSPA1L) enhances Par-
kin recruitment, while BAG Cochaperone 4 (BAG4) 
inhibits Parkin translocation to mitochondria [57]. 
Heat shock protein 72 (HSP72) translocates to dam-
aged mitochondria and facilitates Parkin recruitment 
in skeletal muscles [33]. B cell leukemia/lymphoma-2 
(Bcl-2)-interacting death suppressor (BIS), also 
known as Bcl-2-associated athanogene 3 (BAG3), 
a co-chaperone of HSP70, co-migrates with Parkin 
to mitochondria and executes mitophagy in cardio-
myocytes [171]. On the other hand, the anti-apoptotic 
Bcl-2 family proteins, Bcl-xL and Mcl-1 (in HeLa 
cells), and the tumor suppressor protein, p53 (in liver 
and heart), prevent Parkin translocation to mitochon-
dria [59, 60, 62, 213]. The significance of these mech-
anisms relative to the PINK1-dependent mechanisms 
remains to be clarified.

 ii. Parkin-independent ubiquitin-mediated mitophagy
   Mice genetically deficient in PINK1 and Parkin 

exhibit normal mitophagy and cardiac function at 
young ages, suggesting that PINK1–Parkin-independ-
ent forms of mitophagy responsible for the basal turn-
over of mitochondria may exist in cardiomyocytes [79, 
81]. There are several E3 ubiquitin ligases that partici-
pate in ubiquitin-dependent mitophagy independently 
of Parkin. These include glycoprotein 78 (Gp78) [41], 
SMAD-ubiquitination regulatory factor1 (SMURF1) 
[27, 134], seven in absentia homolog (SIAH)-1 [169], 
ARIH1/HHARI [187], MARCH5 [18], HUWE1 [30], 
p62-keap1-Rbx1 axis [206] and MAPL/MULAN/
GIDE/MUL1 [4, 91, 215]. Likewise, TNF-receptor-
associated factor 2 (TRAF2) is an E3 ubiquitin ligase 
that is localized to mitochondria at baseline and dur-
ing pathological conditions, inducing mitophagy in 
the heart [98]. TRAF2 is unique in that, besides its 
involvement in innate immunity through TNF receptor 
signaling, it activates mitophagy even at baseline and 
protects the heart against sterile infection by facili-
tating safe disposal of mitochondrial DNA [98, 150]. 
These ligases can act independently of Parkin and may 
be more prominent when the PINK1–Parkin pathway 
is inhibited [132].

 iii. Autophagy adaptors
   The ubiquitin chain on OMM proteins triggers the 

recruitment of a variety of autophagy adaptors, includ-
ing TAX1 binding protein 1 (TAX1BP1), Nuclear dot 
protein 52 (NDP52, also known as CALCOCO2), a 
neighbor of BRCA1 gene 1 (NBR1), Sequestosome-1 
(SQSTM1/p62) and optineurin (OPTN) [132]. These 
adaptor proteins contain a ubiquitin-binding domain, 
which enables them to recognize and sequester ubiq-
uitinated cargoes, and an LC3-interacting region (LIR) 
that allows the recruitment of LC3-coated phagophore 

membrane around the cargo. Histone deacetylase 6 
(HDAC6), another ubiquitin-binding protein, is also 
involved in mitophagy. However, HDAC6 mediates 
autophagosome–lysosome fusion rather than cargo 
recruitment [86, 87]. Parkin-induced mitophagy 
was unaffected by the absence of p62 in transformed 
mouse embryonic fibroblasts and HeLa cells, sug-
gesting that p62 is not essential, and other adaptors, 
including NBR1, appear to have redundant roles in 
the sequestration of damaged mitochondria [123]. In 
HeLa cells lacking Parkin, PINK1 can promote the 
recruitment of OPTN, NDP52, and TAXBP1 to induce 
mitophagy [85]. OPTN is phosphorylated by TANK-
binding kinase 1 (TBK1), allowing increased ubiquitin 
chain binding and mitophagy in HeLa cells treated 
with CCCP [111]. NDP52 functions as a redox sensor 
through its redox-sensitive cysteine residues, which 
promote disulfide bond formation in HeLa cells under 
 H2O2-treated conditions. Oligomerization of NDP52 
in damaged mitochondria through these disulfide 
bonds facilitates the recruitment of the autophagy 
machinery for mitophagy in response to oxidative 
stress [72].

   Additional LIR-containing proteins, serving as posi-
tive or negative regulators of mitophagy, have been 
reported recently. A20 binding inhibitor of nuclear 
factor kappa B (NF-κB)-1 (ABIN-1), a polyubiquitin-
binding protein, is a positive regulator of mitophagy 
in HEK293 and HeLa cell lines [107]. In contrast, 
TNIP3-interacting protein 1 (TNIP1) is an LIR-
containing protein that binds to the LC3/GABARAP 
family of proteins and allosterically to TAX1BP1, a 
mitophagy receptor, thereby acting as a negative regu-
lator of mitophagy. TNIP1 binding to TAXBP1 pre-
vents the binding of ubiquitinated cargos to TAXBP1. 
Interestingly, ABIN-1 and TNIP1 are aliases for the 
same protein; thus, its function appears to be context 
dependent. It should be noted that TNIP1 can be phos-
phorylated by TBK1, leading to enhancement of the 
interaction of TNIP1 with FIP200, a protein in the 
Ulk1 complex. This interaction then competes with 
the interaction between FIP200 and TAXBP1, releas-
ing FIP200 from the autophagosome. Thus, phos-
phorylated TNIP1 can act positively in mitophagy 
by facilitating the recycling of FIP200 [51]. TNIP1 
is one of the few proteins identified as an endogenous 
negative regulator of mitophagy but its effect appears 
complex. Further investigation is required to clarify 
how endogenous TNIP1 function is regulated during 
stress conditions.

   Mitophagy adaptors also have other important func-
tions relevant for mitophagy. For example, p62 has 
the ability to phase separate ubiquitinated proteins 
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into a larger condensate. How cargo condensation 
and mitophagy is linked is poorly understood, but it 
is known that ubiquitinated Nur77 forms condensates 
that can sequester damaged mitochondria and targets 
cargo mitochondria for autophagy through interaction 
with p62 [138]. In addition, p62 serves as a scaffold 
for the recruitment of the Ulk1 complex, the core 
autophagy machinery, through interaction with the 
FIP200 claw domain, thereby promoting autophago-
some formation at ubiquitin condensates containing 
damaged mitochondrial proteins [184].

Ubiquitin‑independent or receptor‑mediated mitophagy

Mitophagy can also be mediated by mitochondrial integral 
membrane proteins that have LIRs independently of ubiq-
uitination [132]. Upon mitochondrial depolarization, these 
receptors accumulate on the OMM and trigger the formation 
of an isolation membrane around the damaged mitochon-
dria by interacting with Atg8 family proteins (LC3A/B/C, 
GABARAP, GABARAP-L1/2) on the autophagosome [132].

