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Abstract
In the context of myocardial infarction, the burst of superoxide generated by reverse electron transport (RET) at complex 
I in mitochondria is a crucial trigger for damage during ischaemia/reperfusion (I/R) injury. Here we outline the necessary 
conditions for superoxide production by RET at complex I and how it can occur during reperfusion. In addition, we explore 
various pathways that are implicated in generating the conditions for RET to occur and suggest potential therapeutic strate-
gies to target RET, aiming to achieve cardioprotection.

Keywords Succinate · Reverse electron transport · Malonate · Reactive oxygen species · Mitochondria · Succinate 
dehydrogenase

Introduction

Despite extensive research, therapies to prevent ischaemia/
reperfusion (I/R) injury in myocardial infarction (MI) remain 
elusive [65–67]. However, one thing is clear: mitochondria 
play a critical role in the damaging events of I/R injury [21, 
42, 43, 52, 177]. Cardiomyocytes rely on mitochondria to 
oxidise various fuel sources, maintaining the essential ATP/
ADP ratio and consuming oxygen in the process, due to their 
high energetic demands [60, 119]. As the organelles respon-
sible for consuming over 90% of the oxygen intake [156], 
it is logical that mitochondria play a central role in ischae-
mic pathologies where oxygen supply to tissues is rapidly 
depleted [67, 80]. Moreover, mitochondria are not merely 

ATP producers; they also serve as key metabolic and signal-
ling hubs that underpin (patho)physiology [129], playing 
a multifaceted and complex role in cardiac I/R injury [42, 
101, 120].

Apart from their involvement in the tricarboxylic acid 
(TCA) cycle as providers of electron transport chain (ETC) 
cofactors, mitochondrial metabolites intricately interact with 
the rest of the cell, shaping its phenotype and response to 
stimuli [33, 55, 129]. This precise interplay becomes par-
ticularly evident during ischaemia and reperfusion, defining 
the response to the shift from homeostasis and ultimately the 
phenomenon of I/R injury [63, 66, 101]. In this overview, 
we will explore the mitochondria-centric mechanism that 
triggers damage in I/R injury by generating the proximal 
reactive oxygen species (ROS) superoxide by reverse elec-
tron transport (RET) and potential therapeutic opportunities 
in this domain.

RET in I/R injury pathophysiology

Thermodynamics of RET in I/R injury

For a long time, it has been hypothesised that a surge of reac-
tive oxygen species (ROS) originating from mitochondria 
plays a crucial role in I/R injury. Initially, ROS was believed 
to be a non-specific oxidative event triggered by the reintro-
duction of oxygen into the ischaemic region [56, 64, 178]. 
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However, more recent research has led to the proposal of a 
specific mechanistic pathway leading to the production of 
superoxide [40, 41]. Now, RET at complex I is thought to 
be the predominant mechanism of the mitochondrial super-
oxide burst upon reperfusion [40, 41, 121, 173]. This notion 
is a result of a large body of work detailing the metabolic 
changes occurring during I/R and their contribution to driv-
ing the production of superoxide [40, 41, 113, 141, 173].

As complex I sits close to thermodynamic equilibrium, it 
is considered to be a reversible catalytic machine, with the 
direction of electron flow dependent on the protonmotive 
force (Δp) and relative Coenzyme Q (CoQ) and NADH pool 
reduction states [3, 121, 176]. This leads to complex I being 
able to produce superoxide in two catalytic states: forward 
and reverse electron transport [97, 121, 137]. Superoxide 
production during forward electron transport (FET) occurs 
in a situation where the flavin mononucleotide (FMN) group 
in complex I is reduced. The reduction of the FMN is set by 
the NADH/NAD+ ratio, therefore perturbations in complex 
I function such as respiratory chain inhibition (e.g. Q-site 
inhibitor rotenone) or dysfunction lead to an increased 
NADH/NAD+ ratio, driving superoxide production by FET. 

The second catalytic state of complex I that can produce 
superoxide is RET [121, 137, 141, 169]. RET occurs when 
electrons are forced back from the CoQ pool onto FMN and 
thus able to reduce  NAD+ to NADH [121, 137, 169].

Thermodynamically, for forward electron transport, the 
reduction potential difference of the  NAD+/NADH and 
CoQ/CoQH2 redox couples (ΔEh) for 2 electrons to transport 
across complex I must be large enough to pump 4 protons 
against the protonmotive force (Δp) across the mitochon-
drial inner membrane [29, 121]. Therefore, for 2 electrons 
passing through complex I, 4 protons would be pumped so 
2ΔEh > 4Δp (Fig. 1A). For RET, the reverse must be true, in 
that the reduction potential difference between the  NAD+/
NADH and CoQ/CoQH2 pools must be less than the energy 
required to pump 4 protons across the inner membrane [32, 
121, 169]. These conditions would be met in instances of a 
high CoQ pool reduction state and a large Δp, meaning that 
4Δp > 2ΔEh, leading to RET through complex I and onto 
FMN, with either subsequent reduction of  NAD+ to NADH, 
or of oxygen to generate superoxide (Fig. 1B) [121, 169]. 
Furthermore, RET generates the most superoxide out of all 
the mitochondrial superoxide production mechanisms [121].

Fig. 1  Schematic of conditions required for RET and superoxide pro-
duction. A Complex I operating forward electron transport, oxidis-
ing NADH to generate the protonmotive force (Δp) which is used for 
ATP synthesis. The reduction potential difference between the  NAD+/
NADH  and the CoQ/CoQH2 redox couples across complex I (ΔEh) 
has to be larger than that required to pump protons across the IMM 
against the Δp. As 4 protons are pumped per 2 electrons through 
complex I, for forward electron transport 2ΔEh > 4Δp. B In condi-

tions of a large Δp, such as no ATP synthesis, so that 2ΔEh < 4Δp, 
electrons can be forced backwards from the CoQ pool and onto 
the complex I FMN which can transfer an electron onto oxygen to 
produce superoxide. IMS intermembrane space, IMM inner mito-
chondrial membrane, SDH succinate dehydrogenase, FMN flavin 
mononucleotide, Δp protonmotive force, cyt c cytochrome c, O2

●− 
superoxide, DIC mitochondrial dicarboxylate carrier
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For RET to be relevant in I/R injury, we must understand 
whether the conditions upon early reperfusion are sufficient 
to drive superoxide production via this mechanism. The low 
 Km of complex IV for oxygen means that upon reperfusion, 
the oxygen present will rapidly restore electron flow through 
the ETC [156]. The restoration in ETC activity generates a 
large Δp as complexes III and IV pump protons across the 
inner mitochondrial membrane (IMM) [40, 41, 91]. Under 
normal conditions, the Δp would be utilised by ATP syn-
thase, shuttling the protons back across the IMM and into 
the matrix to power the generation and release of ATP from 
ATP synthase, as well as export of ATP to the cytosol by 
the adenine nucleotide translocator (ANT) [94, 144]. How-
ever, during the conditions of early reperfusion, ATP syn-
thesis is limited due to the lack of availability of adenine 
nucleotides for phosphorylation [40, 41]. This is due to the 
extensive degradation of the adenine nucleotide pool during 
ischaemia [40, 106]. Limiting ATP synthesis on reperfusion 
minimises the utilisation of the Δp across the IMM [153]. 
Therefore, the metabolic changes during ischaemia seem to 
be able to satisfy the condition of 4Δp > 2ΔEh for RET to 
occur (Fig. 1B). On reperfusion, electrons will be transferred 
from the CoQ pool, through the ETC and onto oxygen. The 
conditions for RET to occur requires a source of electrons 
to maintain a highly reduced CoQ pool in early reperfusion 
[121]. Therefore a substrate that is highly accumulated in 
ischaemia, rapidly oxidised within mitochondria and feeds 
electrons directly into the CoQ pool could drive RET at 
complex I in early reperfusion.

