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Abstract
Activation of signal transducer and activator of transcription 3 (STAT3) has been identified as a key cardioprotective signal 
not only in animal studies but also in humans—in animals, STAT3 is causally involved in cardioprotection. In response 
to late ischemic conditioning, canonical function of STAT3 activation upregulates the expression of cardioprotective and 
anti-apoptotic proteins. In its non-canonical function, STAT3 is activated during ischemic conditioning and is part of the 
cardioprotective cytosolic survival activating factor enhancement pathway. Activated STAT3 is imported and localized to 
the mitochondria. Mitochondrial STAT3 stimulates the activity of mitochondrial electron transport chain complex I, reduces 
mitochondrial reactive oxygen species production and mitochondrial permeability transition pore opening. Finally, two novel 
aspects of STAT activation in cardioprotection are discussed: a genetic variance of the STAT encoding region as a potential 
primordial confounding variable for cardioprotection, and the cardioprotective potential of sodium–glucose cotransporter 2 
inhibitors through STAT3 activation.
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Cardioprotection: strategies and relevance 
of STAT signaling

In addition to rapid reperfusion and current therapy there 
is still a need for cardioprotection to reduce morbidity and 
mortality in patients with acute myocardial infarction. In 
experimental settings, there are mechanical and pharma-
cological interventions that reduce myocardial infarct size. 
The strongest and most robust cardioprotective interven-
tion is ischemic conditioning, which is effective in all spe-
cies tested so far, including humans [45, 52]. Reduction of 
infarct size by ischemic conditioning can be induced by 
cycles of brief ischemia/reperfusion before (ischemic pre-
conditioning, IPC) [79] or after (ischemic postconditioning, 
POCO) [119] sustained myocardial ischemia with reperfu-
sion. Ischemic conditioning can also be induced remotely 
from the heart (remote IPC, RIC) [43, 45]. Among these 

cardioprotective strategies, RIC has been successfully trans-
lated from experimental studies to clinical trials. In patients 
undergoing elective surgical coronary revascularization, 
there are several single-center trials in which RIC provided 
perioperative myocardial protection (e.g., [15, 40, 57, 89, 
100, 103]), and one of them also reported improved patient 
prognosis [65, 100]. However, two prospectively designed 
multi-center phase III trials in patients undergoing elective 
surgical coronary revascularization and valve surgery, i.e., 
ERICCA and RIPHEART, were neutral [37, 77], possibly 
because use of propofol rather than volatile anesthesia [49]. 
Similarly, in patients with acute myocardial infarction, RIC 
attenuated myocardial injury in single-center trials (e.g., 
[13, 23, 108, 115]), and again one of them also reported an 
improved patient prognosis [94]. However, the prospectively 
designed larger phase III multi-center follow-up CONDI-2/
ERIC-PPCI trial was neutral on myocardial injury and clini-
cal outcome [39]. Only the prospectively designed single-
center RIC-STEMI trial truly reported an improved clinical 
outcome as a primary endpoint with RIC [29]. A detailed 
and more comprehensive review of available clinical trials 
on cardioprotective strategies is found in: [42, 45]. Poten-
tially confounding factors of the cardioprotective strategies 
in patients [24, 61, 90] as well as errors in the planning 
and design of preclinical and clinical trials are discussed in 
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detail in the other reviews [44, 47, 70]. Irrespective of all 
these valid considerations, one reason for the lack of success 
in translating cardioprotective strategies from experimental 
studies to the clinical situation is that the underlying signal-
ing pathways are incompletely understood and much more 
basic research is needed to improve our understanding of the 
signaling pathways involved in cardioprotective interven-
tions that are in principle applicable.

Currently, the underlying myocardial signal transduction 
of cardioprotection [43, 45] can be conceptually classified 
by their (sub-) cellular localization (extracellular molecules, 
cytosolic signal transduction and target organelle/structure). 
Extracellular molecules (e.g., autacoids, calcium, cytokines, 
neurohormones, nitric oxide, or reactive oxygen species) are 
released during conditioning cycles from cardiomyocytes, 
endothelial cells, neurons, etc., but the exact subcellular ori-
gin and detailed biochemical reactions of how these extra-
cellular molecules are generated and released are unclear. 
Through sarcolemmal receptors or receptor-independently, 
these molecules then activate cytosolic signaling cascades. 
Within the cardiomyocyte, a variety of proteins are acti-
vated as cytosolic signal transducers. Again, conceptually, 
cytosolic signaling pathways are divided into three major 
cardioprotective pathways: the nitric oxide/protein kinase 
G (NO/PKG) pathway [20], the reperfusion injury salvage 
kinase (RISK) pathway [41], and the survival activat-
ing factor enhancement (SAFE) pathway [69]. The RISK 
pathway and its interaction with mitochondrial function is 
the subject of a detailed discussion in the current issue of 
“Mitochondria at the heart of cardioprotection” [116]. Key 
protein of the SAFE pathway is the signal transducer and 
activator of transcription (STAT)3 [6, 43, 45, 67, 69]. In 
response to ligand binding [e.g., interleukin 6-like cytokines, 
tumor necrosis factor alpha (TNF)] through sarcolemmal 
glycoprotein 130 or TNF receptors, Janus kinase (JAK) is 
activated and phosphorylates STAT3 [tyrosine (tyr) 701 and 
serine (ser) 727]. STAT3 phosphorylation is required for 
the protein dimerization, its subsequent translocation to the 
nucleus, and its function as a transcription factor; the ser727 
phosphorylation seems to be the boost for transcriptional 
activity of STAT3 [26]. STAT3 is constitutively expressed, 
and under physiological conditions its expression is tightly 
controlled—also in myocardial cells (i.e., cardiomyocytes, 
endothelial cells, smooth muscle cells, and fibroblasts). 
STAT3 regulates the expression of genes encoding proteins 
mainly involved in angiogenesis, apoptosis, inflammation, 
and oxidative stress—the canonical function of STAT3 [6, 
21, 36, 82, 117]. STATs canonical functions are too slow 
for acute protection [6, 59]. However, subacute cardiopro-
tection by late IPC and late RIC (ischemic conditioning is 
induced 24 h before myocardial infarction) involves the 
canonical function of STAT3 [11, 113] and STAT5 [17]. 
STAT3 activation during late preconditioning upregulates 