(i) BNIP3 and BNIP3L/NIX
BCL2 interacting protein 3 (BNIP3) is involved in mito-
chondrial turnover during hypoxia [218]. In response 
to hypoxia, BNIP3 is upregulated and anchored to the 
OMM through its C-terminal transmembrane domain. 
The N-terminal domain carrying the LIR motif is then 
exposed to the cytosol, allowing it to serve as a mitophagy 
receptor [54, 80, 146]. Phosphorylation of Ser17 and 
Ser24 proximal to the LIR region of BNIP3 is critical for 
LC3 interaction [231]. BNIP3 is upregulated by HIF-1α, 
thereby mediating mitophagy in response to hypoxia in 
murine embryonic fibroblast (MEF) cells [217]. BNIP3 is 
also upregulated by p53, thereby mediating mitochondrial 
dysfunction and autophagic cell death, the major known 
function of p53 in the heart [191]. Thus, BNIP3 mediates 
both adaptive and maladaptive mitophagy in a context-
dependent manner.
BNIP3L/NIP3-like protein X (NIX) is 53–56% homol-
ogous to BNIP3 and mediates mitochondrial clear-
ance via programmed mitophagy during reticulocyte 
maturation and erythrocyte differentiation [154]. NIX 
promotes mitophagy by recruiting GABARAP-L1 in 
CCCP-treated cells [129]. The NIX-LC3 interaction is 
stabilized by phosphorylation of NIX at Ser34 and Ser35 
near the LIR motif [147]. As with BNIP3, the C-terminal 
region of NIX is recruited and homodimerizes for effi-
cient mitophagy initiation [101]. Reactive oxygen species 
(ROS) accumulation caused by oxidative phosphorylation 
promotes the recruitment of Rheb (a small GTPase of the 
Ras superfamily) together with NIX and LC3 to promote 
mitophagosome formation [106]. In cardiac progenitor 

cells, mitophagy mediated by BNIP3/NIX facilitates their 
proper differentiation into myocytes through mitochon-
drial network reorganization and promotes their survival 
in the infarcted heart [84].
How do BNIP3/NIX mediate mitophagy? Several studies 
have shown that BNIP3 and NIX can activate PINK1–
Parkin-mediated mitophagy. Parkin ubiquitinylates NIX 
and promotes the recruitment of the selective autophagy 
adaptor NBR1, which can interconnect ubiquitin and 
LC3/GABARAP to promote autophagosome formation 
around mitochondria [43]. Additionally, BNIP3 interacts 
with PINK1 and promotes its accumulation on the OMM, 
leading to Parkin recruitment to mitochondria [223]. NIX 
similarly promotes Parkin recruitment to depolarized 
mitochondria [31]. However, BNIP3 is also involved in 
Parkin-independent mitophagy. Myeloid cell leukemia-1 
(Mcl-1), an anti-apoptotic Bcl-2 member, interacts with 
BNIP3 to enhance mitophagy in the heart in the presence 
of energy stress and mitochondrial damage [113]. Mcl-1 
has an LIR motif and acts as an adaptor for BNIP3 to pro-
mote mitophagy. Since Mcl-1 inhibits general autophagy 
through interaction with Beclin 1, it could serve as a 
mechanism that differentially regulates general autophagy 
and mitophagy.
BNIP3 may also induce mitophagy through Drp1. As 
we discuss separately below, Drp1 is a GTPase involved 
in mitochondrial fission. BNIP3 induces mitochondrial 
translocation of Drp1, allowing Drp1 to mediate mito-
chondrial fission and mitophagy in cardiomyocytes [88]. 
It should be noted that the effect of BNIP3 upon Drp1 is 
complex and may be detrimental under some conditions 
through pathological activation of mitochondrial fission 
and mitophagy. For example, doxorubicin-induced cell 
death and mitochondrial fission are prevented by down-
regulation of BNIP3 [29]. A polyphenolic compound, 
ellagic acid (EA), suppresses mitochondrial injury and 
necrotic cell death of cardiomyocytes through inhibition 
of BNIP3 (and subsequent activation of pathological 
mitophagy), and is thus of therapeutic benefit in lower-
ing oxidative injury and cardiac dysfunction in cancer 
patients undergoing chemotherapy or under ischemic 
cardiac stress [29].
Increasing lines of evidence suggest that the level of 
BNIP3/NIX is regulated by posttranslational mecha-
nisms. For example, SCF-FBXL4 ubiquitin ligase regu-
lates BNIP3 and NIX localization on mitochondria to 
preserve normal mitochondria levels. The loss of SCF-
FBXL4 leads to excessive mitophagy and perinatal lethal-
ity [12]. The UBXD8 adaptor regulates mitophagy by 
aiding in the recruitment of the hexameric AAA-ATPase 
valosin-containing protein (VCP) to mitochondria and 
promoting the degradation of BNIP3 through interaction 
with ubiquitin E3 ligases in mitochondria [226]. In addi-
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tion, the mitochondrial protein TMEM11 forms a com-
plex with BNIP3 and BNIP3L and is co-enriched at sites 
of mitophagosome formation. Lack of TMEM11 hyperac-
tivates mitophagy under normoxic and hypoxia-mimetic 
conditions, suggesting that it provides a spatial restriction 
effect on mitophagy activation by BNIP3/BNIP3L [206].
(ii) FUNDC1
FUN14 domain-containing protein 1 (FUNDC1) is an 
integral OMM protein with an N-terminal LIR motif that 
acts as a receptor for hypoxia-induced mitophagy [95]. 
FUNDC1 is regulated via phosphorylation and dephos-
phorylation events on Ser13 and Tyr18 near its LIR motif. 
Normoxic conditions favor Ser13 and Tyr18 phosphoryla-
tion of FUNDC1 by casein kinase 2 (CK2) and Src tyros-
ine kinase, respectively, to negatively regulate FUNDC1 
interaction with LC3 [15, 95]. Under hypoxia, Src kinase 
is inactivated and the FUNDC1–LC3 interaction is sta-
bilized by decreasing Tyr18 phosphorylation. Similarly, 
removal of Ser13 phosphorylation by PGAM5, a serine/
threonine phosphatase, promotes mitophagy [15]. How-
ever, the PGAM5–FUNDC1 interaction is prevented by 
BCL2L1/Bcl-xL (anti-apoptotic BH3 domain-contain-
ing molecule) under normoxic conditions [197]. On the 
other hand, in the presence of hypoxia or mitochondrial 
depolarization, phosphorylation of Ser17 of FUNDC1 
by Ulk1 recruited to fragmented mitochondria promotes 
mitophagy by increasing interaction with LC3 [198].
These studies emphasize the importance of FUNDC1 as 
a mitophagy receptor under hypoxic stress conditions. 
FUNDC1-mediated mitophagy also promotes cardiac 
progenitor cell differentiation and survival in the infarcted 
heart [84]. Hypoxia acclimation with a low-pressure 
hypoxic animal chamber alleviated cardiac dysfunction 
and fibrosis caused by MI injury in mice through activa-
tion of FUNDC1-mediated mitophagy [92]. The role of 
FUNDC1 in ischemia/reperfusion injury in the heart is 
discussed further later in this review.
(iii) BCL2L13
BCL2L13 is a single pass membrane protein anchored 
on the OMM and contains two LIR motifs. It regulates 
mitochondrial morphology such that the fragmented state 
is increased when it is overexpressed and the elongated 
state is increased when it is knocked down [116]. Involve-
ment of BCL2L13 in inducing mitophagy was first shown 
in yeast studies, in which BCL2L13 restored mitophagy 
in yeast cells lacking Atg32, a mitophagy receptor [116]. 
BCL2L13-dependent mitophagy was shown to be medi-
ated through conventional Atg7 via Atg8 lipidation in 
Atg32-lacking yeast cells [116]. Specifically, a mutation 
in one of the LIRs of BCL2L13 inhibited mitophagy in 
yeast cells lacking Atg32, suggesting the involvement 
of Atg8 in BCL2L13-mediated mitophagy [116], and 
phosphorylation at Ser272 near the second LIR motif is 