Succinate at the heart of RET in cardiac I/R injury

A critical finding tying together the idea of ordered RET-
derived superoxide production initiating I/R injury is the 
TCA cycle metabolite succinate. Succinate accumulation in 
oxygen-compromised environments was well documented in 
the comparative physiology field [69, 70], however, the link 
to I/R injury was not made until the precise metabolomic 
profiling of ischaemic tissues [40]. Succinate was signifi-
cantly accumulated in numerous ischaemic mouse tissues, 
including the heart [40]. Furthermore, succinate was one 
of only three metabolites that accumulated in all the tis-
sue types tested and the only mitochondrial metabolite [40]. 
The other two metabolites were hypoxanthine and xanthine 
– both adenine nucleotide degradation products [20, 40, 
85, 106]. The many-fold accumulation of succinate in the 
in vivo ischaemic mouse heart has also been recapitulated in 
rat, rabbit, pig and human hearts [40, 88, 89, 106], thus suc-
cinate accumulation is a conserved hallmark of ischaemia.

The mechanism of succinate accumulation in ischae-
mia remains uncertain with evidence from varying models 
pointing to either succinate dehydrogenase (SDH) reversal 
or canonical TCA cycle activity [38, 40, 151, 174]. SDH is 

a key node of oxidative metabolism due to its dual role as 
an enzyme within both the TCA cycle and the ETC. The 
data from an ex vivo perfused heart model have suggested 
that ischaemic succinate accumulation occurs predominantly 
by canonical TCA cycle activity [174]. Here, it was shown 
that glutaminolysis drives the anaplerotic entry of carbons 
into the TCA cycle via α-ketoglutarate and that dimethyl 
α-ketoglutarate could further boost the levels of ischaemic 
succinate [174]. However, in vivo studies support succinate 
accumulation occurring due to a reversal in SDH activ-
ity, reducing fumarate to succinate (Fig. 2A) [40, 151]. In 
ischaemia, the CoQ pool becomes highly reduced due to 
the lack of the terminal electron acceptor oxygen [59, 141]. 
Thus electrons from cofactors, such as NADH via complex 
I, reduce the CoQ but can no longer be transferred onto oxy-
gen. Instead, the electrons from the CoQ pool can be used by 
SDH to reduce fumarate to succinate, with fumarate, there-
fore, acting as a terminal electron acceptor and succinate 
accumulating [40, 151]. As no mammalian mitochondrial 
fumarate transporter has been identified [76] it has been 
postulated that fumarate transport across the IMM in car-
diac mitochondria arises from malate via a partial reversal 
of the TCA cycle [40, 41]. As malate can be transported 
freely across the IMM by the mitochondrial dicarboxylate 
carrier (DIC), this enables numerous cytosolic pathways to 
converge at malate and then enter mitochondria to enable 
succinate accumulation (Fig. 2A) [53]. The degradation of 
the adenine nucleotide pool leads to the production of fuma-
rate via the purine nucleotide cycle (PNC) by the action 
of adenylosuccinate lyase (ASL) in the cytosol [159]. This 
cytosolic fumarate can be converted to malate by cytosolic 
fumarate hydratase (FH) [1, 7]. In addition, aspartate may be 
an important anaplerotic route driving ischaemic succinate 
accumulation. Aspartate can feed into the cytosolic produc-
tion of malate by participating in the PNC as a substrate for 
adenylosuccinate synthetase [40, 159], or aspartate may be 
transaminated to oxaloacetate and subsequently metabolised 
to malate in the cytosol of the ischaemic heart tissue [40, 
44].

As malate may be produced in the cytosol of the ischae-
mic cardiomyocytes, an important step is its transport into 
mitochondria. Both malate and succinate are substrates for 
the DIC, thus the cytosolic malate can enter mitochondria in 
exchange for succinate [53]. This has the dual effect of suc-
cinate being diluted in the cytosol preventing the fumarate/
succinate ratio from affecting SDH reversal (or maintaining 
canonical TCA cycle activity [102]), as well as maintaining 
a supply of malate to sustain succinate production (Fig. 2A) 
[40]. With the cytosol acting as an electron sink, this ena-
bles succinate to accumulate to 2–5 mM as quantified in 
ischaemic mouse heart tissue [131]. Depending on the con-
ditions and time from the initiation of ischaemia, it may be 
likely that both canonical TCA cycle and SDH reversal are 
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important in achieving ischaemic succinate accumulation. 
Nevertheless, regardless of the intricacies of the mechanism, 
it is clear that succinate is profoundly elevated in ischaemic 
tissue.

After a short period of reperfusion (~ 1 to 3  min), 
succinate levels return to those at normoxia [40, 131, 
174]. Approximately half of the accumulated succinate 
effluxes from cardiomyocytes into the circulation via the 

monocarboxylate transporter 1 (MCT1), while the other 
half is oxidised by SDH in mitochondria (Fig. 2B) [6, 131, 
174]. This rapid oxidation of succinate by SDH provides 
a source of electrons to maintain a highly reduced CoQ 
pool during early reperfusion [40, 141]. Together with 
the large Δp, succinate oxidation maintains a reduced 
CoQ pool driving RET at complex I and the subsequent 
superoxide production in early reperfusion (Fig. 2B) [40, 
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114, 141]. The conditions of early reperfusion are akin to 
isolated heart mitochondria incubated with succinate in 
low/non-phosphorylating conditions, where superoxide is 
maximally produced by RET [121]. Within the reperfused 
tissue, the cytosolic store of succinate can be transported 
back into mitochondria via the DIC, sustaining succinate 
oxidation and returning the succinate levels back to those 
at normoxia, while driving RET and initiating the damage 
in I/R injury (Fig. 2B) [41, 53, 121]. With succinate oxi-
dation driving RET and a subsequent burst of superoxide, 
this initiates the downstream cascade of cell death and 
injury [40, 80, 95]. The burst of superoxide on reperfusion 
together with calcium dyshomeostasis and restoration of 
pH leads to the opening of the mitochondrial permeability 
transition pore (mPTP) [10, 16, 123]. mPTP opening leads 
to mitochondrial swelling and rupture activating a series 
of downstream events resulting in cell death. A number of 
different mechanisms of cell death have been implicated 
with I/R, with an initial wave of necrosis and apoptosis in 
the acute phase of reperfusion (< 24 h) [66]. Later stages 
of cell death (> 24 h) are now associated with ferroptosis, 
in an iron-dependent programmed cell death mediated by 
lipid peroxides [31].

Therefore, the finding of succinate accumulation and oxi-
dation in I/R was instrumental in our current understanding 
of the ordered production of superoxide upon reperfusion by 
RET which drives cellular damage and injury.

Targeting RET therapeutically

As superoxide production via complex I RET is a key ini-
tiating event in the pathology of I/R injury, the conditions 
required to drive RET also provide an opportunity for ther-
apeutic intervention and may help explain mechanistically 
the basis of cardioprotection of several agents. Below we 
outline the key factors required for RET-derived super-
oxide and the current evidence towards pharmacological 
approaches targeting these to prevent I/R injury.

Succinate accumulation

The accumulation of succinate during ischaemia is the key 
to providing both driving forces for superoxide produc-
tion by RET upon reperfusion: Δp and ΔEh. Therefore, 
targeting the accumulation of succinate during ischaemia 
is a potential intervention in preventing I/R injury. Indeed, 
preventing succinate accumulation during ischaemia was 
a pivotal approach that helped define the importance of 
succinate metabolism in I/R injury [40]. Succinate accu-
mulation is now seen as a hallmark of ischaemia. Consid-
ering the role it plays in driving RET upon reperfusion, 
interventions that prevent its accumulation may play a role 
in combatting I/R injury.

