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Abstract
The heterocellular nature of the heart has been receiving increasing attention in recent years. In addition to cardiomyocytes as 
the prototypical cell type of the heart, non-myocytes such as endothelial cells, fibroblasts, or immune cells are coming more 
into focus. The rise of single-cell sequencing technologies enables  identification of ever more subtle differences and has 
reignited the question of what defines a cell’s identity. Here we provide an overview of the major cardiac cell types, describe 
their roles in homeostasis, and outline recent findings on non-canonical functions that may be of relevance for cardiology. We 
highlight modes of biochemical and biophysical interactions between different cardiac cell types and discuss the potential 
implications of the heterocellular nature of the heart for basic research and therapeutic interventions.
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Abbreviations
αSMA  α Smooth muscle actin
CCR2  C–C chemokine receptor 2
DDR2  Discoidin-domain receptor 2
ECM  Extracellular matrix
ET  Endothelin
FAP  Fibroblast activation protein
HDAC  Histone deacetylase
NG2  Neuron–glial antigen 2
RNA  Ribonucleic acid
RNA-seq  RNA sequencing
scRNA-seq  Single cell RNA-seq
snRNA-seq  Single nucleus RNA-seq
siRNA  Small interfering RNA

T-tubulues  Transverse tubules
VEGF/VEGFB  Vascular endothelial growth factor/vas-

cular endothelial growth factor B

Introduction

The heterocellular nature of the heart has been known to 
researchers since the early days of histological studies, and 
our knowledge of the cellular composition of the heart and of 
the functions of the different cell types has steadily increased 
in complexity. Quantitative analyses of the heterocellular 
make-up of the heart moved from histology [3] and electron 
microscopy [125] of native tissue towards flow cytometry 
of isolated cardiac cells [14]. Unsurprisingly, quantitative 
analyses of cell abundance, based on tissue sections or iso-
lated cells differed. In recent years, the wider availability 
of RNA sequencing (RNA-seq) techniques has allowed a 
different and more (though not yet fully) unbiased approach 
to cell type characterization [29, 185].

For the characterization of cell properties, an important 
milestone was the development of suitable cell culture tech-
niques from the 1960s onwards, which enabled researchers 
to study cardiac cell function in vitro [66, 155]. Since the 
1990s, transgenic animal models with gene overexpression 
or deletion under the control of cell-selective promoters 
have been applied to modulate cellular function in vivo [43, 
140, 190]. The growing interest in cardiac cell types [62] 
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is reflected by a substantially growing number of scientific 
publications. While cardiomyocytes, as the prototypical cell 
type of the heart, remain the most frequently studied indi-
vidual cell type, the combined number of published papers 
per year focused on cardiac immune cells or fibroblasts is 
comparable (Fig. 1A).

The dynamic changes in the heart’s cellular composition 
and the interactions between different cardiac cell types in 
development [10, 43, 159] and disease [55, 72, 113, 130, 
134, 141, 176, 186, 196, 199, 205] have been excellently 
reviewed elsewhere. Here, we provide an overview of car-
diac cell identities, describe their canonical functions during 
homeostasis, and provide examples for more recently dis-
covered ‘non-canonical’ functions that may be of relevance 
for cardiology. We summarize biochemical and biophysi-
cal interactions between different cardiac cell types under 
steady-state conditions, which have received limited atten-
tion so far, and discuss potential implications of the hetero-
cellular nature of the heart for basic research and therapeutic 
interventions.

Identities

Cell types, subtypes, and cell states in the adult 
heart

When discussing cardiac cell types and their functions, we 
first need to define cellular identities. However, this is far 
from trivial. Traditionally, cell types (e.g. cardiomyocytes) 
and specialized subtypes (e.g. ventricular cardiomyocytes, 