important for the BCL2L13–LC3 interaction [116]. In 
HEK293 and HeLa cells, BCL2L13 recruits the Ulk1 
complex (including FIP200, Atg13 and Atg101) along 
with LC3B to autophagosomes to induce mitophagy 
under starvation conditions [116].
(iv) FKBP8
FK506-binding protein 8 (FKBP8) is an OMM integral 
protein with an N-terminal LIR motif and a C-terminal 
transmembrane domain. FKBP8 preferentially binds to 
LC3A over other Atg8 family proteins in vivo and medi-
ates mitophagy in HeLa cells [9, 94].
(v) Prohibitin 2
Prohibitins (PHB) are IMM proteins. PHB2 is exposed to 
the cytosol in the presence of mitochondrial membrane 
depolarization and increased proteasomal activity that 
ruptures the OMM [194]. PHB2 associates with LC3 
through its LIR domain and the p62 adaptor to target 
mitochondria for autophagic degradation [200]. PHB2 
also mediates Parkin-induced mitophagy under energetic 
stress conditions in HeLa cells and MEFs [194].
(vi) Cardiolipin
Cardiolipin is a phospholipid in the IMM that is exposed 
to the cytosol only when the OMM is disrupted by mito-
chondrial damage and elicits autophagosome formation 
around damaged mitochondria via its interaction with 
LC3 [21, 158]. Mesenchymal stem cells (MSCs) derived 
from high-fat diet (HFD)-induced obese mice (MSC-Ob) 
have a reduced cardiolipin content and less ability to clear 
damaged mitochondria compared to MSCs from control 
mice fed a normal diet [151].
(vii) AMBRA1
Autophagy/Beclin 1 regulator 1 (AMBRA1) is an adapter 
protein in the autophagy signaling network. AMBRA1 is 
involved in the early steps of autophagosome core com-
plex formation in mTORC1-dependent autophagy [22]. 
Under basal conditions, AMBRA1 is present in mitochon-
dria and its pro-autophagic activity is inhibited by Bcl-2. 
However, AMBRA1 directly interacts with LC3 through 
its LIR motif to recruit mitochondria to autophagosomes 
upon mitophagy induction. This interaction is crucial for 
regulating both canonical Parkin-dependent and -inde-
pendent mitochondrial clearance in fibroblasts of human 
and  PINK1−/− mouse origin, as well as in HEK293 and 
HeLa cell lines [166].
(viii) ATAD3B
ATPase family AAA domain-containing protein 3B 
(ATAD3B), which is only expressed in primates, is a 
mitochondrial membrane-bound ATPase that was 
recently identified as a mitophagy receptor [161]. The 
ATAD3B protein has an LIR motif that binds to LC3 
and stimulates oxidative stress-induced mitophagy with-
out the assistance of PINK1, facilitating the removal of 
oxidative stress-damaged mtDNA. When ATAD3B and 
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ATAD3A hetero-oligomerize under normal conditions, 
ATAD3B's C-terminal region is directed toward the mito-
chondrial intermembrane space, preventing mitophagy. 
Decreased ATAD3B–ATAD3A hetero-oligomerization 
as a result of oxidative stress-induced mtDNA damage or 
mtDNA depletion causes exposure of the ATAD3B C-ter-
minus at the OMM, which then attracts LC3 to stimulate 
mitophagy [161].
(ix) Choline dehydrogenase (CHDH)
CHDH catalyzes the dehydrogenation of choline to 
betaine aldehyde in mitochondria and participates in gly-
cine, serine, and threonine metabolism. Under normal cir-
cumstances, CHDH is found in both the IMM and OMM. 
When the mitochondrial membrane potential is disrupted, 
CHDH builds up on the OMM and interacts with p62 
via its Phox and Bem1 (PB1) domain, forming a CHDH-
p62-LC3 complex and mediating mitophagy [136].

Alternative mitophagy and mechanism

The forms of mitophagy discussed above are all mediated 
through autophagosomes associated with LC3, requiring the 
Ubl conjugation system. However, some forms of mitophagy 
occur independently of the conventional autophagy mecha-
nisms. Using Atg5 knockout cells, Nishida et al. discovered 
an Atg5- and Atg7-independent mechanism of autophagy, 
referred to as alternative autophagy [127]. The two Ubl 
conjugation systems, which involve Atg5, Atg7, and LC3, 
are not utilized by alternative autophagy. Like conventional 
autophagy, alternative autophagy utilizes double-membrane 
autophagosomes to internalize cargo for degradation via 
fusion with lysosomes. However, autophagosomes in alter-
native autophagy are produced through a Rab9-dependent, 
but LC3-independent, mechanism [127].

Although both Ulk1 and Ulk2 help initiate conven-
tional autophagy, Ulk2 function is thought to be redundant, 
whereas the loss of Ulk1 typically causes disruption of 
autophagy [56, 216]. Furthermore, Ulk1 is a critical ini-
tiator of both the conventional and alternative processes, 
in contrast to Ulk2, which is only involved in conven-
tional autophagy [83]. Both conventional and alternative 
autophagy are regulated by phosphorylation of Ulk1 by 
mTORC1 (at Ser757, inhibition) and AMPK (at Ser317 and 
Ser777, activation) [75], and Beclin 1 and Vps34 are among 
the autophagy-related targets that are phosphorylated by 
Ulk1 [36]. On the other hand, in Atg5-deficient MEF cells 
treated with etoposide, the necroptosis-regulating kinase 
RIPK3 interacts with and phosphorylates Ulk1 at Ser746. 
RIPK3-dependent phosphorylation of Ulk1 at Ser746 only 
activates alternative autophagy, without activating necropto-
sis or conventional autophagy, indicating a clear functional 
distinction between conventional and alternative mecha-
nisms [183, 195].

In alternative autophagy, autophagosomes originate from 
the trans-Golgi network [127]. At the isolation membrane, 
WIPI family proteins perform a crucial PIP3 effector func-
tion [115]. WIPI3, rather than WIPI1 and WIPI2, is essen-
tial for producing alternative isolation membranes [207]. 
Additionally, a recent study found that Golgi-resident Rab2 
participates in the formation of autophagosomes by separat-
ing from the Golgi apparatus under autophagy-inducing con-
ditions to interact with Ulk1 [32]. Ulk1-deficient mice are 
viable, in contrast to mice with knockouts of various impor-
tant Atg genes, such as Atg5, Atg7, and Atg12, which are 
fatal to neonates [82]. However, Ulk1-knockout mice exhibit 
defects in mitochondrial autophagy in primary hepatocytes 
during erythrocyte development [83, 157].

There is a form of mitophagy that uses a molecular mech-
anism similar to that of alternative autophagy and is, thus, 
termed alternative mitophagy. Alternative mitophagy can 
be observed even when conventional autophagy/mitophagy 
is inhibited, such as in the presence of Atg7 downregula-
tion [120, 152, 180]. In alternative mitophagy, damaged 
mitochondria are sequestrated in autophagosomes asso-
ciated with Rab9, but not LC3, through Ulk1-dependent 
mechanisms. Although depolarized mitochondria can be 
found in the cargo, how damaged mitochondria are tagged 
for degradation remains unclear. What is known, however, 
is that alternative mitophagy is associated with the forma-
tion of a large protein complex consisting of Ulk1-Rab9-
Rip1-Drp1 near mitochondria-associated endoplasmic 
reticulum membrane (MAM) [179]. Drp1 is a conserved 
dynamin GTPase superfamily protein required for mito-
chondrial fission and various forms of mitophagy, including 
Parkin-dependent, Parkin-independent, receptor-mediated, 
and alternative mitophagy [69, 182]. Multiple kinases, such 
as Cdk1, Erk2, and Rip1, phosphorylate Drp1 at Ser616 
and enhance fission [66, 71, 118, 152, 199]. Under stress 
conditions, Ulk1 interacts with Rab9 and phosphorylates 
it at Ser179, which is a crucial first step for the formation 
of the Ulk1-Rab9-Rip1-Drp1 complex [152]. A signaling 
complex comprising Rip1 and Drp1 is formed in response 
to Ulk1 activation and phosphorylation of Rab9. Rip1-
mediated Drp1 phosphorylation at Ser616 then promotes 
mitochondrial fission, and Rab9-mediated autophagosomes 
form around damaged mitochondria [152]. A schematic rep-
resentation of the molecular mechanisms involved in alter-
native mitophagy is given in Fig. 2. As mentioned above, 
the materials for generating alternative autophagosomes are 
derived from trans-Golgi membranes. Alternative mitophagy 
is activated after conventional mitophagy is inactivated in 
diabetic hearts [179, 180]. Thus, inactivation of conventional 
mitophagy may induce some of the mechanisms that stimu-
late alternative mitophagy.