the expression of anti-apoptotic and cytoprotective proteins 
(e.g., cyclooxygenase 2, heme oxygenase-1, manganese 
sodium dismutase, myeloid leukemia protein 1, apoptosis 
regulator protein Bcl-2 family, c-FLIP a natural homologue 
of caspase 8, heat shock protein 70) [11, 17, 113] (Fig. 1). In 
contrast to the acute non-canonical and the subacute canoni-
cal STAT3 activation which serve a protective function, 
chronic STAT3 activation after myocardial infarction con-
tributes to inflammatory processes and cardiac remodeling 
[6, 33, 34, 36, 55]. Such chronic STAT3 activation occurs 
mostly in macrophages which invade from the circulating 
blood and are recruited from bone marrow and spleen [112]. 
Up to four days after myocardial infarction, macrophages 
initiate or maintain inflammatory processes that contribute 
to debris clearance. Later on, however, macrophages express 
anti-inflammatory cytokines which then stimulate scar for-
mation and angiogenesis (Fig. 1). The influence of chronic 
STAT3 activation after myocardial infarction on the pro-
cesses described above is based on studies in rodents in the 
absence of a cardioprotective intervention, for further details 
please see: [6, 33, 34, 36, 55]. Importantly, chronic systemic 
STAT3 activation may also promote malignant transforma-
tion, which is of concern because RIC is a systemic phe-
nomenon that may through STAT3 activation also promote 
cancer [46, 53].

Outside the nucleus, the non-canonical function of 
STAT3 plays a unique role in acute cardioprotection: in 
contrast to all other cardioprotective signals, STAT3 activa-
tion is consistently not only associated with the reduction of 
infarct size by all ischemic conditioning procedures, but also 
causally involved in cardioprotection in all species tested to 
date [6, 43, 45, 67, 69]—also in in larger mammals, i.e., in 
pigs, which are more similar to humans in their cardiovas-
cular physiology than rodents [54, 70]. In detail: Interleukin 
6-like cytokines and TNF appear to be the major activators 
of the cardioprotective SAFE pathway [36]. Downstream of 
activation of sarcolemmal glycoprotein 130 or TNF recep-
tors, the cytosolic SAFE pathway is activated [6, 43, 45, 
67, 69]. In response to IPC [27, 30, 31], POCO [50], and 
RIC [88, 92, 98] in rodents [4, 27, 31, 88, 92, 98] and pigs 
[30, 50, 60, 63, 66, 71, 92, 93], STAT3 is phosphorylated 
at tyr705. The causal involvement of STAT3 activation in 
infarct size reduction by different types of ischemic condi-
tioning was demonstrated by pharmacological blockade of 
STAT3 activation [6, 43, 45, 67, 69]. In STAT3 knock-out 
mice and aged mice (which had reduced STAT3 protein), 
a more potent local ischemic conditioning stimulus over-
came the STAT3-associated loss of cardioprotection [5], 
suggesting that other cardioprotective pathways are also 
involved. Apart from and in addition to a potential activa-
tion of NO/PKG and RISK pathways, STAT5 may have 
been activated. STAT5 knock-out in mice prevented infarct 
size reduction by local ischemic conditioning [114]. The 
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ser727 phosphorylation of STAT3 was described in crosstalk 
with key proteins of the RISK pathway [36]. Present data 
suggest a dynamic balance between STAT3 phosphoryla-
tion at tyr705 and ser727 for STAT3 transcriptional activ-
ity; whether this may also play a role in cardioprotection 
is unclear. Notably, only STAT3/5 activation induced by 
ischemic conditioning appears to be causal for infarct size 
reduction, whereas basal STAT3/5 activity is not relevant for 
infarct size—neither pharmacological blockade nor knock-
out increases infarct size per se.

The common intracellular target of all cardioprotective 
pathways, including the SAFE pathway, are mitochondria 
[8]. As such, mitochondria are critical elements of cardi-
omyocyte function and viability [12, 25, 32, 78, 91], and 
preservation of mitochondrial function is central for the 
reduction of ischemia/reperfusion injury [8, 43, 45] (Fig. 1). 
There is a prior comprehensive review on the non-canonical 
function of STAT3 in cardioprotection by targeting mito-
chondrial function [21]. The focus of my present somewhat 
personal and opinionated article is on the state-of-the-art of 
mitochondrial STAT3 and its potential causal role in cardio-
protective strategies (Table 1). Mitochondrial STAT3 has 

been detected across species, in myocardium from mice [7, 
85, 86, 96], rats [7, 84, 99, 109, 110], and pigs [50, 85].