atrial cardiomyocytes, pacemaker cardiomyocytes) were 
annotated according to their morphological phenotype, the 
presence of certain surface antigens, their function, and/or 
later genetic lineage tracing. The rise of single-cell RNA-
seq (scRNA-seq) technologies and the accompanying pos-
sibility of making ever more subtle distinctions, but also the 
user-dependence of RNA-seq data analysis, presentation and 
interpretation, have refuelled the ongoing debate on how to 
define a ‘cell type’ [123, 195, 218]. For scRNA-seq, RNA of 
each cell is converted into complementary DNA (cDNA) by 
reverse transcription, individually barcoded by the insertion 
of a short nucleotide sequence, amplified, and processed for 
sequencing [185]. Bioinformatics analyses of the resulting 
raw sequencing data are then used to determine gene expres-
sion profiles of individual cells. Similarity of cells is defined 
according to the similarity in their gene expression, and this 
information is then used to define their positions in a multi-
dimensional virtual space. To reduce dimensionality, genes 
that show high correlation in expression are grouped into 
modules [195]. Depending on how far the dimensionality of 
sequencing data is reduced, each cell can be assigned to a 
larger or smaller cluster of cells with similar gene expression 
profiles (Fig. 1B). This approach has two important implica-
tions: first, the number of cell types detected by this kind of 
analysis depends on the extent of dimensionality reduction 
prescribed in the analysis. Second, newly defined cell types, 
inferred from transcriptome analysis, require validation by 
a different technique.

Since changes in gene expression can be highly dynamic 
within one and the same cell population, a different tran-
scriptomic signature does not necessarily define a distinct 
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Fig. 1  The heterocellular heart. A Number of publications per year 
included in PubMed between 1945 and 2021 that refer to the heart 
and one of the specified cell types in the title or abstract, compared 
to publications that refer to the heart only (divided by a factor of 50 

for better visibility). B Uniform manifold approximation and projec-
tion (UMAP) of 11 cell types of the adult human heart as identified 
by scRNA-seq (from [102] under Creative Commons Attribution 4.0 
International License, http:// creat iveco mmons. org/ licen ses/ by/4. 0/)
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cell type. Differences that are determined by a cell’s local 
environment, or that occur in response to stimuli—but which 
do not alter cell identity—are often referred to as ‘cell states’ 
[123, 195]. Thus, one cell type can have multiple states—
which, in the absence of agreed standards on defining cell 
types—has given rise to large variability in the way RNA-
seq based information is presented visually and conceptually. 
Their identification generally requires a priori knowledge 
about the relevant biology, which is not always available 
when exploring hitherto unknown biological processes. 
Furthermore, gene expression data can be integrated with 
information from in situ hybridization or targeted barcoding 
to localize cells in the tissue, providing spatial—albeit thus 
far largely two-dimensional—information [83, 100]. Finally, 
epigenetic information such as chromatin accessibility can 
be included in the analysis to discriminate cell types and 
states [156, 187, 220]. Both scRNA-seq and single nucleus 
RNA-seq (snRNA-seq) techniques are used by researchers 
world-wide, including large international consortia, aiming 
to identify and spatially map all cell types in the human 
body [165].

In 2016, first reports on scRNA-seq of the developing 
mouse heart were published [40, 98] and since then, the 
technology has spread quickly in the cardiovascular field 
[28, 53, 60, 73, 99, 141, 166, 181, 188], right through to 
spatio-temporally resolved RNA-seq [10, 95, 111]. For tech-
nical reasons that are discussed in more detail below, nuclei 

instead of cells have been used in several studies for snRNA-
seq of the heart [60, 73, 188]. Transcriptomics studies have 
described a large variety of cell types in adult human and 
rodent heart tissue, each of them with different subtypes and 
states. These include well-known players such as cardiomyo-
cytes, endothelial cells, smooth muscle cells, fibroblasts, and 
myeloid or lymphoid immune cells. Other cardiac cell types, 
such as pericytes, adipocytes, neurons or Schwann cells, and 
their roles in physiology or pathophysiology of the heart, are 
also gaining increasing interest. An overview of commonly 
used cell type marker genes or surface antigens is provided 
in Table 1.

The relative cell numbers of each population in the myo-
cardium are still a matter of debate. Single-cell preparations 
are affected by differences in cell viability, caused by the 
techniques used for tissue disruption, cell isolation, and 
sorting. Early flow cytometry-based analyses of single-
cell preparations of adult murine myocardium reported 
56% cardiomyocytes (identified by α myosin heavy chain 
expression), 27% fibroblasts (discoidin-domain receptor 2; 
DDR2), 10% smooth muscle cells (α smooth muscle actin; 
αSMA), and 7% endothelial cells (platelet endothelial cell 
adhesion molecule-1, generally referred to as CD31) [14]. 
Note that these percentages relate to ‘cells identified and 
sorted’, not ‘cells in situ’, as is evident from the fact that they 
add up to 100% for just 4 of the many cell types known to 
be present in cardiac tissue. Slightly different results were 