Preventing succinate accumulation was first found to 
be a therapeutic option using dimethyl malonate (DMM) 
[40]. DMM is an ester prodrug of the potent, competitive 
SDH inhibitor malonate [93, 165], but can freely diffuse 
across biological membranes and can be hydrolysed by 
cellular esterases to release malonate in its active form. 
As SDH reversal leads to succinate accumulation, inhib-
iting SDH may prevent succinate accumulation during 
ischaemia (Fig. 3A). When mice were treated with DMM 
prior to left anterior descending coronary artery (LAD) 
ligation, succinate accumulation was prevented in the 
ischaemic tissue [40]. Furthermore, DMM-treated mice 
also had smaller infarct sizes than control animals [40]. 
This showed in vivo, not only that SDH reversal contrib-
uted to succinate accumulation but also that preventing 
succinate accumulation during ischaemia may be a prom-
ising therapeutic option. In addition, DMM pre-treatment 
has been used in the isolated Langendorff-perfused heart 
model with healthy or diabetic rats [78, 158]. Here, DMM 
led to modest cardioprotection, however, as the levels of 
succinate and malonate were not measured, it is difficult 
to ascertain whether SDH was inhibited or whether the 
diabetic heart affects the metabolism of DMM. However, 
these results suggest that targeting succinate metabolism 
may also be of use in treating I/R injury in patients with 
comorbidities [78, 158]. As well as in MI, DMM has 

Fig. 2  Succinate at the heart of I/R injury A Pathways involved in 
ischaemic succinate accumulation. In ischaemic tissue, succinate 
accumulation occurs primarily by SDH reversal. This process is 
driven by the reduced CoQ pool, fed by NADH oxidation by com-
plex I, enabling electrons from the CoQ pool to reduce fumarate to 
succinate. There are multiple avenues for substrates to lead to suc-
cinate accumulation. The degradation of AMP in the purine nucleo-
tide cycle leads to the production of fumarate in the cytosol, which 
is subsequently converted to malate. The transamination of aspartate 
to oxaloacetate and subsequent reduction to malate provides another 
pathway to produce cytosolic malate. This malate can be transported 
into mitochondria by the DIC in exchange for succinate, also lead-
ing to a cytosolic pool of succinate accumulating. The mitochondrial 
malate can be subsequently dehydrated to fumarate which can feed 
the production of succinate. Ischaemic succinate accumulation may 
also occur by the canonical TCA cycle via glutaminolysis. B Succi-
nate as a driver of RET on reperfusion. Upon reperfusion, the rein-
troduction of oxygen restarts the electron transport chain and proton 
pumping by complexes III and IV. As ATP synthesis is limited due 
to the degraded adenine nucleotide pool, a large Δp is generated. The 
CoQ pool remains reduced by the oxidation of the pool of succinate, 
sustained by the transport of cytosolic succinate into mitochondria by 
the DIC. Succinate oxidation together with the large Δp drives RET, 
with electrons from the CoQ pool going on the complex I FMN and 
onto oxygen, generating superoxide. A proportion of the cytosolic 
pool of succinate is effluxed from cardiomyocytes via MCT1. IMS 
intermembrane space, IMM inner mitochondrial membrane, SDH 
succinate dehydrogenase, FMN flavin mononucleotide, Δp protonmo-
tive force, cyt c cytochrome c, O2

●− superoxide, DIC mitochondrial 
dicarboxylate carrier, IMP inosine monophosphate

◂
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shown utility in preventing cardiac succinate accumulation 
in organ transplantation [106], haemorrhagic shock [154] 
and in combination with hypothermic reperfusion [89].

The immune-relevant metabolite itaconate competitively 
inhibits SDH [98, 116]. The ester prodrug of itaconate, 
dimethyl itaconate (DMI) was found to be cardioprotective, 
and its hydrolysis product was presumed to act via the same 
mechanism as DMM by preventing succinate accumulation 
[98]. However, it was subsequently found that DMI is not 
hydrolysed to release itaconate [13, 49, 116]. Rather, the 
conjugated α-β unsaturation acts as a Michael acceptor and 
it reacts with free or protein thiols [13, 49, 116] and thus 
may act similarly to the cardioprotective compound dime-
thyl fumarate by activating the downstream Nrf2 antioxidant 
response [7, 92]. Therefore, a key experiment when assess-
ing any potential cardioprotective compound is to measure 
the levels of the active compound and succinate to assess the 
impact. It also remains unknown whether Nrf2 activators 
themselves affect ischaemic succinate accumulation.

As aspartate can feed into at least two different pathways 
to produce malate within the cytosol of ischaemic tissue, 
this presents a novel approach which could be targeted thera-
peutically. Aminooxyacetic acid (AOA) has been used as 
a pharmacological inhibitor of aspartate aminotransferase 
(Fig. 3A) [152]. When AOA was infused in vivo, it was able 
to reduce the levels of accumulated succinate in ischaemic 

heart tissue [40]. A similar reduction in ischaemic succinate 
was seen using AICAR (5-aminoimidazole-4-carboxamide 
ribonucleotide) as an inhibitor of adenylosuccinate lyase 
(ASL) (Fig. 3A), thus preventing a route for aspartate con-
version into cytosolic malate [40]. Both compounds have 
also been shown to be cardioprotective when infused prior to 
ischaemia in Langendorff heart models [46, 152]. Although 
their complete mechanism of action may be complex, their 
ability to prevent succinate accumulation and thereby pre-
vent RET may have been the reason. A major limitation 
of both AOA and AICAR is their lack of specificity, with 
multiple other targets and pathway interactions [147, 164]. 
Owing to the lack of selectivity, these two compounds may 
be less useful pharmacological agents to prevent I/R injury 
for translation, however, there is the potential that other 
compounds with transient, selective inhibition of either 
aspartate transamination or adenylosuccinate lyase could 
be developed.

As fumarate is considered an important intermediate 
both in the cytosol and mitochondria for ischaemic succi-
nate accumulation [40, 41], targeting fumarate metabolism 
may be another option to prevent this. As fumarate hydratase 
(FH) is responsible for the formation of malate in the cytosol 
to enable its entry into mitochondria, as well as the subse-
quent production of fumarate from malate in the mitochon-
drial matrix, FH inhibitors may serve as a strategy to prevent 
succinate accumulation. FH knockout hearts are protected 
against I/R injury, which was attributed to the accumulated 
fumarate leading to antioxidant upregulation via Nrf2 stabi-
lisation [1, 7]. It may well be that FH KO mouse hearts are 
protected as the lack of FH activity renders the ischaemic 
heart tissue to be unable to accumulate succinate, however 
this is currently unknown. FH can be inhibited by the potent, 
non-competitive drug FHIN-1, which has shown target 
engagement in vitro and in vivo [37]. With FH localised 
to both the cytosol and mitochondrial matrix, the effects of 
FHIN-1 likely represent inhibiting both enzymes, thus may 
have some mechanistic utility in understanding ischaemic 
succinate accumulation (Fig. 3A). However, as FH inhibi-
tion may be detrimental to cardiac and immune cell function 
[7, 73], it remains to be seen whether a potent, competitive 
inhibitor of FH could be developed to transiently inhibit FH 
to prevent ischaemic succinate accumulation.