Other processes also degrade damaged mitochondria, 
using some of the same molecules as those utilized by 
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conventional mitophagy but via distinct mechanisms. For 
example, damaged mitochondria with OMM proteins ubiq-
uitinated by Parkin are also sequestrated by Rab5-dependent 
early endosomes via the ESCRT machinery and degraded 
in lysosomes [53]. The endosomal-mediated degradation of 
mitochondria is initiated by the same mechanism as Parkin-
mediated mitophagy and requires Beclin 1 [53], suggesting 
that crosstalk may exist between mitophagy and the endo-
somal pathway. More investigation is needed to clarify the 
functional relevance of endosomal-mediated mitochondrial 
clearance in the heart in vivo.

Micromitophagy

Microautophagy is a mechanism through which cytosolic 
materials are directly engulfed by lysosomes through mem-
brane invagination. During ischemia–reperfusion (I/R) in the 
heart, damaged mitochondria can be taken up by lysosomes 
directly. I/R promotes the association of GAPDH with mito-
chondria and directs the uptake of damaged mitochondria 
into multiorganellar lysosomal-like (LL) structures for elimi-
nation [209]. Protein kinase Cδ (PKCδ) inhibits this pro-
cess through phosphorylation of GAPDH at Thr246, thereby 
leading to accumulation of damaged mitochondria at the 
edge of the LL structure and causing apoptosis. Inhibition of 
PKCδ or expression of a phosphorylation resistant GAPDH 
mutant during I/R rescues mitophagy, promotes clearance of 
damaged mitochondria, and downregulates apoptosis [209].

MDVs represent another form of microautophagy, in 
which vesicles enriched in mitochondrial proteins bud off 

from mitochondria, transit into multivesicular bodies and 
are engulfed by lysosomes [90, 104, 165]. MDVs are stimu-
lated as an early response to oxidative stress and deliver dys-
functional proteins and lipids from mitochondria as cargo to 
lysosomes without the involvement of mitochondrial depo-
larization and fission machinery [104, 165]. Although the 
process is independent of the macroautophagy machinery, 
including Atg5 and LC3, it requires PINK1 and Parkin [104, 
165].

Taken together, mitochondria can be degraded through 
multiple mechanisms. How each mechanism of mitochon-
drial degradation is regulated by stress and whether the 
activities of the different mechanisms of mitochondrial deg-
radation affect one another remain to be clarified.

Autophagic secretion of mitochondria

Heterophagy is a mechanism whereby damaged mitochon-
dria are ejected from cells and degraded by macrophages 
[126]. This type of transcellular mitochondrial degradation 
system exists in the heart, where damaged mitochondria are 
packed in exophores, large membrane-surrounded vesicles, 
which are then phagocytized and degraded by resident mac-
rophages after release into the extracellular space [125]. Not 
only are exophores LC3( +), but the release of exophores 
is affected by the level of autophagy, suggesting that the 
exophore-mediated elimination of damaged mitochondria is 
controlled by mechanisms shared with autophagy. Suppres-
sion of exophore phagocytosis or ablation of resident mac-
rophages induces inflammation. Thus, removal of damaged 

Fig. 2  Mechanism of alternative mitophagy. Energy stress activates 
AMPK-mediated phosphorylation of Ulk1 at Ser555. The activated 
Ulk1 phosphorylates Rab9 at Ser179 and initiates phagophore forma-
tion utilizing trans-Golgi-derived membrane. Activated Ulk1-Rab9 

recruits Rip1/3 kinase and phosphorylates Drp1 at Ser616, which 
activates mitochondrial fission to segregate damaged mitochondria 
and promote alternative mitophagy at the mitochondrial-associated 
ER membrane. The figure was created with Biorender.com
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mitochondria through LC3( +) exophores is a mitochondrial 
quality control mechanism [126]. A recent report showed 
that damaged mitochondria sequestered into vesicles through 
PINK1–Parkin-mediated mitophagy are also secreted into 
the extracellular space, especially when the mAtg8 conju-
gation system, including Atg3, Atg5, and Atg7, is not func-
tional [172]. Importantly, secreted mitochondria elicit innate 
immune responses through systemic activation of the cGAS-
STING pathway [172]. This highlights the importance of 
the mAtg8 lipidation system in assuring the completion of 
mitophagy via lysosomal degradation without activation 
of inflammatory responses. Thus, it remains to be clarified 
whether secretion of damaged mitochondria initiated by the 
PINK1–Parkin-dependent mechanism of mitophagy can 
play a salutary role in maintaining mitochondrial quality. In 
addition, cells, including cardiomyocytes, can transfer intact 
mitochondria from one cell to another, as a cell protective 
mechanism [39, 64]. The transfer is mediated through sev-
eral different mechanisms, including tunneling nanotubes 
and extracellular vesicles [39]. Since extracellular vesicles 
and MDVs share some properties and the release of extracel-
lular vesicles is affected by lysosomal activity, it is possible 
that the release of intact mitochondria and eventual improve-
ment of mitochondrial quality control in recipient cells are 
also controlled by autophagy and mitophagy in host cells. 
Further investigation is required to clarify this issue.

Mitochondrial fission and fusion

Mitochondria are highly dynamic organelles that constantly 
undergo fusion and fission to maintain homeostasis in 
response to changes in the cellular environment. Mitochon-
drial fusion is coordinated by Mfn1, Mfn2, and optic atro-
phy 1 (OPA1), whereas fission is regulated by Drp1 [119, 
196]. In general, elongated mitochondria are protected from 
degradation by mitophagy, carry more cristae, and maintain 
ATP production through increased activity of ATP synthase 
[49]. Furthermore, mitochondrial fusion rescues a part of 
mitochondria from reversible damage [185]. On the other 
hand, isolation of severely damaged mitochondria through 
fission can protect the healthy portion of mitochondria by 
preventing the spread of depolarization and ROS [211]. In 
addition, physiological mitochondrial fragmentation medi-
ated by Drp1 is important to meet the energetic demands 
during exercise [25]. Thus, understanding the physiological 
function of fusion and fission is important.

Mfn1 and Mfn2 are specialized proteins localized on 
the OMM that regulate the fusion of the OMM. They are 
dynamin-like GTPases that contain N-terminal catalytic 
GTP-binding domains and C-terminal transmembrane 
domains [189]. The C-terminal transmembrane domains 
anchor Mfn1/2 to the OMM, where they interact with adja-
cent mitochondria via a heptad repeat region [78, 188]. Since 

individual overexpression of Mfn1 or Mfn2 can rescue the 
loss of the other protein to promote fusion, Mfn1/2 presum-
ably have redundant functions [16]. However, genetic muta-
tion of Mfn2 was shown to interrupt mitochondrial fusion, 
leading to a neurodegenerative condition [40]. Following 
myocardial IR injury, matrix metalloproteinase-2 (MMP-2) 
activation and cleavage of Mfn2 leads to impaired myocar-
dial contractile function, lowered mitochondrial respiration, 
and elevated inflammasome response [7]. MORN repeat-
containing protein 4 (MORN4) directly binds to Mfn2 and 
promotes phosphorylation of Mfn2 at Ser442 by Rho-asso-
ciated protein kinase 2 (ROCK2) to induce mitochondrial 
dynamics and mitophagy [229]. Downregulation MORN4 
during myocardial ischemia accelerated cardiac injury and 
fibrosis, exacerbating cardiac dysfunction in a murine model 
[229].