STAT3 phosphorylation site, import into, 
and localization within mitochondria

In vitro studies with isolated rat heart mitochondria and 
labeled STAT3 proposed an energy-dependent import of 
STAT3 mediated through chaperone-like activity of a 
complex I subunit protein—the protein of the gene asso-
ciated with retinoid interferon-induced cell mortality 19 
(GRIM-19, Fig. 2) [99]. In rat left ventricular protein 
extracts, mitochondrial import receptor subunit Tom20 
co-immunoprecipitated with ser727 STAT3 and total 
STAT3 [7], suggesting a Tom20-dependent import. In heat 
shock protein 22 (HSP22) knock-out mice, STAT3 trans-
location into the mitochondria was reduced, and HSP22 
co-immunoprecipitated with total STAT3 [86], indicating 
another import mechanism (Fig. 2). The initial study sug-
gested that ser727 phosphorylation is required for STAT 
translocation to mitochondria, a ser727 mutation in STAT3 

Fig. 1  Schematic overview of the time-dependent—acute, subacute, 
chronic—and non-canonical vs. canonical effects of STAT3 activa-
tion on myocardial ischemia/reperfusion; created with BioRender.

com. ATP adenosine triphosphate, MPTP mitochondrial permeability 
transition pore, ROS reactive oxygen species, STAT3 signal transducer 
and activator of transcription 3



 Basic Research in Cardiology (2023) 118:32

1 3

32 Page 4 of 14

Ta
bl

e 
1 

 S
tu

di
es

 o
n 

m
ito

ch
on

dr
ia

l S
TA

T3
 a

nd
 it

s f
un

ct
io

n 
in

 m
yo

ca
rd

ia
l t

is
su

e

A
ut

ho
r, 

jo
ur

na
l, 

ye
ar

Sp
ec

ie
s

Im
po

rt
Lo

ca
liz

at
io

n
Ph

os
ph

or
yl

at
io

n 
si

te
Fu

nc
tio

n 
of

 m
ito

ch
on

dr
ia

l S
TA

T3

W
eg

rz
yn

 e
t a

l.,
 S

ci
en

ce
,

20
09

 [1
07

]
M

ou
se

,
Pr

o-
B

 c
el

ls
 w

ild
-ty

pe
 v

s. 
ST

A
T3

 
kn

oc
k-

ou
t

G
R

IM
-1

9
In

ne
r m

ito
ch

on
dr

ia
l m

em
br

an
e,

 
m

at
rix

, c
om

pl
ex

 I 
of

 E
TC

, 
in

te
ra

ct
in

g 
w

ith
 G

R
IM

-1
9

Se
rin

e7
27

A
ss

oc
ia

tio
n 

be
tw

ee
n 

m
ito

ch
on

dr
ia

l 
ST

A
T3

 d
efi

ci
en

cy
 a

nd
 re

du
ct

io
n 

of
 m

ito
ch

on
dr

ia
l r

es
pi

ra
tio

n
B

oe
ng

le
r e

t a
l.,

B
as

ic
 R

es
 C

ar
di

ol
,

20
10

 [7
]

M
ou

se
, w

ild
-ty

pe
 v

s. 
ca

rd
io

m
yo

-
cy

te
-s

pe
ci

fic
 S

TA
T3

 k
no

ck
-o

ut
,

ra
t

To
m

20
M

at
rix

Se
rin

e7
27

Ty
ro

si
ne

70
5

A
ss

oc
ia

tio
n 

be
tw

ee
n 

m
ito

ch
on

dr
ia

l 
ST

A
T3

 d
efi

ci
en

cy
 (i

so
la

te
d 

fro
m

 
ca

rd
io

m
yo

cy
te

-s
pe

ci
fic

 S
TA

T3
 

kn
oc

k-
ou

t) 
or

 in
hi

bi
tio

n 
of

 m
ito

-
ch

on
dr

ia
l S

TA
T3

 a
ct

iv
at

io
n 

(v
ia

 
st

at
tic

 in
 w

ild
-ty

pe
 m

ito
ch

on
dr

ia
) 

an
d 

re
du

ct
io

n 
of

 m
ito

ch
on

dr
ia

l 
re

sp
ira

tio
n 

an
d 

M
PT

P 
op

en
in

g
Ph

ill
ip

s e
t a

l.,
J B

io
l C

he
m

,
20

10
 [8

5]

M
ou

se
,

Pi
g

Ev
id

en
ce

 fo
r m

ito
ch

on
dr

ia
l S

TA
T3

 w
ith

ou
t s

tu
di

es
 o

n 
im

po
rt 

lo
ca

liz
at

io
n 

an
d 

ph
os

ph
or

yl
a-

tio
n

Q
ue

sti
on

ab
le

 fu
nc

tio
n 

of
 m

ito
ch

on
-

dr
ia

l S
TA

T3
, r

at
io

 o
f E

TC
 c

om
-

pl
ex

 p
ro

te
in

s t
o 

ST
A

T3
 is

 ~
  10

5

Sz
cz

ep
an

ek
 e

t a
l.,

J B
io

l C
he

m
,

20
11

 [9
6]

M
ou

se
, w

ild
-ty

pe
 v

s. 
ca

rd
io

-
m

yo
cy

te
 o

ve
re

xp
re

ss
io

n 
of

 a
 

D
N

A
-b

in
di

ng
 m

ut
an

t o
f S

TA
T3

 
co

nt
ai

ni
ng

 a
 m

ito
ch

on
dr

ia
l 

ta
rg

et
 se

qu
en

ce

Ev
id

en
ce

 fo
r m

ito
ch

on
dr

ia
l S

TA
T3

 w
ith

ou
t s

tu
di

es
 o

n 
im

po
rt 

lo
ca

liz
at

io
n 

an
d 

ph
os

ph
or

yl
a-

tio
n

Pr
ot

ec
tio

n 
ag

ai
ns

t i
sc

he
m

ic
 d

am
ag

e 
on

 c
om

pl
ex

 I 
an

d 
de

cr
ea

se
d 

RO
S 

fo
rm

at
io

n 
fro

m
 c

om
pl

ex
 I 

du
r-

in
g 

is
ch

em
ia

 v
ia

 m
ito

ch
on

dr
ia

l 
ST

A
T3

 o
ve

re
xp

re
ss

io
n

H
eu

sc
h 

et
 a

l.,
C

irc
 R

es
,

20
11

 [5
0]