Insights from different models may also help bring 
about new therapeutic targets to prevent ischaemic succi-
nate accumulation. For example, it was recently found that 
the cardioprotected cyclophilin D (CyD) knockout mouse 
hearts do not accumulate succinate during ischaemia [132]. 
While the chronic loss of CyD is responsible for the lack 
of ischaemic succinate accumulation [132], it may also be 
of some merit to explore whether chronic cyclosporine A 
treatment could similarly prevent succinate accumulation, 
or whether patients taking cyclosporine A chronically for 

Fig. 3  Targeting succinate metabolism to prevent RET. A Inhibit-
ing routes to succinate accumulation. Preventing ischaemic suc-
cinate accumulation has been shown experimentally by inhibiting 
SDH reversal with malonate, complex I with rotenone, adenylosuc-
cinate lyase with AICAR and aspartate transaminase with AOA. We 
hypothesise that inhibiting fumarate hydratase with FHIN-1 or DIC 
with butylmalonate may also prevent succinate accumulation. Inhibi-
tors in red have experimental evidence of preventing ischaemic suc-
cinate accumulation, whereas inhibitors in pink are hypothesised to 
prevent ischaemic accumulation. B Modulating succinate oxidation 
and transport on reperfusion. Inhibiting SDH with either malonate or 
AA5 experimentally have shown to be able to prevent RET by slow-
ing succinate oxidation. Malonate selectively enters ischaemic cardio-
myocytes on reperfusion due to the low pH protonating malonate into 
its monocarboxylate form, allowing it to be transported by MCT1. 
Malonate is subsequently transported into mitochondria by the DIC to 
selectively inhibit SDH in the at-risk tissue. Blocking succinate efflux 
via MCT1 with AR-C155858 has been shown to increase superoxide 
production on reperfusion by RET, due to increasing the proportion 
of the accumulated succinate oxidised. It is also hypothesised that 
AR-C141990 and AZD3965 would lead to similar effects in  vivo. 
Targeting the DIC with butylmalonate may also prevent RET by pre-
venting the cytosolic succinate pool from being oxidised by SDH in 
mitochondria. Inhibitors in red have experimental evidence of modu-
lating RET, whereas inhibitors in pink are hypothesised to affect RET 
by modulating succinate transport. IMS intermembrane space, IMM 
inner mitochondrial membrane, OMM outer mitochondrial mem-
brane, SDH succinate dehydrogenase, FMN flavin mononucleotide, 
Δp protonmotive force, cyt c cytochrome c, O2

●− superoxide, DIC 
mitochondrial dicarboxylate carrier, IMP inosine monophosphate, 
MDH malate dehydrogenase, FH fumarate hydratase, ASL adenylo-
succinate lyase, MCT1 monocarboxylate transporter 1

◂
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other conditions have smaller infarcts/improved outcomes 
after MI. Furthermore, comparing the mammalian heart 
with other species may provide insights into ischaemic 
succinate accumulation. Anoxia-tolerant animals provide 
an interesting contrast to mammals, due to their ability to 
readily experience long periods of anoxia and reoxygenation, 
without detrimental effects [18]. The succinate levels in the 
anoxic hearts of red-eared slider turtles (Trachemys scripta) 
are orders of magnitude lower than the ischaemic mouse 
heart, thus succinate does not accumulate to a level capa-
ble of driving RET on reoxygenation [26, 27]. Whether the 
reduced succinate accumulation is solely due to the colder 
temperatures or reduced metabolic rate and whether the tur-
tle hearts are similarly protected against ischaemia and not 
just anoxia remains unknown. Consequently, comprehensive 
profiling of the pathways involved in preventing succinate 
accumulation in ischaemic/anoxic tissues may be a useful 
approach to generate novel therapeutic targets.

While preventing succinate accumulation may be an 
effective method of preventing I/R injury, its clinical rel-
evance, at least in the context of MI, is debatable. To be 
effective, a compound capable of preventing succinate accu-
mulation would need to be infused prior to the ischaemic 
event, which in acute MI is likely to be highly unpredict-
able. Without this knowledge, the therapeutic window of a 
compound designed to prevent ischaemic succinate accumu-
lation would be missed. Therefore, compounds preventing 
succinate accumulation may be more applicable when the 
period of ischaemia is known, such as elective surgery or 
organ transplantation when the patient or organ could be 
pre-treated before the ischaemic event [106]. Furthermore, 
interventions such as cooling reduce the metabolic rate of 
the tissue, lessening succinate accumulation during ischae-
mia [106]; however, how this may be achieved in the setting 
of a MI may be technically challenging.

Succinate oxidation

The action of SDH oxidising succinate is also responsible 
for the rapid return to normoxic succinate levels upon rep-
erfusion [40, 131, 174]. The electrons from succinate help 
maintain the reduced CoQ pool and drive RET at complex 
I, leading to the production of the proximal ROS superoxide 
and the initiation of the damaging cascade in I/R injury. 
Therefore, approaches to prevent succinate oxidation dur-
ing reperfusion may attenuate the downstream superoxide 
production and signalling cascade, preventing I/R injury. 
Furthermore, targeting succinate oxidation therapeutically 
represents a highly clinically relevant point of intervention, 
as a pharmacological agent could be simply administered at 
the point of removing the vessel occlusion and creating the 
opportunistic therapeutic window.

The use of the competitive SDH inhibitor malonate was 
described above in the context of preventing succinate accu-
mulation with its esterified form DMM. DMM was effective 
at preventing succinate accumulation, however, when DMM 
was infused at the point of reperfusion, it was not found to 
be cardioprotective in a murine MI model [134]. The lack 
of cardioprotection was because hydrolysis of DMM was 
too slow to achieve sufficient malonate to perturb succinate 
oxidation by SDH. The rapidly hydrolysable malonate ester 
prodrug diacetoxymethyl malonate (MAM) [15, 47, 134] 
could release malonate far more rapidly into cardiomyocytes 
than DMM and when administered at reperfusion, suffi-
cient malonate was released to reduce succinate oxidation 
and elicit protection against cardiac I/R injury in vivo [15, 
134]. Therefore, competitive inhibition of SDH is a suitable 
strategy to inhibit RET in a clinically relevant therapeutic 
window (Fig. 3B), however, an important point is that the 
drug must rapidly reach its target site in the active form to 
be effective.

Intriguingly, it was also shown that malonate as the diso-
dium salt (disodium malonate; DSM) was protective against 
I/R injury in an ex vivo mouse model and in vivo pig MI 
model [162, 163]. Malonate could enter cardiomyocytes and 
inhibit SDH on reperfusion leading to reduced superoxide 
production and smaller infarct size. Curiously, in normoxic 
mouse tissue infused with malonate, succinate levels only 
doubled from baseline and were ~ 7 times lower than those 
achieved during ischaemia, suggesting little SDH inhibition 
in normoxic tissue [162]. As malonate carries two negative 
charges at physiological pH, it suggests that malonate uptake 
into normoxic cardiomyocytes is inefficient, however, can 
still lead to SDH inhibition and reduced succinate oxidation 
in I/R [130, 162, 163]. The paradox of malonate’s low cel-
lular permeability, yet robust cardioprotection was recently 
discovered to be due to malonate’s preferential uptake into 
ischaemic tissue [130, 146]. In the ischaemic environment, 
the pH is significantly more acidic, which facilitates the pro-
tonation of one of the carboxylate groups of malonate, gen-
erating monocarboxylate malonate [130], enabling it to be 
a substrate for the plasma membrane transporter monocar-
boxylate transporter 1 (MCT1) (Fig. 3B) [130]. Therefore, 
malonate can selectively enter the ischaemic tissue upon rep-
erfusion, sparing the healthy tissue where the pH remains 
unaltered [130, 162]. Once within the cytosol, malonate 
is rapidly transported into the mitochondria by the DIC, 
subsequently inhibiting succinate oxidation, superoxide 
formation and injury [130, 162, 163]. Furthermore, MCT1-
dependent malonate uptake could be harnessed to improve 
the uptake of malonate into the heart tissue by developing a 
low pH formulation [130]. The low pH malonate formula-
tion increases the proportion of monocarboxylate malonate 
and leads to lower doses of malonate required for cardio-
protection (Fig. 3B) [130]. Another approach which directly 
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targets malonate to mitochondria is via the use of the well-
characterised triphenylphosphonium mitochondria-targeting 
group [143, 150]. Although this approach has been shown to 
be able to deliver malonate in vivo, whether the levels would 
be sufficient to prevent succinate oxidation and therefore I/R 
injury is unknown [133].