Fusion of the IMM is regulated by OPA1, a dynamin-like 
GTPase that is localized on the IMM [28] and also regu-
lates crista formation and maintenance. OPA1 is processed 
to a membrane-bound long isoform (L-OPA1) by mitochon-
drial processing peptidase (MPP). However, L-OPA1 can 
also be proteolytically cleaved to a short isoform (S-OPA1) 
by two IMM peptidases, overlapping proteolytic activ-
ity with m-AAA protease 1 (OMA1) and YME1 Like 1 
ATPase (YME1L1) [5]. The balance between L-OPA1 and 
S-OPA1 is regulated by YME1L and OMA1 under basal 
conditions. When mitochondrial stress occurs, the activity 
of OMA1 is increased and L-OPA1 is actively cleaved to 
S-OPA1. The resulting imbalance between L-OPA1 and 
S-OPA1 promotes mitochondrial fission [99, 188]. Upreg-
ulation of OPA1 at appropriate levels protects the heart 
against ischemia [23, 170, 186]. Furthermore, inhibition of 
OMA1 protects the heart against heart failure in response 
to multiple types of cardiac insult [2] by preventing crista 
remodeling. These findings suggest that OPA1 and inhibition 
of OMA1 play salutary roles during heart failure, primarily 
by preventing crista remodeling. However, how degradation 
of irreversibly damaged mitochondria is affected by these 
interventions remains unknown.

OMM constriction occurs at mitochondria–ER contact 
sites where Drp1 is oligomerized. Drp1 is a cytosolic protein 
with an N-terminal GTPase domain, a middle domain, a 
variable domain, and a C-terminal GTPase effector domain 
[142]. Drp1 is recruited to sites of mitochondrial fission in 
a phosphorylation-dependent manner, through interactions 
with mitochondrial OMM proteins such as Fis1, MFF, and 
mitochondrial dynamics proteins of 49 and 51 kDa (MiD49, 
MiD51) [96, 210]. Fis1 was initially proposed as a Drp1 
receptor in yeast, but the role of mammalian Fis1 is less clear 
[114]. While it may not be required for Drp1 recruitment 
to the OMM, as shown in Fis1-null MEFs, overexpression 
of human Fis1 can induce mitochondrial fragmentation in 
the absence of Drp1 [96, 212]. Fis1 activates mitochondrial 
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fission and suppresses fusion by inhibiting the GTPase 
activities of fusion proteins Mfn1, Mfn2, and OPA1 [212]. 
While OMM constriction has been studied extensively, the 
mechanism of IMM division remains elusive. Recent stud-
ies have shown that an intra-mitochondrial influx of  Ca2+ 
activates IMM constriction at mitochondria–ER contact sites 
[14, 19], but further studies are required to fully understand 
the fission process of the IMM. A recent study using yeast 
and HeLa cells showed that mitofissin (Atg44), a mitochon-
drial intermembrane space protein, mediates fission and 
contributes to mitophagy [42]. Mitofissin is required for the 
formation of mitochondrial protrusions that are eventually 
fragmented and encapsulated by phagosomes for clearance 
[42].

Mitochondrial fission allows the segregation of 
unhealthy mitochondria so that they can be eliminated by 
mitophagy [185]. Although direct involvement of Drp1 
in the mitophagy machinery has been shown in yeast [1, 
70, 100], the mechanism by which mitochondrial fission is 
coupled with mitophagy has not been fully elucidated in 
mammalian cells [65, 69, 164]. Separation of damaged mito-
chondria during mitophagy takes place even in the absence 
of Drp1 in yeast and HeLa cells, where the damaged por-
tion of mitochondria can be separated by autophagosomal 
constriction [208]. However, the loss of Drp1 function does 
inhibit mitophagy in the heart under some conditions [182]. 
When Drp1 is phosphorylated at Ser616, it is localized at 
the MAM, where mitochondrial fission takes place in car-
diomyocytes. As noted above, Drp1 associates with a large 
protein complex at the MAM, thereby mediating alterna-
tive mitophagy in cardiomyocytes during ischemia and 
HFD consumption [179]. It should be noted that Drp1 can 
regulate mitophagy even without physical contact with the 
damaged mitochondria. For example, Drp1 positively medi-
ates autophagosome formation by alleviating the inhibition 
of Beclin 1 by Bcl-2/Bcl-xL [182]. Furthermore, Drp1 also 
regulates mitochondrial function through fission-independ-
ent mechanisms [219]. Thus, it is possible that the effect of 
loss of Drp1 function upon mitophagy could be secondary 
to its effect upon global changes in mitochondrial function. 
Indeed, although Drp1 promotes physiological mitochon-
drial fragmentation during exercise, mitophagy is inhibited 
[25]. Although this makes practical sense, in that the mito-
chondria are not depolarized and it would be undesirable for 
the content to be decreased when coping with a high energy 
demand, the mechanism by which Drp1 actively inhibits 
mitophagy is unknown.

The role of mitophagy during cardiac stress

Here we discuss activation of mitophagy during cardiac 
stress and its functional significance. We will limit our dis-
cussion to three representative stress conditions in which 

activation of mitophagy plays a critical role in regulating 
the survival and function of cardiomyocytes.

Mitophagy in ischemia and reperfusion (I/R)

While reperfusion after ischemia is critical for myocardial 
survival, it dramatically increases oxidative damage through 
generation of ROS, causing myocardial cell death [20, 58, 
117]. Mitochondrial ROS trigger the opening of the mito-
chondrial permeability transition pore (mPTP) on the IMM 
[20]. mPTP opening during I/R prevents the recovery of 
ATP production and causes cardiomyocyte death through 
necrosis [52].

In general, mitophagy is activated in the heart and plays 
a protective role during I/R by alleviating the insults from 
damaged mitochondria and promoting mitochondrial bio-
genesis for recovery [81]. For example, phosphoglycerate 
mutase family member 5 (PGAM5) is crucial for mitochon-
drial homeostasis, promoting mitophagy through stabiliza-
tion of PINK1; PGAM5 knockout mice showed inhibited 
PINK1-dependent mitophagy in the heart, resulting in the 
accumulation of damaged mitochondria, increased oxida-
tive stress, and exacerbated necroptosis during I/R [97]. 
The mitochondrial  Zn2+ transporter (ZIP7 or Slc39a7) is 
upregulated during the reperfusion phase and negatively 
regulates mitophagy, contributing to increased reperfusion 
injury [220]. ZIP7 levels are high in the mitochondria of 
cardiac tissue from heart failure patients [220]. Cardiac-
specific downregulation of ZIP7 decreased ROS production, 
enhanced mitophagy, and reduced infarct size, conferring 
protection against reperfusion injury [220]. Transient recep-
tor potential mucolipin 1 (TRPML1) is activated second-
ary to increased ROS after I/R, thereby inducing lysoso-
mal zinc release into the cytosol and ultimately blocking 
autophagy in cardiomyocytes, possibly by disrupting fusion 
between autophagosomes and lysosomes [167, 202]. Phar-
macological and genetic inhibition of TRPML1 channels 
effectively reduced infarct size and rescued heart function 
in mice subjected to I/R in vivo by restoring impaired myo-
cardial autophagy and reducing accumulation of damaged 
mitochondria [167, 202]. Downregulation of endogenous 
Drp1 inhibits mitophagy and increases cardiomyocyte death 
during I/R [34]. CLOCK, a circadian gene, transcription-
ally coordinates genes involved in mitochondrial fission 
and fusion and mitophagy, thereby promoting cell survival 
[145]. Thus, interventions that stimulate the direct regulators 
of mitophagy in cardiomyocytes may alleviate I/R injury 
by preconditioning the heart and promoting mitochondrial 
quality control mechanisms. Mitophagy is also activated 
in platelets during I/R. A synthetic peptide inhibiting the 
FUNDC1-LC3 interaction inhibits mitophagy in platelets 
during hypoxia and prevents preconditioning of the heart 
against reperfusion injury [224]. Thus, interventions that 
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stimulate mitophagy in non-myocyte populations may also 
be effective in reducing I/R injury. However, caution must 
be exercised in utilizing these interventions since many 
molecules have multiple cellular functions and their effects 
are context dependent. For example, the effect of Mdivi-1, 
a chemical inhibitor of Drp1, upon I/R injury is dose and 
context dependent [148, 222]. Myocardial ischemia with-
out reperfusion activates not only conventional mitophagy 
but also alternative mitophagy in the heart [152]. Although 
suppression of conventional mitophagy did not increase 
myocardial damage after 3 h of ischemia, suppression of 
alternative mitophagy with Rab9(S179A) significantly 
exacerbated myocardial damage, suggesting that alternative 
mitophagy may play a more prominent protective role than 
conventional mitophagy during prolonged ischemia in the 
heart [152]. The role of alternative mitophagy during reper-
fusion remains to be elucidated.