Pi
g

–
–

Ty
ro

si
ne

70
5

C
au

sa
l i

nv
ol

ve
m

en
t o

f a
ct

iv
at

ed
 

m
ito

ch
on

dr
ia

l S
TA

T3
 w

ith
 

PO
CO

 in
 p

re
se

rv
at

io
n 

of
 c

om
pl

ex
 

I r
es

pi
ra

tio
n 

an
d 

M
PT

P 
op

en
in

g 
(p

ro
ve

n 
vi

a 
JA

K
–S

TA
T 

in
hi

bi
tio

n 
w

ith
 A

G
 4

90
 a

pp
lic

at
io

n 
in

 v
iv

o 
an

d 
in

hi
bi

tio
n 

of
 m

ito
ch

on
dr

ia
l 

ST
A

T3
 a

ct
iv

at
io

n 
vi

a 
st

at
tic

 in
 

is
ol

at
ed

 m
ito

ch
on

dr
ia

)
Q

iu
 e

t a
l.,

C
irc

ul
at

io
n,

20
11

 [8
6]

M
ou

se
, w

ild
-ty

pe
 v

s. 
H

SP
22

 
kn

oc
k-

ou
t

H
SP

22
In

ne
r m

ito
ch

on
dr

ia
l m

em
br

an
e,

 
m

at
rix

Se
rin

e7
27

A
ss

oc
ia

tio
n 

of
 H

SP
22

 d
efi

ci
en

cy
 

w
ith

 re
du

ct
io

n 
of

 m
ito

ch
on

dr
ia

l 
ST

A
T3

 a
nd

 re
du

ct
io

n 
of

 m
ito

-
ch

on
dr

ia
l r

es
pi

ra
tio

n



Basic Research in Cardiology (2023) 118:32 

1 3

Page 5 of 14 32

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
ut

ho
r, 

jo
ur

na
l, 

ye
ar

Sp
ec

ie
s

Im
po

rt
Lo

ca
liz

at
io

n
Ph

os
ph

or
yl

at
io

n 
si

te
Fu

nc
tio

n 
of

 m
ito

ch
on

dr
ia

l S
TA

T3

Ta
m

m
in

en
i e

t a
l.,

J B
io

l C
he

m
,

20
13

 [9
9]

R
at

G
R

IM
-1

9
In

ne
r m

ito
ch

on
dr

ia
l m

em
br

an
e,

 
co

m
pl

ex
 I 

of
 E

TC
, i

nt
er

ac
tin

g 
w

ith
 G

R
IM

-1
9

Se
rin

e7
27

Re
le

va
nc

e 
of

 S
TA

T3
 se

rin
e7

27
 

ph
os

ph
or

yl
at

io
n 

fo
r G

R
IM

-
19

-m
ed

ia
te

d 
in

te
gr

at
io

n 
of

 
ST

A
T3

 in
to

 m
ito

ch
on

dr
ia

l 
co

m
pl

ex
 I

B
oe

ng
le

r e
t a

l.,
C

ur
r P

ha
rm

 D
es

,
20

13
 [1

0]

R
at

N
o 

as
se

ss
m

en
t o

f t
he

 m
ito

ch
on

dr
ia

l S
TA

T3
 p

ro
te

in
, o

nl
y 

fu
nc

tio
na

l s
tu

di
es

A
ss

oc
ia

tio
n 

of
 re

du
ce

d 
m

ito
ch

on
-

dr
ia

l S
TA

T3
 a

ct
iv

at
io

n 
(v

ia
 st

at
tic

 
in

 is
ol

at
ed

 m
ito

ch
on

dr
ia

) w
ith

 
a 

re
du

ct
io

n 
of

 m
ito

ch
on

dr
ia

l 
re

sp
ira

tio
n,

 A
TP

 p
ro

du
ct

io
n,

 
M

PT
P 

op
en

in
g 

an
d 

in
cr

ea
se

d 
RO

S 
fo

rm
at

io
n

Pe
nn

a 
et

 a
l.,

B
as

ic
 R

es
 C

ar
di

ol
,

20
13

 [8
4]

R
at

–
–

Se
rin

e7
27

Ty
ro

si
ne

70
5

A
ct

iv
at

ed
 m

ito
ch

on
dr

ia
l S

TA
T3

 
w

ith
 IP

C
 b

ut
 n

ot
 w

ith
 P

O
CO

W
u 

et
 a

l.,
J M

ol
 C

el
l C

ar
di

ol
,

20
15

 [1
10

]

R
at

–
–

Se
rin

e7
27

A
ct

iv
at

ed
 m

ito
ch

on
dr

ia
l S

TA
T3

 
w

ith
 p

IH
H

; a
ss

oc
ia

tio
n 

of
 

re
du

ce
d 

m
ito

ch
on

dr
ia

l S
TA

T3
 

ac
tiv

at
io

n 
(v

ia
 A

G
49

0)
 w

ith
 a

 
re

du
ct

io
n 

of
 M

PT
P 

op
en

in
g 

du
r-

in
g 

re
pe

rf
us

io
n

W
u 

et
 a

l.,
B

as
ic

 R
es

 C
ar

di
ol

,
20

19
 [1

09
]