The TCA cycle intermediate oxaloacetate is an even more 
potent competitive inhibitor of SDH than malonate and thus 
may be an interesting therapeutic candidate for I/R injury 
[166]. Interestingly, oxaloacetate can also be oxidised by 
hydrogen peroxide and converted to malonate but whether 
this process occurs in vivo is unknown [105]. Oxaloacetate 
has a very high affinity for SDH, with SDH in isolated sys-
tems often initially inactive due to endogenous oxaloacetate 
being bound [135]. However, the understanding of oxaloac-
etate in biology and its therapeutic use is limited. This may 
be due to the rapid, spontaneous decarboxylation of oxaloac-
etate meaning it has a short biological half-life (~ 10 min) 
[168], as well as being problematic for measurement by the 
techniques of traditional liquid chromatography-mass spec-
trometry metabolomics [61]. On top of this, the transport of 
oxaloacetate into mammalian mitochondria from the cytosol 
is slow [126]. Therefore, despite oxaloacetate being a very 
potent competitive SDH inhibitor, its therapeutic utility may 
be negligible until there are robust methods to accurately 
measure oxaloacetate in biological samples.

Targeting SDH using the potent, selective, and non-com-
petitive inhibitor atpenin A5 (AA5) has shown cardioprotec-
tion (Fig. 3B) [114, 167]. In the Langendorff-perfused heart, 
when AA5 was infused at reperfusion, it blunted the burst of 
superoxide upon reperfusion, leading to reduced infarct size, 
consistent with AA5 preventing RET by blocking succinate 
oxidation [114]. Although AA5 may be a viable approach 
in the isolated heart, like other non-competitive inhibitors of 
SDH, it is unlikely to be a useful approach due to it chroni-
cally inhibiting SDH in vivo.

An additional advantage to the use of malonate over other 
SDH inhibitors is its favourable pharmacokinetics. Malonate 
has a short plasma half-life (t1/2 < 40 min, unpublished data), 
low toxicity and via acidic formulation lower doses can be 
used to achieve cardioprotection. Malonate is rapidly renally 
excreted and thereby can limit any off-target effects [145]. 
Overall, targeting succinate oxidation looks to be a promis-
ing approach to targeting RET for cardioprotection.

Succinate transport

As succinate oxidation is an essential driver of RET, 
altering the supply of succinate independently of SDH 
inhibition may provide novel therapeutic targets for car-
dioprotection (Fig. 3). The current model for succinate 
accumulation suggests that fumarate acts as a terminal 
electron acceptor within the mitochondria, being reduced 

into succinate which can be transported into the cytosol 
to act as an electron sink [41]. As the succinate concentra-
tion would be dramatically diluted in the cytosol, this may 
facilitate succinate accumulating to high levels in ischae-
mic heart tissue [40, 131]. Upon reperfusion, there are 
multiple fates for succinate. To drive RET, succinate is 
rapidly transported into mitochondria, to enable its SDH-
mediated oxidation [40, 131]. However, a proportion of 
succinate can also leave cardiomyocytes, enter the circula-
tion and thus not contribute to fuelling RET on reperfusion 
[6, 131, 174]. Therefore, altering the compartmentalisation 
of succinate may present an attractive option to change the 
dynamics of the accumulated succinate pool towards RET.

Succinate efflux from the ischaemic heart during reper-
fusion has been shown to occur in a variety of in vitro and 
in vivo IR/MI models, including ST-elevated MI patients 
during primary percutaneous coronary intervention [88, 
131, 174]. Approximately 50% of the accumulated succi-
nate pool can efflux from the ischaemic heart tissue [131, 
174], thus representing a significant mechanism to rewire 
the fate of succinate destined for oxidation by SDH. Suc-
cinate efflux is driven by the lowered pH of ischaemic 
tissue, which increases the proportion of the protonated 
succinate monocarboxylate form [6, 131, 139]. Monocar-
boxylate succinate can act as a substrate for the monocar-
boxylate transporter 1 (MCT1; SLC16A1), which is highly 
expressed on the plasma membrane of cardiomyocytes [6, 
130, 131]. This provides an outlay for succinate to leave 
the cardiomyocytes, reducing the amount oxidised by 
SDH. Despite this efflux of succinate, considerable succi-
nate remains within the cardiomyocytes and is sufficient to 
drive RET on reperfusion [131]. When MCT1 was selec-
tively inhibited in the Langendorff heart, preventing the 
release of succinate from the heart on reperfusion, there 
was an increase in the amount of superoxide produced and 
damage to the cardiac tissue [114]. This suggests that by 
blocking succinate efflux from the heart, a greater propor-
tion of the accumulated pool is oxidised by SDH, driving 
increased RET, superoxide and damage upon reperfusion 
(Fig. 3B). This result differs from when an MCT1 inhibitor 
was used in an acute murine MI model, where the inhibi-
tor was found to elicit cardioprotection [131]. This differ-
ence may be due to several reasons, including the use of 
different inhibitors and non-cardiac/off-target effects and 
the added complexity of the situation in vivo. Neverthe-
less, both results indicate that targeting cardiomyocyte 
succinate transport can affect cardioprotection and efforts 
inhibiting or enhancing this transport may be of use. The 
impact of other MCT isoforms, genetic variants of MCT1 
or MCT1 post-translational modifications on cardiopro-
tection is currently unknown, as well as their expression 
levels in the heart with comorbidities, which may affect 
susceptibility to damage.
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Succinate compartmentalisation between the cytosol 
and mitochondria may also play an important role in pre-
venting RET and I/R injury [41]. As succinate from the 
cytosol fuels RET on reperfusion by re-entering mitochon-
dria, targeting this transport process may be an alterna-
tive strategy to disrupt ischaemic succinate accumulation 
and oxidation on reperfusion (Fig. 3). Succinate transport 
across the IMM principally occurs via the mitochondrial 
dicarboxylate carrier (DIC; SLC25A10) [53]. The primar-
ily characterised inhibitor of the DIC is butylmalonate 
[81], however, its potential use in I/R injury is currently 
unknown. Butylmalonate is a competitive inhibitor of the 
DIC, but its low potency means high concentrations are 
required to achieve adequate DIC inhibition [81, 142]. 
Furthermore, in the I/R injury environment, butylmalonate 
must compete with the millimolar levels of succinate 
within cardiomyocytes [59, 131], acting within the cytosol 
as it cannot enter mitochondria, therefore its utility may 
be limited until more potent and selective alternatives are 
developed.

Modulating succinate transport may therefore be an 
important target in preventing RET by rerouting succinate 
away from SDH. However, the consequences of succinate 
leaving cardiomyocytes and entering the circulation are not 
fully understood. The succinate receptor (GPR91; SUCNR1) 
is highly expressed on the surface of inflammatory cells such 
as macrophages, thus succinate may play a role in inflam-
mation in the later phase of I/R injury [82, 104, 131, 160]. 
Furthermore, succinate-driven RET is also thought to be a 
key driver for the production of pro-inflammatory cytokines 
in macrophages [115]. Therefore, the interplay of interfering 
with succinate transport may be an interesting double-edged 
sword on one hand preventing RET in cardiomyocytes but 
increasing the potential negative effects of extra-cardiomy-
ocyte succinate.