Mitophagy during I/R is also negatively regulated by 
upstream signaling molecules. Casein kinase 2α (CK2α), a 
constitutive serine/threonine kinase, suppresses FUNDC1 by 
phosphorylating it at Ser13 [8, 15]. CK2α protein expression 
is upregulated during acute cardiac I/R injury and inhib-
its FUNDC1-dependent mitophagy [228]. Cardiac-specific 
CK2α knockout in mice abrogated cardiac dysfunction after 
I/R injury [228]. Similarly, genetic deletion of mammalian 
STE20-like kinase 1 (Mst1), a potent inhibitor of autophagy, 
activated FUNDC1-induced mitophagy and reduced cardio-
myocyte mitochondrial apoptosis, resulting in protected car-
diac function [214]. Thus, endogenous Mst1 also inhibits 
FUNDC1-mediated mitophagy, leading to increased cardiac 
injury [214]. Myocardial ischemia induces accumulation of 
 CO2 and bicarbonate, the latter of which, in turn, suppresses 
mitophagy during reperfusion, resulting in exacerbated myo-
cardial injury [143]. Thus, an alternative strategy for pro-
tecting the heart against I/R injury could be to inhibit the 
negative regulators of mitophagy.

It should be noted that some reports showed that 
mitophagy can be over-activated during I/R and, thus, 
downregulation of mitophagy may mitigate myocardial 
injury under some conditions. For example, downregula-
tion of mitophagy during I/R via overexpression of RNA 
methylation reading protein YTHDF2 relieves myocardial 
I/R injury by downregulating BNIP3 mRNA expression in 
hypoxia–reperfusion (H/R)-treated H9c2 cells or myocardial 
I/R injury (MIRI) rats [11]. Notch1 suppresses the PTEN-
PINK1-Parkin signaling and downregulates mitochondrial 
fusion/fission and mitochondrial autophagy, conferring 
protection against I/R injury in cardiomyocytes and a rat 
I/R injury model [203]. In I/R rat models, exercise-induced 
parasympathetic nerve function increased myocardial M2 
acetylcholine receptor  (M2AChR) protein expression and 
effectively reduced mitophagy, endoplasmic reticulum stress 
(ERS), and apoptosis [17].

We and others have shown that autophagy can become 
dysregulated during the late stages of I/R injury and that 
excessive autophagy induces cell death. One mechanism 
mediating cell death induced by dysregulated autophagy is 
autosis, a unique form of cell death characterized by specific 
morphological and biochemical features [121]. Upregulation 
of Rubicon during the late stage of I/R blocks autophagic 
flux, thereby inducing excessive accumulation of autophago-
somes and dysfunctional intracellular organelles. It is cur-
rently unknown whether dysregulation of mitophagy induces 
autosis. Since, in theory, mitophagy selectively eliminates 
already damaged mitochondria, it may not participate in 
autosis. However, further investigation is required to deter-
mine whether excessive degradation of mitochondria can 
take place during I/R through non-selective destruction due 
to dysregulated autophagy.

An important caveat is that what we currently know 
about the role of mitophagy during I/R is based upon stud-
ies conducted with rodents. Studies with large mammals 
and humans remain sparse. In a porcine model of I/R, 
pre-treatment with chloramphenicol succinate (CAPS) (an 
autophagy activator) greatly reduced infarct size and exerted 
cardioprotection compared to saline treatment [153]. In 
patients undergoing coronary artery bypass or valve sur-
gery requiring cardiopulmonary bypass (CPB), an increase 
in autophagic flux during surgery, indicated by decreases 
in p62 from right atrial appendage biopsies, was inversely 
correlated with mortality post-surgery, suggesting that 
autophagy is cardioprotective in humans [67]. However, 
another study showed that autophagy, indicated by changes 
in autophagy markers in left ventricular biopsies, is not acti-
vated by early reperfusion or remote ischemic precondition-
ing in patients undergoing coronary artery bypass grafting. 
Thus, other mechanisms besides autophagy may predomi-
nantly mediate cardioprotection during myocardial ischemia 
and reperfusion in humans [44]. Further investigation with 
large mammals and humans is essential. A schematic repre-
sentation of the effect of various factors discussed here on 
mitophagy and their influence on the heart during I/R injury 
is shown in Fig. 3.

Mitophagy during cardiac hypertrophy and heart failure

Transverse aortic constriction (TAC) is commonly used 
to model pressure overload-induced heart failure in mice. 
Hemodynamic forces induce not only mechanical stress but 
also neurohormonal and autocrine/paracrine responses, cul-
minating in cellular stress at the level of organelles, includ-
ing the endoplasmic reticulum and mitochondria. Pressure 
overload rapidly induces autophagy in cardiomyocytes, 
which plays both protective and detrimental roles in the heart 
depending upon the extent of stress and the timepoint [122, 
149, 155]. LC3-dependent classical autophagy was shown 
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to be activated acutely post-TAC and rapidly reverted to the 
baseline level by 24 h [159]. Mitophagy was subsequently 
activated from Day 3 to Day 7 post-TAC, as demonstrated 
using electron microscopy and Mito-Keima, a fluorescent 
indicator of mitophagy [120]. Thus, although mitophagy is 
activated by pressure overload, its activation is transient, 
and, importantly, heart failure develops after mitophagy is 
inactivated. Treatment with TAT-Beclin 1 [160], a peptide 
that allows mobilization of endogenous Beclin 1 from the 
intracellular storage site, after mitophagy was inactivated 
partially rescued mitophagy and improved heart function in 
the presence of pressure overload. These results suggest that 
mitophagy plays a protective role in the heart during pres-
sure overload [159]. Consistently, activation of mitophagy 
is generally protective during other forms of heart failure 
[60, 168, 190, 230]. It is possible that selective autophagy, 
including mitophagy and ERphagy [109], may be more 
consistently protective against heart failure than general 
autophagy.