R
at

–
In

ne
r m

ito
ch

on
dr

ia
l m

em
br

an
e,

 
co

lo
ca

liz
at

io
n/

in
te

ra
ct

io
n 

w
ith

 
th

e 
N

-te
rm

in
al

 d
om

ai
n 

of
 th

e 
m

ito
ch

on
dr

ia
l c

al
ci

um
 u

ni
po

rte
r

Se
rin

e7
27

A
ct

iv
at

ed
 m

ito
ch

on
dr

ia
l S

TA
T3

 
w

ith
 p

oI
H

H
; a

ss
oc

ia
tio

n 
w

ith
 a

 
re

du
ct

io
n 

in
 c

al
ci

um
 o

ve
rlo

ad
 

du
rin

g 
re

pe
rf

us
io

n
H

ar
ho

us
 e

t a
l.,

J M
ol

 C
el

l C
ar

di
ol

,
20

19
 [3

5]

M
ou

se
N

o 
ev

id
en

ce
 fo

r m
ito

ch
on

dr
ia

l S
TA

T3
 in

 p
ur

e 
m

ito
ch

on
dr

ia
 u

nd
er

 b
as

al
 c

on
di

tio
ns

 a
nd

 a
fte

r 
hy

po
xi

a/
re

ox
yg

en
at

io
n

N
o 

ev
id

en
ce

 fo
r f

un
ct

io
na

lly
 re

l-
ev

an
t m

ito
ch

on
dr

ia
l S

TA
T3

A
G

49
0,

 ty
rp

ho
sti

n 
B

42
, a

 JA
K

–S
TA

T 
in

hi
bi

to
r; 
AT

P 
ad

en
os

in
e 

tri
ph

os
ph

at
e,

 E
TC

 e
le

ct
ro

n 
tra

ns
po

rt 
ch

ai
n,

 G
RI
M
-1
9 

ge
ne

 a
ss

oc
ia

te
d 

w
ith

 re
tin

oi
d 

in
te

rfe
ro

n-
in

du
ce

d 
ce

ll 
m

or
ta

lit
y 

19
, H

SP
22

 
he

at
 s

ho
ck

 p
ro

te
in

 2
2,

 IP
C

 is
ch

em
ic

 p
re

co
nd

iti
on

in
g,

 J
AK

 Ja
nu

s 
ki

na
se

, M
PT

P 
m

ito
ch

on
dr

ia
l p

er
m

ea
bi

lit
y 

tra
ns

iti
on

 p
or

e,
 T
om

20
 m

ito
ch

on
dr

ia
l i

m
po

rt 
re

ce
pt

or
 s

ub
un

it 
To

m
20

, p
IH

H
 p

re
co

n-
di

tio
ni

ng
 v

ia
 in

te
rm

itt
en

t h
yp

ob
ar

ic
 h

yp
ox

ia
, P

O
C
O

 is
ch

em
ic

 p
os

tc
on

di
tio

ni
ng

, p
oI
H
H

 p
os

tc
on

di
tio

ni
ng

 v
ia

 in
te

rm
itt

en
t h

yp
ob

ar
ic

 h
yp

ox
ia

, R
O
S 

re
ac

tiv
e 

ox
yg

en
 s

pe
ci

es
, S

TA
T3

 s
ig

na
l t

ra
ns

-
du

ce
r a

nd
 a

ct
iv

at
or

 o
f t

ra
ns

cr
ip

tio
n 

3,
 st
at
tic

 S
TA

T3
 in

hi
bi

to
ry

 c
om

po
un

d 
6 

ni
tro

be
nz

ol
(b

)th
io

pe
ne

 1
,1

-d
io

xi
de



 Basic Research in Cardiology (2023) 118:32

1 3

32 Page 6 of 14

reduced the import and the STAT3 GRIM-19 assembly 
in isolated rat heart mitochondria [99]. As mentioned 
above, it is still unclear whether ser727 phosphoryla-
tion of STAT3 is indeed causally involved in infarct size 
reduction. However, while in mouse [86, 107] and rat [84, 
109, 110] heart mitochondria ser727 phosphorylation was 
described, a tyr705 phosphorylation has been detected in 
rat heart mitochondria in addition to the ser727 phospho-
rylation [7, 84], and in pig heart mitochondria, only the 
tyr705 phosphorylation was reported [50]. Beside potential 
species-specific differences, it is also conceivable that sim-
ple methodological reasons, such as the antibodies used 
and their species-specificity, may have led to the reported 
differences. Regardless of the exact phosphorylation site, 
given that phosphorylation of STAT3 is a prerequisite for 
mitochondrial import, the cytosolic non-canonical func-
tion and, thus, phosphorylation of STAT3 seems to be a 
prerequisite for mitochondrial import of STAT3.

Using enzymatic digestion of isolated mouse and rat 
heart mitochondria and Western blot technique with specific 
marker proteins for intra-mitochondrial localization, STAT3 
was identified in the matrix of mitochondria [7, 86, 107] as 
well as in the inner mitochondrial membrane [86, 99]. Using 
immunofluorescence imaging, a colocalization of STAT3 
with the mitochondrial calcium uniporter—which is local-
ized in the inner mitochondrial membrane—was identified in 
rat hearts. Co-immunoprecipitation confirmed an interaction 
with the N-terminal domain of the mitochondrial calcium 
uniporter and STAT3 in isolated rat cardiomyocytes [109] 
(Fig. 2, Table 1).