Targeting mitochondrial complex I

As the burst of superoxide upon reperfusion is thought to 
originate from RET at complex I, complex I remains an 
important potential target in preventing I/R injury (Figs. 2 
and 4) [39, 40]. Additionally, complex I can adopt a cata-
lytically active or deactive state which is important in I/R 
injury (Fig. 4A) [8, 28]. In conditions where substrate turno-
ver is limited, such as ischaemia, complex I can undergo 
what is called an active/deactive transition which has been 
historically defined by the exposure of a solvent-accessible 
cysteine residue Cys39 on the ND3 subunit of complex I 
(Fig. 4A) [2]. Alkylation of exposed Cys39 in the deactive 
state renders complex I catalytically inactive, even when the 
conditions favouring substrate oxidation return [2, 8, 28]. 
In this deactive state, complex I cannot perform RET thus 
transiently keeping complex I in its deactive state during 

early reperfusion may be a highly targeted method of car-
dioprotection (Fig. 4A) [28, 45]. This is exemplified by the 
ND6-P25L mouse where ND6-P25L complex I cannot per-
form RET but oxidises NADH in the forward catalytic state 
the same as wildtype [103, 108, 173]. ND6-P25L complex I 
collapses rapidly into the deactive state due to the mutation 
creating a disordered Q-site [173]. While forward electron 
transport can efficiently revert ND6-P25L complex I to the 
active state, thus catalysing NADH oxidation efficiently, 
RET conditions cannot consequently complex I remains in 
its deactive state and RET does not occur [173]. Consistent 
with RET being a key driver of I/R injury, ND6-P25L mouse 
hearts are profoundly protected against cardiac I/R injury 
in vivo, despite all the drivers of RET being present [173].

Compounds capable of transiently modifying Cys39 of 
ND3 in complex I are attractive strategies to prevent RET 
and I/R injury. Several compounds that have shown cardio-
protection have the potential to modify cysteines, thus there 
is the possibility that these act by transiently modifying 
Cys39 on ND3 of complex I to prevent RET (Fig. 4A). An 
example of this is the mitochondria-targeted S-nitrosothiol 
MitoSNO which has shown protection in vivo against acute 
cardiac I/R injury [39, 136] and post-MI heart failure [110]. 
Mechanistically, MitoSNO has been shown to be able to 
S-nitrosate the ND3 Cys39 on complex I when administered 
at reperfusion, locking complex I in its deactive state, pre-
venting RET and affording protection (Fig. 4A) [39]. The 
modification of Cys39 is transient, with the glutathione and 
thioredoxin systems capable of reducing the cysteine back to 
its unmodified form, enabling the complex to switch back to 
its active form (Fig. 4A) [39, 136]. Similar mechanisms of 
cysteine modification and RET prevention may be part of the 
mechanism of protection from several agents that have been 
previously shown to be cardioprotective including hydrogen 
sulphide [50], hydrogen peroxide [57], sodium nitrite [148] 
and other S-nitrosothiols (Fig. 4A) [122]. Furthermore, the 
active/deactive transition may be relevant in the cardiopro-
tection gained by preconditioning, where multiple rounds of 
ischaemia and reperfusion sequentially increase the propor-
tion of transiently deactive complex I [90].

The recent finding that complex I ND3 Cys39 can be 
exposed during active catalysis but labelling has no impact 
on catalysis raises further questions surrounding molecular 
characterisation of the active/deactive transition [28]. This 
suggests that strategies employed to selectively modify deac-
tive complex I may also hit active complex I but not affect 
its catalytic activity. The subtleties of this remain unknown, 
however, the significance of active complex I modified ND3 
Cys39 in cardioprotection may have implications for RET, 
cardioprotection and more chronic effects of complex I on 
pathology. Furthermore, as shown with the recently devel-
oped mitochondria-targeted hydrogen sulphide donor MitoP-
erSulf, it may also be that in part, like hydrogen sulphide, 
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MitoSNO may also transiently inhibit complex IV on rep-
erfusion, reducing respiration and thereby reducing RET-
derived superoxide at complex I [111].

As RET requires the flow of electrons from the CoQ pool 
backwards through complex I, it suggests that strategies to 
inhibit complex I may be cardioprotective (Fig. 4B). The 
use of complex I inhibitors, such as the potent and selective 
inhibitor rotenone, helped distinguish RET as an impor-
tant mechanism in I/R injury [40, 100]. Under conditions 
of forward electron transport, rotenone leads to enhanced 
superoxide production by preventing electrons from NADH 
reducing the CoQ pool, rather the FMN in complex I will be 
fully reduced which subsequently reacts with oxygen [121]. 
However, paradoxically, complex I inhibition prevents super-
oxide production by RET [121, 137, 169]. Rotenone has 
been shown to inhibit RET and reduce superoxide produc-
tion upon reperfusion and therefore may contribute to the 
mitoprotective effects during ischaemia seen in numerous 
studies (Fig. 4B) [35, 39, 40, 100, 101], though there is lit-
tle evidence of rotenone providing cardioprotection after 
reperfusion ex vivo or in vivo. The reversible, short-acting 
barbiturate amobarbital can transiently inhibit complex I, 
thought to be by binding to the same site as rotenone, lead-
ing to a significant reduction in infarct size and reduced ROS 
production on reperfusion [4, 34, 36, 100]. As the amobar-
bital was added prior to ischaemia, whether this protective 
effect is by inhibiting RET on reperfusion, or alternative 
effects during ischaemia is unknown. Furthermore, complex 
I inhibition has also been shown to prevent succinate accu-
mulation in isolated mitochondria under pseudo-ischaemic 
conditions (Fig. 3A) [174]. As electrons from NADH feed 
into the CoQ pool via complex I during ischaemia and can 
be used to reduce fumarate to succinate, inhibiting complex 
I with rotenone may prevent this by attenuating succinate 
accumulation. Therefore, rotenone may play a dual role in 
cardioprotection, however, the prevention of succinate accu-
mulation by complex I inhibition in tissues and in vivo is 
unclear.

A limitation of many of the complex I inhibitors is their 
dose-limiting toxicities [77, 172, 175]. As complex I inhibi-
tors often bind non-reversibly to the Q-site of complex I, 
their hydrophobicity increases membrane permeability and 
potency, enhancing off-target effects [172, 175]. As such, 
the translatability of such compounds has recently been 
questioned after unfavourable human trials [17, 77, 172]. 
Biguanides, such as metformin, can inhibit complex I [24, 
25] and intriguingly prefer binding complex I in its deac-
tive state when tested in vitro [107]. Metformin has shown 
protection against acute cardiac I/R injury in MI when 
high doses were administered at reperfusion [14, 125]. The 
mechanism of protection by metformin is likely to be highly 
complex due to its utility in many pathways, however, if met-
formin can inhibit complex I, inhibiting RET may be part of 

this cardioprotective mechanism. The current evidence for 
metformin inhibiting complex I in vivo is limited [68, 157]. 
As metformin is a hydrophilic, positively charged compound 
and requires high concentrations to achieve substantial com-
plex I inhibition [24, 25], there are many barriers limiting 
its effectiveness [54]. While the organic cation transporter 
1 (OCT1) that transports metformin is present on the sur-
face of cardiomyocytes [58], how and the rate at which met-
formin enters mitochondria is unknown [54]. Therefore, 
despite metformin representing a hydrophilic, highly toler-
ated and clinically approved drug, many unknowns of the 
action of metformin on mitochondria exist.

Overall, complex I may be an important druggable target 
to prevent RET for cardioprotection. As complex I is impor-
tant for cardiac mitochondrial function, interventions must 
be transient to enable inhibition of RET on reperfusion, yet 
subsequently allow for normal respiration. Targeting RET 
selectively, such as transiently modifying ND3 Cys39 in 
deactive complex I is an attractive prospect, with endog-
enous mechanisms to reverse the modification and relieve 
complex I inhibition. However, it remains to be seen whether 
these compounds have detrimental off-target cysteine modi-
fications and their translatability in large animal models and 
humans.