General autophagy, evaluated with GFP-LC3, and 
mitophagy, evaluated with Mito-Keima, appear to take 
place with distinct time courses. The difference in time 
course between general autophagy and mitophagy was also 
observed in the heart in response to other forms of stress, 
including ischemia and HFD consumption [65, 105, 117, 

119, 120, 152, 179–182], and was also noted in other cell 
types [3, 48, 108]. One possibility is that selective forms 
of autophagy, including mitophagy, are mediated through 
molecular mechanisms distinct from those of conventional 
autophagy, like alternative mitophagy. Thus, to reactivate 
mitophagy in failing hearts, it would be essential to clarify 
possible time-dependent changes in the underlying mecha-
nism of mitophagy and identify molecular interventions, 
like TAT-Beclin 1, that effectively reactivate mitophagy. For 
example, Ulk1/Rab9-mediated alternative mitophagy is acti-
vated during pressure overload [120]. Cardiac-specific Ulk1-
knockout (Ulk1cKO) mice, in which alternative mitophagy 
is inhibited, developed cardiac dysfunction as early as 3 days 
post-TAC, as compared to 2 weeks in wild-type mice [120]. 
However, rescue of LC3-dependent mitophagy using TAT-
Beclin 1 in Ulk1cKO mice improved cardiac function after 
TAC [120]. This suggests that compensation with a TAT-
Beclin 1-activatable form of mitophagy is beneficial under 
pressure overload conditions. Drp1 was found to translocate 
from the cytosol to mitochondria and activate mitophagy in 
the heart under pressure overload [110, 159]. Additionally, 
cardiac-specific heterozygous Drp1 knockout mice showed 
exacerbated heart failure in response to pressure overload 
even after activation of autophagy with TAT-Beclin 1, sug-
gesting that Drp1 is required for mitophagy in the heart in 

Fig. 3  Mitophagy in ischemia–reperfusion injury. During myocar-
dial reperfusion following ischemic injury, increased ROS production 
causes mPTP opening, thereby leading to cardiomyocyte apoptosis 
and necrosis. In this condition, accumulated  CO2 and bicarbonate 
inhibit mitophagy and promote myocardial injury. ZIP7 and TRPML1 
upregulation during I/R inhibits mitophagy thereby contributing to 
increased reperfusion injury. Upregulated Mst1 and CK2α or down-
regulated PLK1 inhibit FUNDC1-mediated mitophagy, resulting in 
exacerbated cardiac injury. Mst1 may inhibit mitophagy through Bec-
lin 1 phosphorylation and inhibition of autophagosome formation. 

Drp1-mediated and PGAM5-PINK1-mediated mitophagy protects the 
heart against I/R injury. MORN4 promotes ROCK2-mediated phos-
phorylation and activation of MFN2 leading to increased mitochon-
drial dynamics and mitophagy to enhance cardioprotection during I/R 
injury. Inhibition of overactivation of mitophagy during I/R injury 
is cardioprotective in certain conditions.  M2AChR signaling inhibits 
excessive mitophagy. Notch1 inhibits PTEN-PINK1-Parkin signaling-
mediated mitophagy. YTHDF2 inhibits BNIP3 mRNA expression 
and downregulates mitophagy. The figure was created with Biorender.
com
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response to pressure overload [110, 159]. In addition, Krup-
pel-like factor 4 (KLF4), a member of the zinc finger family 
of transcription factors, directly binds to the promoter of 
Ulk1/2, molecules implicated in mitophagy during pressure 
overload stress [93].

Volume overload is observed in the chronic phase of myo-
cardial infarction (MI), which also leads to cardiac hyper-
trophy, chamber dilation, and heart failure. Parkin has been 
shown to be essential for mitophagy in cardiomyocytes fol-
lowing MI, with Parkin deficiency leading to exacerbation 
of cardiac remodeling and heart failure after MI. Cardio-
myocytes from Parkin knockout mice exhibit accumulation 
of damaged mitochondria due to reduced mitophagy [81]. 
However, PINK1 appears not to be essential for mitophagy 
after MI since Parkin recruitment to damaged mitochondria 
was unaffected by the loss of PINK1 [79].

When mitophagy takes place, mitochondrial DNA is 
degraded by DNase II in lysosomes. DNase II hydrolyzes 
both exogenous DNA and mitochondrial DNA at low pH. 
Accumulation of mitochondrial DNA due to downregulation 
of DNase II can accelerate heart failure in the presence of 
pressure overload by activating TLR9-dependent inflamma-
tion [131]. TLR9 receptor-deficient mice have better car-
diac function than wild-type mice under pressure overload 
conditions [131]. Whether interventions that upregulate 

mitophagy during pressure overload coordinately regulate 
degradation of mitochondrial DNA by DNase II or whether 
a mismatch occurs remains to be clarified. The effect of 
mitophagy during hypertrophy and heart failure is schemati-
cally represented in Fig. 4.

Mitophagy in diabetic cardiomyopathy

Obesity and diabetes are prevalent metabolic disorders that 
commonly induce diastolic dysfunction, hypertrophy, and 
inflammation in the heart, a condition collectively called 
diabetic cardiomyopathy [173]. Obesity and diabetes also 
contribute to the pathogenesis of heart failure with preserved 
ejection fraction (HFpEF), one of the most common forms 
of heart failure in developed countries [173]. Diabetic car-
diomyopathy is associated with a shift in substrate utiliza-
tion from glucose to fatty acids due to insulin deficiency. 
Increased utilization of fatty acids for energy production 
induces more oxidative stress and ultimately causes mito-
chondrial damage [74]. Mitochondrial dysfunction also 
causes an imbalance between fatty acid uptake and catabo-
lism, leading to accumulation of lipid droplets and lipotoxic-
ity [26]. Increasing lines of evidence suggest that mitophagy 
plays a critical role in the maintenance of mitochondrial 
function in diabetic hearts [227].

Fig. 4  Mitophagy in pressure overload-induced hypertrophy. Tran-
sient activation of conventional autophagy during pressure overload 
occurs one day after TAC, whereas activation of mitophagy occurs 
thereafter, peaking at around 3 and 7 days after TAC. In particular, 
mitophagy activation after inactivation of conventional autophagy 
occurs through an Ulk1-Rab9-dependent alternative mitophagy 
mechanism. Both autophagy and mitophagy contribute to cardio-
protection under pressure overload stress. Pressure overload causes 

mitochondrial dysfunction and inhibits the action of DNase II in the 
lysosome, leading to non-degradation of mitochondrial DNA. The 
accumulated mitochondrial DNA provokes inflammation through 
TLR9-dependent signaling and leads to heart failure. Drp1-mediated 
mitophagy is critical for the protection of the heart during pressure 
overload. TAT-Beclin 1 can activate both general and alternative 
mitophagy. Parkin has also been shown to enhance autophagy during 
pressure overload. The figure was created with Biorender.com
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In mouse models of type 1 diabetes mellitus (T1DM), 
including OVE26 mice and streptozotocin (STZ)-treated 
mice, general autophagy is inhibited in the heart [37, 201, 
204]. High glucose levels directly inhibit autophagy in 
cardiomyocytes [76]. Despite downregulation of general 
autophagy, however, mitophagy is stimulated in the T1DM 
mouse heart [204], accompanied by low levels of PINK1 and 
Parkin and high levels of the small GTPase Rab9, suggesting 
that alternative mitophagy is activated in these hearts [204]. 
Activation of mitophagy in the T1DM mouse heart plays 
an important role in maintaining mitochondrial function. 
Whether inactivation of general autophagy and activation 
of mitophagy are coordinately regulated in T1DM hearts, 
and, if so, how are currently unknown.