Function of mitochondrial STAT3

Phillips et al. had questioned the functional relevance of 
mitochondrial STAT3 by quantitative biochemical analy-
ses: the abundance of mitochondrial STAT3 compared with 
respiratory chain proteins was low, with a ratio of electron 
transport complex proteins to STAT3 of ~  105, and relevance 
to adenosine triphosphate (ATP) production was, thus, ruled 
out [85]. However, studies on mitochondrial function indi-
cate the opposite. Cardiomyocyte-specific STAT3 knock-
out mice had not only less mitochondrial STAT3, but also 
selective defects in complex I of the electron transport chain 
[7]. Cardiomyocyte-specific overexpression of mitochon-
drial STAT3 in mice improved complex I respiration during 
ischemia [96] (Fig. 1). In mice that overexpress a mitochon-
drially targeted, transcriptionally inactive STAT3 in cardio-
myocytes, a partial and persistent blockade of complex I was 
evident. Smaller infarct size in these mice in comparison 
to wild-type mice was associated with an attenuated reac-
tive oxygen species release and attenuation of mitochon-
drial permeability transition pore opening at the onset of 
reperfusion [97]. In isolated rat heart mitochondria, pharma-
cological STAT3 inhibition with stattic (STAT3 inhibitory 
compound 6 nitrobenzol(b)thiopene 1,1-dioxide) reduced 
mitochondrial respiration and ATP production; opening of 
the mitochondrial permeability transition pore and genera-
tion of reactive oxygen species were reduced [10] (Fig. 2). 
There is evidence for STAT3 not only in isolated mitochon-
dria from rodent hearts but also in those from larger mam-
mals. In mitochondria isolated from pig myocardium, POCO 

Fig. 2  Schematic overview of STAT3 import, localization, and func-
tion in mitochondria; created with BioRender.com. I, II, II, IV indi-
cates respiratory chain complexes; ATP adenosine triphosphate, 
GRIM-19 gene associated with retinoid interferon-induced cell mor-

tality 19, HSP22 heat shock protein 22, MCU mitochondrial calcium 
uniporter, MPTP mitochondrial permeability transition pore, Tom20 
mitochondrial import receptor subunit Tom20, ROS reactive oxygen 
species, STAT3 signal transducer and activator of transcription 3
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induced an increase in mitochondrial STAT3 phosphoryla-
tion. This phosphorylation improved mitochondrial complex 
I respiration and increased calcium retention capacity [50]. 
The biochemical mechanisms, however, by which mitochon-
drial STAT3 regulates the electron transport chain complex 
activities and mitochondrial permeability transition pore 
opening are not clear. GRIM-19 enhanced in isolated rat 
heart mitochondria the integration of STAT3 into complex I 
[99], indicating a direct interaction of STAT3 with complex 
I activity (Fig. 2, Table 1). In a postconditioning protocol by 
intermittent hypobaric hypoxia, the colocalization of STAT3 
and the mitochondrial calcium uniporter was associated with 
a reduction in mitochondrial calcium overload during reper-
fusion [109] (Fig. 2, Table 1).

Causal evidence for mitochondrial STAT3 
in cardioprotection

A number of studies have suggested an association between 
mitochondrial STAT3 activation and infarct size reduction 
during maneuvers such as IPC [84] or intermittent hyper-
baric hypoxia [109, 110]. However, there is only one study 
describing a causal evidence for mitochondrial STAT3 in 
infarct size reduction with POCO. In pigs, improved mito-
chondrial function after POCO was causally related to 
increased STAT3 tyr705 phosphorylation, but not to total 
STAT3. AG490 (tyrphostin B42), a JAK–STAT inhibitor, 
when administered in vivo before POCO, not only abolished 
the reduction in infarct size but also the protective effect on 
mitochondrial function. In vitro, stattic (a non-peptide small 
molecule inhibitor that inhibits STAT3 activity by binding 
to its SH2 region, which is essential for the tyr705 phos-
phorylation) abrogated better preservation of mitochondrial 
function when isolated after POCO. The fact that in mito-
chondria only STAT3 tyr705 was increased, but not total 
STAT3, suggests that STAT3 import into mitochondria does 
not play a role in acute cardioprotection [50]. In rats, POCO 
did not activate mitochondrial STAT3, but activated proteins 
of the RISK pathway which were subsequently translocated 
to the mitochondria [84]. In this study, however, it remained 
unclear whether or not the POCO maneuver that was per-
formed actually reduced the infarct size (Table 1).

Critical considerations on the detection 
and function of mitochondrial STAT3

For methodological reasons, most studies investigated 
mitochondria isolated from the total myocardium; thus, 
mitochondrial fractions from all myocardial cell types are 
included. The estimated proportion of cardiomyocytes in 
the left ventricular myocardium in rodents is between 75% 

(estimated from cell volume data) and 50% (estimated from 
nuclei data) [73, 102]. In adult human ventricular myocar-
dium, transcriptome analysis identified 49% cardiomyocytes, 
whereas studies using nuclear labeling techniques found 
only about 30% cardiomyocytes [74]. Since mitochondria 
in cardiomyocytes occupy about 30–40% of the total vol-
ume [75], and mitochondrial density in other cells (e.g., 
endothelial cells) is much lower at 2–5% [58], studies on 
mitochondria isolated from myocardial tissue mainly refer 
to cardiomyocyte mitochondria, but not exclusively. Con-
sidering that STAT3 activation also plays an important role 
in non-cardiomyocyte cells such as fibroblasts and endothe-
lial cells, modulating there cell proliferation, differentia-
tion, oxidative stress, cell metabolism, and survival [33], 
it is reasonable to assume that mitochondrial STAT3 may 
originate not exclusively from cardiomyocytes. Of note, the 
above numerical estimates may vary species-specifically, as 
there are significant species-specific differences in the cel-
lular composition between mouse, rat, and human hearts [3]. 
In cardiomyocytes, it has been estimated that the majority of 
mitochondria in cardiomyocytes are interfibrillar mitochon-
dria (IFM), a much smaller proportion are subsarcolemmal 
mitochondria (SSM), and the smallest proportion are perinu-
clear mitochondria [87]. Although many studies in rodents 
have documented differences between SSM and IFM not 
only in location, but also in function (e.g.. see [9, 56, 68, 
83]), a functional difference in ischemic reperfused myocar-
dium, however, was not confirmed in a study in pigs [16]. 
In rat myocardium, STAT3 was quantified in preparations of 
SSM and IFM [7]. Because selective isolation of perinuclear 
mitochondria is methodologically difficult [68], perinuclear 
mitochondria have not been studied in this regard.