Manipulating the mitochondrial membrane 
potential

A large Δp across the mitochondrial inner membrane is 
important for superoxide production via RET. As mitochon-
drial membrane potential (Δψ) is a large component of Δp 
(Δp = Δψ—61ΔpH [124]), methods which can reduce mito-
chondrial membrane potential during early reperfusion may 
be protective against I/R injury (Fig. 5). By interfering with 
the mitochondrial membrane potential and short-circuiting 
the ETC, by providing a route for protons to re-enter the 
mitochondrial matrix, this leads to oxidation of the CoQ 
pool, thus nullifying another driver of RET.

The importance of mitochondrial membrane potential in 
I/R injury is highlighted by studies showing cardioprotec-
tion dependent on uncoupling protein 1 (UCP1) [71, 74]. 
UCP2 and UCP3 have been implicated in protection against 
cardiac I/R injury, however, their mechanism of action is 
independent of mitochondrial membrane potential uncou-
pling [30]. Several previous studies have shown the cardio-
protective effects of pharmacological uncouplers, however, 
their mechanisms of action were determined to be due to 
impacting mitochondrial membrane potential-dependent 
ion channel function, rather than electron transport and the 
CoQ pool directly [22, 23, 30]. FCCP was shown to be car-
dioprotective and mechanistically initially was thought to 
afford protection like preconditioning by affecting the mito-
chondrial  KATP channel [30]. Low doses of FCCP infused 
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into isolated hearts or treatment of ventricular cardiomyo-
cytes were cardioprotective, independent of effects on  KATP 
channel activation [23]. However, these effects were also 
independent of membrane potential changes detected by 
TMRM, though the dynamic range of TMRM may not have 
been sufficient to detect the membrane potential changes 
[22]. Furthermore, when isolated rat hearts were reperfused 
with 2,4-dinitrophenol (DNP), this led to a presumed block 
in mitochondrial calcium entry and cardioprotective effect 
[51]. As RET is highly sensitive to small membrane poten-
tial changes, it is likely that even these concentrations of 
uncoupler RET would be affected and may be responsible 
for the cardioprotective effects seen (Fig. 5) [117].

A key limitation of the ‘classical’ mitochondrial uncou-
plers is their lack of discrimination for mitochondrial mem-
branes leading to uncoupling of the plasma membrane as 
well. Impacting the plasma membrane proton gradient may 
have a multitude of effects, including affecting lactate trans-
port by MCT1 which may provide a secondary mechanism of 
action of these uncouplers in cardioprotection. Furthermore, 

as pH plays a critical role in opening of the mPTP, altera-
tion of mitochondrial and cytosolic proton flux may play 
a key part in the protective mechanism independently of 
the effects on the respiratory chain. The recently devel-
oped mitochondria-membrane selective uncoupler BAM15 
has shown potent uncoupling activity, without changes in 
plasma membrane ion movement [83]. The mechanism of 
the selectivity of BAM15 for the mitochondrial inner mem-
brane is unknown, however, it has been postulated that the 
lower mitochondrial pH or difference in lipid composition 
may be involved [83]. The BAM15 has shown a multitude of 
beneficial effects in various disease models including renal 
I/R injury [83], sepsis [161] and diet-induced obesity [5], 
thus it may have utility against cardiac I/R injury.

While a limitation of the use of uncouplers has been 
their questionable safety profile, with DNP leading to sev-
eral fatalities [127], the toxicity of these compounds may be 
somewhat mitigated in their use against cardiac I/R injury 
due to their single use. Also, liver-targeted and controlled-
release formulations of DNP have significantly reduced 

Fig. 4  Targeting complex I to inhibit RET. A Modulating complex 
I active/deactive transition. During ischaemia, complex I transitions 
to a deactive conformation, leading to ND3 cys39 becoming exposed 
(Cys39-SH). Upon reperfusion, complex I rapidly reactivates, pro-
ducing a burst of superoxide by RET. Cys39 can be transiently modi-
fied by MitoSNO, locking complex I in its deactive state and prevent-
ing superoxide production by RET. The modification will be removed 
from Cys39 by the glutathione or thioredoxin systems, with complex 
I slowly returning back to its active state. It is also hypothesised that 
other cysteine modifying agents such as  H2S,  H2O2 and  NaNO2 may 

act by modifying Cys39 to prevent RET. B The inhibitor of complex 
I rotenone has been shown to inhibit superoxide production by pre-
venting RET and can lead to a protective effect. Furthermore, it is 
hypothesised that other complex I inhibitors such as piericidin, amo-
barbital and metformin may provide similar cardioprotective effects 
by preventing RET on reperfusion. IMS intermembrane space, IMM 
inner mitochondrial membrane, SDH succinate dehydrogenase, FMN 
flavin mononucleotide, Δp protonmotive force, cyt c cytochrome c, 
O2

●− superoxide
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toxicity [127, 128]. Low doses of selective uncouplers at 
reperfusion may transiently depolarise mitochondria and 
prevent RET on reperfusion without long-term undue 
toxicity.

Adenine nucleotide pool degradation

It was previously thought that ATP is rapidly depleted during 
ischaemia, leading to a large pool of ADP readily available 
for ATP synthesis upon reperfusion [11, 84]. More recently, 
it has become apparent that during ischaemia adenylate 
kinase catalyses the conversion of 2 ADP to ATP and AMP, 
thus maintaining a source of ATP in non-oxidative condi-
tions [40, 79, 106]. This leads to elevated AMP, which is 
consequently degraded, with large elevations in xanthine 
and hypoxanthine as remnants from their adenine nucleotide 
past (Fig. 6) [40, 106]. The depletion of the ADP pool is an 
important aspect of the ability of mitochondria to produce 
superoxide via RET. A depleted ADP pool in ischaemic tis-
sue reduces the ADP available for phosphorylation upon rep-
erfusion, thereby preventing the Δp from being used for ATP 
synthesis [121]. High mitochondrial Δp is a prerequisite for 
RET to occur, thus using the Δp for ATP synthesis reduces 
its magnitude across the IMM and prevents RET. This has 
been shown experimentally in isolated heart mitochondria 
respiring on succinate, where the addition of ADP reduces 
the levels of RET-derived  H2O2 [113]. Therefore, preventing 
the depletion of the adenine nucleotide pools to sustain ADP 
levels may be another strategy for preventing RET.

Several reports have suggested the cardioprotective 
effects of kynurenic acid, however, the mechanism of protec-
tion has been poorly understood [109, 140, 170]. Recently, 
it has been proposed that a key part of the protection of 

kynurenic acid is through salvaging the ATP pool, prevent-
ing ATP hydrolysis by reverse action of ATP synthase, 
during ischaemia [170]. Here, kynurenic acid is thought to 
act as a ligand of GPR35 on the plasma membrane [112], 
with the receptor subsequently internalised and trafficked 
to the mitochondrial outer membrane [170]. The internal-
ised GPR35 is postulated to be able to inhibit mitochondrial 
adenylate cyclase, prevent protein kinase A phosphoryla-
tion of ATP synthase inhibitory factor subunit 1 (ATPIF1) 
and thereby promote ATP synthase dimerisation, preventing 
ATP hydrolysis [170]. The details of how GPR35 enacts its 
effects at the level of the mitochondrial matrix, despite bind-
ing at the outer mitochondrial membrane remain incomplete. 
Further investigation into whether activation of GRP35 
prevents degradation of the adenine nucleotide pool, and 
not just ATP, is warranted as this aspect remains unclear. If 
degradation of the adenine nucleotide pool is prevented, this 
may lead to increased ADP levels in the ischaemic tissue, 
which may provide a rapid means to reduce the Δp via its 
phosphorylation by ATP synthase and prevent RET in early 
reperfusion. Despite this, the actions of kynurenic acid on 
the ATP pool suggest that strategies to prevent ATP hydroly-
sis and subsequent adenine nucleotide pool degradation may 
be effective at preventing cardiac I/R injury.