In mouse models of type 2 diabetes (T2DM), autophagy is 
activated in the heart, but its activation is transient and gen-
eral autophagy is often inhibited during the chronic phase of 
T2DM [181]. For example, in mice fed a HFD, activation of 
general autophagy in the heart peaks at 6 weeks and declines 
thereafter. Interestingly, however, mitophagy remains acti-
vated after general autophagy is inactivated [181]. Thus, 
in both T1DM and T2DM, although general autophagy is 
inactivated during the chronic phase, mitophagy is activated 
even after general autophagy is inhibited. How is general 
autophagy inactivated during the chronic phase of diabetic 
cardiomyopathy? One mechanism could be activation of a 
negative regulator of autophagy, such as Mst1. It is also pos-
sible that continuous activation of autophagy leads to deple-
tion of the cellular materials required for autophagosome 
formation. What is the underlying mechanism of mitophagy 
in T1DM and T2DM hearts that occurs when general 
autophagy is downregulated? We and others have shown that 
mitophagy in the T2DM heart is mediated through Parkin-
dependent conventional mechanisms during early stages of 
HFD consumption, when mechanisms commonly used by 
conventional autophagy are available [144, 181]. However, 
alternative mitophagy, utilizing Ulk1-Rab9 mechanisms, 
predominates after conventional autophagy is inactivated 
[181]. Importantly, loss of mitophagy function consistently 
exacerbates mitochondrial dysfunction and cardiomyopathy 
in mice fed a HFD, during both the acute and chronic phases 
[179–181]. Furthermore, we have shown that mitophagy can 
be stimulated with TAT-Beclin 1 regardless of the timing of 
HFD consumption and that the enhancement of mitophagy 
is protective in T2DM hearts [179–181]. These results sug-
gest that mitophagy plays an essential role in maintaining 
mitochondrial function and cardiac function in T2DM 
hearts. Mitochondrial dysfunction is commonly observed 
in the T2DM heart despite activation of mitophagy, indicat-
ing that the endogenous level of mitophagy is insufficient to 
prevent the progression of mitochondrial dysfunction and 
cardiomyopathy in these hearts. By the same token, the fact 
that stimulation of mitophagy alleviates cardiomyopathy 

regardless of the timing of HFD consumption indicates that 
interventions enhancing the level of mitophagy are effective 
in alleviating the progression of diabetic cardiomyopathy.

Since T2DM is a chronic disease, it is possible that con-
ventional autophagy has already been downregulated by the 
time diabetic cardiomyopathy develops in these patients. 
Thus, it is important to understand the molecular mecha-
nism through which alternative mitophagy is activated dur-
ing the chronic phase of T2DM. We found that transcription 
factor binding to IGHM enhancer 3 (TFE3), a member of 
the transcription factor EB (TFEB) family, is upregulated in 
the heart following 12 weeks of HFD consumption, concur-
rent with the time of observation of alternative mitophagy 
[180]. TFE3 is upregulated in the nuclear fraction of cardio-
myocytes in response to HFD consumption and associates 
with the promoter region of the Rab9 gene [180]. Alter-
native mitophagy is inhibited during the chronic phase of 
HFD consumption in mice with cardiac-specific knockout of 
TFE3, indicating that alternative mitophagy requires TFE3 
and transcription of Rab9 [180]. Thus, a better understand-
ing of TFE3 may allow development of novel interventions 
to improve mitochondrial quality control mechanisms dur-
ing the chronic phase of T2DM. We also found that Drp1 is 
phosphorylated at Ser616 during the chronic phase of HFD 
consumption and participates in stimulation of alternative 
mitophagy at the MAM [179]. Phosphorylation of Drp1 at 
Ser616 was also observed in human patients with obesity 
(Body mass index > 30 kg/m2) [179]. Thus, Drp1 could be 
another promising target to modulate mitophagy during the 
chronic phase in the T2DM heart. The effects of mitophagy 
during diabetic cardiomyopathy is schematically represented 
in Fig. 5.

Perspectives and conclusions

The mechanisms of mitophagy are complex and require 
tightly regulated molecular signals. The activation mecha-
nisms appear to differ between various cellular stresses and 
utilize multiple systems to tag and sequester the damaged 
mitochondria for degradation in the lysosome. Moreover, 
mitochondrial degradation can also occur through several 
mechanisms besides the authentic mechanism of mitophagy, 
including the endosomal–lysosome pathway, mitochondrial-
derived vesicles, and autophagic secretion [178]. Therefore, 
in-depth studies using multiple approaches are required to 
understand both the mechanisms and the functional conse-
quences of mitophagy in the heart. We believe that it is of 
high priority to address the following issues:

(1) Are the mechanisms of mitophagy in cardiomyocytes 
identical to those in other cell types? Owing to the 
unique characteristics of cardiomyocyte mitochondria, 
including the presence of interfibrillar mitochondria, 
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which affect mitochondrial dynamics [140], mitophagy 
in cardiomyocytes may not be identical to that in other 
cell types.

(2) What is the specific role of ubiquitin-dependent and 
-independent (receptor-mediated) mitophagy in car-
diomyocytes under various physiological and disease/
stress conditions? How does the heart coordinate the 
use of the multiple mechanisms of mitophagy? What 
is the molecular mechanism mediating non-canonical 
mechanisms of mitochondrial degradation, including 
alternative mitophagy, endosomal mechanisms, micro-
autophagy, and autophagic secretion of mitochondria? 
Although these mechanisms are often compensatory, 
they can be a major driver of mitochondrial qual-
ity control during chronic disease conditions, where 
conventional mechanisms of mitophagy are no longer 
available.

(3) Stress-induced activation of the conventional mecha-
nisms of mitophagy, including the PINK1–Parkin 
mechanism, is often transient. What is the mechanism 
that induces rapid inactivation of mitophagy in the 

heart? Investigating the role of signaling molecules 
negatively affecting autophagy (Mst1, mTOR, deu-
biquitinases and TNIP), transcriptional regulators of 
autophagy (CLOCK, KLF4, ATF4 and TFEB), and 
other mechanisms promoting rapid exhaustion of the 
autophagy machinery, such as LC3, is of great interest.

(4) What is the consequence of insufficient mitophagy? 
What are the roles of the mitochondrial DNA sensing 
mechanism, including ZBAP1 and cGAS [89], and the 
innate immune responses/inflammation?

(5) Can excessive mitophagy take place? What is the 
consequence of excessive mitophagy? Unchecked 
mitochondrial fission and mitophagy exacerbate dox-
orubicin-induced cardiomyopathy [13]. Whether the 
detrimental effect of mitophagy takes place under other 
cardiac stress conditions needs to be clarified.

(6) What is the role of mitophagy in other cell types dur-
ing heart failure? Suppression of mitophagy in car-
diac fibroblasts alleviates cardiac fibrosis [225]. Thus, 
mitophagy may not be equally salutary in every cell 
population in the failing heart.

Fig. 5  Mitophagy in diabetic cardiomyopathy. A Accumulated glu-
cose elevates mitochondrial superoxide levels in type 1 diabetes and 
leads to myocardial cell death. While general autophagy is inhibited 
by high glucose levels, a compensatory mechanism simultaneously 
activates alternative autophagy and mitophagy and is cardioprotec-
tive. B In a mouse model of type 2 diabetes, mitophagy is stimu-
lated in the heart through multiple mechanisms in a time-dependent 
manner. During the acute phase of HFD consumption, mitophagy is 
activated by Atg7- and Parkin-dependent mechanisms. Drp1 is also 
involved in mitophagy during the acute phase of HFD consumption 
by inhibiting Bcl-2/Bcl-xL interaction with Beclin 1, which allows 

activation of Beclin 1. In the chronic phase of HFD consumption, 
Drp1 is phosphorylated at Ser616 through unknown mechanisms and 
localized to ER–mitochondria-associated membrane, where it acti-
vates Rab9-mediated alternative mitophagy. These mechanisms may 
be compensatory for the downregulation of conventional mitophagy. 
Despite activation of conventional mitophagy in the acute phase 
and alternative mitophagy during the chronic phase, the level of 
mitophagy appears to be insufficient, and thus mitochondrial dysfunc-
tion in the heart develops during the chronic phase of type 2 diabetes. 
The figure was created with Biorender.com
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(7) What is the extent and the functional significance of 
mitophagy in human hearts during cardiac stress?

To address these issues, it is important to establish a more 
convenient assay system to accurately evaluate the level of 
mitophagy in the heart and the various cell types therein 
under stress conditions. Elucidating the underlying signal-
ing mechanism affecting the level of mitophagy should pro-
vide important clues to improve mitophagy and mitochon-
drial quality control mechanisms under given conditions. 
Eventually, development of small molecule regulators of 
mitophagy would have a remarkable impact, since insuf-
ficient mitophagy appears to be a common trigger of heart 
failure in almost every cardiovascular condition.
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