Based on the findings discussed above, it is reasonable 
to assume that mitochondrial STAT3 plays a critical role in 
cardioprotection (Table 1). Again, however, using 3 different 
proteomic approaches in mouse myocardium, the abundance 
of mitochondrial STAT3 was estimated to be very low (10% of 
the total cytoplasmic STAT3 and a ratio of electron transport 
complex proteins to STAT3 of ~  105) [85], so a relevance of 
protein–protein interaction in the mitochondria seems indeed 
questionable. The low abundance of STAT3 in mitochondria 
is indirectly confirmed by the fact that without prior immu-
noprecipitation of STAT3, e.g., as done in the study by Boen-
gler et al. [7], detection in isolated mouse mitochondria failed 
[97]. Further, in a Percoll-purified mitochondrial preparation 
from mouse myocardium, STAT3 was neither detectable under 
baseline conditions nor after hypoxia/reoxygenation via West-
ern blot, and confocal imaging showed no colocalization of 
STAT3 signal with mitochondrial proteins. In this study, only a 
STAT3 overexpression in a H9C2 cardiomyoblast cell line led 
to detectable translocation of STAT3 into mitochondria [35]. 
Overall, it seems most plausible that differences in mitochon-
drial STAT3 detection are due to the methods used (different 



 Basic Research in Cardiology (2023) 118:32

1 3

32 Page 8 of 14

purification, enrichment, and denaturation protocols, antibod-
ies, etc.) and which of the available results best reflects the 
biological reality remains unclear. The functional studies in 
genetically modified mice and on mitochondria with pharma-
cological blockade are definitely not affected by these meth-
odological aspects and clearly indicate a relevance of mito-
chondrial STAT3 for mitochondrial function. However, both 
the use of genetically modified animal models and the use of 
pharmacological blockers have different, but also fundamental 
limitations (e.g., for animal models, the genetic compensation 
of the knock-out and for pharmacological blockers side effects, 
non-specificity, toxicity, etc.).

In conclusion, the precise function and importance of 
mitochondrial STAT3 during cardioprotection is still unclear. 
Finally, to what extent the acute cardioprotective effect is 
mediated by cytosolic STAT3 or mitochondrial STAT3 acti-
vation remains open.

Evidence for STAT3/5 in humans

Indeed, there is even evidence from the human myocardium 
that STAT is associated with cardioprotection by ischemic con-
ditioning. In left ventricular biopsies, taken at early reperfusion 
after cardioplegic ischemic arrest from patients undergoing 
bypass surgery [51], the activation and expression of 22 sign-
aling proteins, key signaling proteins of the NO/PKG, RISK 
and SAFE pathway were analyzed using Western blot analysis. 
Among these 22 proteins, only the activation of STAT5 was 
associated with reduction of perioperative myocardial injury 
by RIC [51]. Confirming results in right ventricular outflow 
tract biopsies of children undergoing tetralogy of Fallot repair 
surgery, activation of STAT3 and STAT5 was also associated 
with perioperative myocardial protection by RIC [111]—high-
lighting again the potentially relevant role of STATs in car-
dioprotection. Even when human myocardium is investigated, 
cardioprotective strategies improve mitochondrial function [1, 
62, 111]. Since mitochondrial STAT has not yet been detected 
in human myocardium, it is difficult to predict the relevance 
of the available data for the translation to patients. In princi-
ple, also other members of the STAT family (STAT1, STAT2, 
STAT5, and STAT6) are present in the mitochondria [7, 76]. 
Because there are several independent lines of evidence that 
STAT is associated with cardioprotection in human myocar-
dium, further and more detailed analysis of (mitochondrial) 
STAT signaling in human myocardium is warranted.

Lack of STAT3 responsiveness: a novel 
confounding factor

Ossabaw minipigs, a particular strain of minipigs, are char-
acterized by a genotype associated with a thrifty phenotype. 
Like humans, they develop a metabolic syndrome when fed 

a hypercaloric, atherogenic diet and consequently coronary 
atherosclerosis and occasional myocardial infarction [95, 101, 
118]. The unequivocally strongest and most robust stimulus 
for cardioprotection, IPC, failed to reduce infarct size in a 
power analysis-based experimental design in these Ossabaw 
minipigs—even when they were lean and only predisposed to 
metabolic syndrome. Bioinformatic analysis of genetic differ-
ences between these Ossabaw minipigs and Göttingen mini-
pigs, in which IPC confers robust protection, identified several 
clusters of protein-coding genes. One cluster was related to 
mitochondrial and one to JAK–STAT signaling. Indeed, the 
lack of infarct size reduction with IPC in the Ossabaw minipigs 
was associated with a lack of STAT3 activation in the myocar-
dium [64]. RIC also failed to reduce infarct size in the Ossa-
baw minipigs, but RIC still induced a release of cardioprotec-
tive factors into the circulation in these Ossabaw minipigs, as 
evidenced by their protective effect after transfer to isolated 
rat hearts; thus, the lack of cardioprotection was attributed to 
myocardial—i.e., STAT3-dependent—non-responsiveness 
[72]. These studies in Ossabaw minipigs once again indepen-
dently underscored the importance of STAT3 signaling for 
cardioprotection. However, the extent to which mitochondrial 
STAT3 plays here a role is unclear.