Many studies have interfered with the adenine nucleo-
tide degradation pathway genetically and have shown their 
impact on cardioprotection [20, 62, 72, 85, 138]. However, 
historically these often have used conventional knockout 
of the gene from conception in the mice, which may lead 
to the upregulation of compensatory pathways to main-
tain an appropriate ATP/ADP ratio and thus complicate 
the interpretation and relevance. Several drugs target-
ing enzymes within the adenine nucleotide degradation 

Fig. 5  Manipulating mitochondrial membrane potential to prevent 
RET. Uncoupling the mitochondrial membrane potential with uncou-
plers FCCP and 2,4-DNP can prevent superoxide production by 
RET in I/R injury. By short-circuiting the IMM, protons flow from 
the IMS to the matrix and therefore reduce the Δψ. As Δψ is a large 
proportion of Δp, (Δp = Δψ – 61ΔpH; given that Δp ~ 180 mV and 
ΔpH ~ 0.5 U) small changes in Δψ will significantly affect Δp and 

thereby the driving force for RET to occur. It is also hypothesised that 
BAM15 may be able to similarly prevent RET from occurring due to 
its selective uncoupling of the inner mitochondrial membrane. IMS 
intermembrane space, IMM inner mitochondrial membrane, SDH 
succinate dehydrogenase, FMN flavin mononucleotide, Δp protonmo-
tive force, Δψ mitochondrial membrane potential, cyt c cytochrome c, 
O2

●− superoxide
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pathway show protection against cardiac I/R injury [40, 
41, 85, 138]. Their cardioprotective effects have mostly 
been attributed to their prevention of oxidative stress, such 
as with allopurinol inhibiting xanthine oxidase superox-
ide production [85], however, an alternative mechanism 
could be via their interference with adenine nucleotide 
breakdown [20, 85]. Preventing the complete breakdown 
of adenine nucleotides during ischaemia may facilitate 
their salvage and synthesis into adenine nucleotides upon 
reperfusion. By more rapidly re-synthesising the adenine 
nucleotide pools, this may again lead to utilising the Δp 
and preventing RET. Figure 6 highlights pharmacological 
inhibitors of the adenine nucleotide degradation pathway, 
which may be hypothesised to affect RET. Despite the 
potential to prevent the complete breakdown of the nucle-
otide pool, whether this impacts RET directly remains 
unknown. Also, the cardioprotection by compounds tar-
geting certain enzymes of the adenine nucleotide degra-
dation pathway is poorly characterised, thus further work 
may be required in this area to understand its relevance. 
Another caveat to targeting adenine nucleotide degrada-
tion is the requirement for treatment prior to the onset of 
ischaemia, therefore even if interventions may be able to 

lead to conditions able to prevent RET, they are less likely 
to be suitable for acute MI.

Furthermore, targeting adenine nucleotide pool deg-
radation may also impact the accumulation of succinate, 
considering it is thought to be an anaplerotic source of 
substrate for SDH reversal to produce succinate (Fig. 6) 
[40, 41]. The rerouting and regeneration of AMP in the 
PNC leads to the production of fumarate via ASL, as 
detailed above (see Sect. "Succinate accumulation" and 
Fig. 3A). This fumarate is converted to malate by fuma-
rate hydratase, which can be transported into mitochondria 
and act as a precursor to produce succinate during ischae-
mia. Therefore, affecting the pool of adenine nucleotides 
may subsequently affect the flux through the PNC and 
subsequent production of succinate, via the PNC-derived 
fumarate.

The degradation of adenine nucleotide pools is a hall-
mark of ischaemia and may impact both the accumulation 
of succinate and the conditions required to drive RET. 
Little direct evidence exists as to whether interventions at 
the nucleotide pool level alter succinate accumulation or 
can prevent RET, thus future insights into the usefulness 
of targeting this pathway may be warranted.

Fig. 6  Adenine nucleotide pool degradation targeting to prevent RET. 
Preventing adenine nucleotide pool degradation, may prevent RET by 
a dual mechanism. Firstly, as shown with AICAR inhibition of ASL 
[40] (or hypothesised by FH inhibition by FHIN-1 [155] or ASS1 
inhibition by MDLA [75]), targeting this pathway may prevent suc-
cinate accumulation during ischaemia, thus prevent succinate oxida-
tion driving RET on reperfusion. Otherwise, it may be hypothesised 
that inhibitors such as Ap5A [96] which inhibits ADK may prevent 
ADP breakdown to AMP, thus maintaining ADP levels to allow 
ATP synthesis using the Δp and thus preventing RET. Other hypoth-
esised targets and inhibitors of the adenine nucleotide degradation 

pathway include: AMP deamination to IMP (AMPD1 inhibition by 
Cpd3 [75]), IMP hydrolysis to inosine (nucleotidase inhibition by 
IBTI [149]), hydrolysis of inosine to hypoxanthine (PNP inhibition by 
8-aminoguanine [19] or forodesine [12]) or hypoxanthine oxidation 
to xanthine and subsequently to uric acid (XO inhibited by allopuri-
nol [85]). These interventions may be hypothesised to maintain the 
adenine nucleotide pool intermediates and expedite resynthesis of the 
adenine nucleotide pool. ASL adenylosuccinate lyase, ASS1 adenylo-
succinate synthase 1, MDLA α-methyl-DL-aspartic acid, ADK ade-
nylate kinase, IMP inosine monophosphate, AMPD1 AMP deaminase 
1, PNP purine nucleoside phosphorylase, XO xanthine oxidase
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Conclusions and future perspectives

Overall, RET-derived superoxide upon reperfusion is 
an important initiator of the damage in I/R injury. The 
extreme conditions of ischaemia remodel cardiac metabo-
lism and lead to the environment satisfying the thermo-
dynamic requirements for RET to occur on reperfusion. 
Therefore, targeting the pathways which enable the con-
ditions for RET to occur may be an effective strategy to 
minimise cardiac I/R injury (Table 1). Furthermore, due 
to the far-reaching changes in metabolism in ischaemia 
which help support RET upon reperfusion, it may be that 
several drugs historically found to be cardioprotective may 
have acted by affecting succinate accumulation or prevent-
ing RET-derived superoxide production. Currently, target-
ing succinate oxidation with malonate seems to have the 
greatest experimental evidence, with protection in small 
and large animal models and ischaemia-selective proper-
ties. Malonate has also shown effectiveness in resuscita-
tion [171], ischaemic stroke [118] and cardiac regenera-
tion [9] and thus may help break the cycle of failures in 
preventing cardiac I/R injury. Despite this, history tells 
us that many further studies are required for successful 
translation from the bench to the clinic in this field [21, 
65, 99, 146]. Currently, there is no data surrounding the 
use of malonate in human myocardial tissue and whether 
the same mechanisms from animal models are applicable 
[48, 86, 87]. Furthermore, there is a lack of evidence of 
systemic malonate administration and cardioprotection in 
large animal models [86]. Also, how malonate may affect 
the normal physiology of conscious large animals needs to 
be addressed [99]. Aside from malonate, many questions 
remain for all these therapeutic approaches, in particular: 
is targeting RET effective in conjunction with comorbidi-
ties, are there any gender differences in the protection, 
are these interventions still effective in aged animals and 
how does inhibiting RET translate to long-term outcomes? 
Even though many questions remain open, the orthogonal 
approaches targeting RET and leading to cardioprotection 
are promising that RET is a worthwhile target to prevent 
cardiac I/R injury.
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