The neutral results of this prospectively designed experi-
mental study in the Ossabaw minipigs are similar to the neu-
tral results of several larger all-comer randomized controlled 
trials on RIC in patients undergoing interventional reperfu-
sion of myocardial infarction [39] or cardiovascular surgery 
[37, 77]. In addition to the often discussed confounders such 
as comorbidities and co-medications which are typical for 
patients with acute myocardial infarction [61], genetic vari-
ance may be newly considered as a potential confounder for 
cardioprotective measures [48, 104]. In this context, it is note-
worthy that STAT3 levels were reduced in aged mice and that 
this reduction in STAT3 levels was associated with a loss of 
the cardioprotective effect of POCO [5], suggesting that in 
addition to a genetic heterogeneity also age may act as con-
founding factor. A genetic heterogeneity of STATs exists also 
in humans. The European Lymphoma Risk Study identified 
human single-nucleotide polymorphisms belonging to the 
JAK–STAT pathway—including STAT3 and STAT5 [14]. The 
unique Ossabaw minipig strain may, therefore, be a suitable 
model to further investigate a genetically determined lack of 
susceptibility to cardioprotection and to develop therapeutic 
strategies and to possibly circumvent this blockade of cardio-
protective signaling.
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Cardioprotective effects of SGLT2 inhibitors 
through STAT3 activation

Sodium–glucose cotransporter 2 (SGLT2) inhibitors—
also known as gliflozins—are a class of drugs originally 
developed to treat type 2 diabetes via inhibition of the 
sodium–glucose transport protein 2 in the kidney [2]. 
However, clinical trials have impressively shown that in 
addition to lowering blood glucose levels, gliflozins also 
significantly improve cardiovascular outcomes in patients 
with and without type 2 diabetes, indicating multifaceted 
cardioprotective effects that are beyond inhibition of the 
sodium–glucose transport protein 2 in the kidneys [2]. The 
larger clinical trials did not identify a reduction in the 
incidence of acute coronary syndromes, however, dapagli-
flozin and empagliflozin reduced the incidence of recur-
rent myocardial infarction, possibly reflecting attenuated 
ischemia/reperfusion injury [2]. Indeed, a recent study in 
SGLT2 knock-out mice demonstrated that the infarct size 
reduction by empagliflozin was completely independent 
of its initial target, sodium–glucose transport protein 2 
inhibition [18]. Among all potential mediators discussed 
in the context of gliflozin-induced but SGLT2-independent 
cardioprotection [2], myocardial STAT3 activation could 
be a common denominator. In fact, one-week of treatment 
with dapagliflozin and empagliflozin before induction of 
myocardial infarction in mice reduced infarct size, and 
STAT3 activation was causally involved. In association 
with cardioprotection by empaliflozin, mitochondrial com-
plex I and II respiration was preserved after myocardial 
infarction [81]. A more acute administration of empali-
flozin (4 or 24 h before myocardial infarction in mice), 
however, failed to reduce myocardial infarct size, and 
STAT3 was not activated [80]. However, 24 h pretreat-
ment of empaliflozin increased STAT3-dependently the 
survival of cultured human endothelial cells after hypoxia/
reoxygenation [80]. Coronary endothelial cells are rela-
tive resistant to ischemia, but with endothelial swelling 
obstructing capillary blood flow, they contribute to micro-
vascular damage in response to myocardial ischemia/rep-
erfusion injury, and microvascular obstruction has a strong 
impact on patient prognosis [38]. Notably, knock-out of 
endothelial STAT3 in mice resulted in reduced recov-
ery of left ventricular function during reperfusion after 
myocardial infarction [106]. In the EMMY trial [105] in 
patients with recent myocardial infarction, daily adminis-
tration of SGLT2 inhibitors (with onset no later than 72 h 
after interventional reperfusion) preserved left ventricu-
lar function, possibly through anti-inflammatory effects 
[28]. However, a number of issues on the role of STAT3 in 
the gliflozin action remain to be resolved: Is, in response 
to gliflozins, STAT also activated in the human heart? 

In cardiomyocytes or endothelial cells, possibly also in 
inflammatory cells? Does STAT3 serve a canonical or non-
canonical function? Are mitochondria involved?

Recently, also other compounds have been described that 
activate STAT3 and are causally involved in cardioprotec-
tion under experimental conditions. The anabolic steroid 
nandrolone decanoate [22] and dexmedetomidine—a selec-
tive alpha 2 adrenoceptor agonist [19] reduced infarct size/
biomarker release reflecting myocardial injury in rodents 
via STAT3 activation. Again, improved mitochondrial func-
tion was also associated with cardioprotection. Thus, these 
agents may also be of interest for use in patients. For these 
agents, it is even more important to conduct further studies 
to determine the extent to which the results of the initial 
experimental studies can be transferred to patients.

Conclusion

STAT3 plays an important role in cardioprotection, also 
in the human heart. In animal models, there is evidence of 
mitochondrial STAT3 involved in mitochondrial function. 
The assumed causal relationship between mitochondrial 
STAT3 and cardioprotection is based on only one study 
in pigs. Data from human myocardium on mitochondrial 
STAT are lacking. There is a primordial non-responsiveness 
to cardioprotection in pigs which involves STAT3. Com-
bination therapies that acutely activate STAT3—possibly 
mitochondrial STAT3—through different pathways could 
therefore be particularly effective, as they could bypass pos-
sible blockades upstream of STAT3. The timing of STAT 
activation seems to be relevant for therapeutic approaches. 
Acute activation and the non-canonical function of STAT3 
are cardioprotective, subacute activation of canonical STAT3 
function in late preconditioning is also cardioprotective. 
However, chronic activation of canonical STAT3 function 
may be more detrimental than beneficial.
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