Table 1  Main cell populations and their functions in the healthy adult heart

αMHC α myosin heavy chain, ACTA2 actin α 2, CD45 cluster of differentiation 45, CD11b cluster of differentiation 11b, CDH5 cadherin 
5, DDR2 discoidin-domain receptor 2 IL7R interleukin 7 receptor, LEP leptin, MYH11 myosin heavy chain 11, MYL7 myosin light chain 7, 
NG2 neuron–glial antigen 2, NRXN1/2 neurexin 1/2, PCM-1 pericentriolar material 1, PDGFRα/β platelet-derived growth factor receptor α/β, 
PECAM-1 platelet endothelial cell adhesion molecule-1, PLN phospholamban, PLP-1 Proteolipid protein 1, TAGLN transgelin, TCF21 transcrip-
tion factor 21, WT-1 Wilms’ tumour 1

Cell type Main function in the healthy adult heart Commonly used identifying markers References

Cardiomyocytes PLN, PCM-1 [59, 102]
 Ventricular Heart contraction αMHC
 Atrial Heart rhythm, heart contraction MYL7

Endothelial cells Regulation of vascular contraction
Trafficking of cells and metabolites

CDH5, PECAM-1 [102, 105, 140, 141]

Smooth muscle cells Vascular contraction (arteries, arterioles) MYH11, ACTA2, TAGLN [25, 102, 184]
Pericytes Vascular contraction (capillaries) NG2, PDGFRβ [11]
Fibroblasts Extracellular matrix formation PDGFRα, TCF21, DDR2 [84, 102, 152, 192]
 Myofibroblasts ACTA2

Leukocytes CD45
 Myeloid Phagocytosis of cellular debris, immune surveillance F4/80, CD11b [189]
 Lymphoid Adaptive immune response IL7R [73]

Adipocytes Energy supply, mechanical protection LEP [7]
Neurons Sympathetic and parasympathetic regulation of heart 

rate and contraction
NRXN1, NRXN2 [102]

Schwann cells Insulating nerve fibres PLP-1 [74]
Mesothelial cells Quiescent WT-1 [26, 102, 159]
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obtained in snRNA-seq experiments on adult human ven-
tricular myocardium, identifying 49% cardiomyocytes, 21% 
smooth muscle cells, 16% fibroblasts, 8% endothelial cells, 
and 5% immune cells [102]. In contrast, other studies using 
nucleus-labelling techniques found only about 30% cardio-
myocytes in adult mouse and human hearts [15, 58], as had 
been indicated in earlier histomorphology-based studies on 
rat myocardium [125]. The current understanding suggests 
that an overwhelming majority of cardiac non-myocytes, 
identified using a combination of immunohistochemistry 
and flow cytometry, consists of endothelial cells (60% of 
non-myocytes), followed by mesenchymal cells including 
fibroblasts, smooth muscle cells, and pericytes (27% of 
non-myocytes) and leukocytes (9% of non-myocytes [148]. 
Numbers of rare cell types (neurons, Schwann cells, adipo-
cytes) have not yet been reliably quantified. It is important 
to note that in addition to experimental aspects, other fac-
tors such as age or species may influence cardiac cell type 
composition. For instance, a modest decline of endothelial 
and mesenchymal cell numbers in the aging human heart has 
been reported [15]. In mice, the embryo-derived population 
of cardiac macrophages is gradually replaced by monocyte-
dependent macrophages [120]. Both observations illustrate 
the dynamic turnover of cells in the adult heart.

Canonical and non‑canonical functions of cardiac 
cells

Cardiomyocytes are the main actors in cardiac pump func-
tion. So-called ‘working cardiomyocytes’ are comparatively 
large cells (>  104 µm3) that are typically brick-shaped. They 
are connected end-to-end via intercalated discs, where des-
mosomes and fascia adherens junctions provide mechani-
cal, and connexins electrical coupling. In addition, lateral 
mechanical connections link the contractile machinery at the 
z-disks to the extracellular matrix (ECM) as the main force-
bearing structural element of the myocardium (a ‘deform-
able skeleton’), while lateral electrical connections occur 
mainly within the 4–6 cells thick layers of myocardium, 
referred to as ‘sheets’ or, more fittingly, ‘sheetles’.

Cardiomyocytes are densely packed with arrays of struc-
tural proteins that form the sarcomeres, membrane systems 
that enable  Ca2+-mediated excitation–contraction coupling, 
and mitochondria. Cardiomyocyte contraction is a highly 
orchestrated process, involving multiple extra- and intracar-
diac feed-forward and feedback mechanisms [161]. Follow-
ing cardiomyocyte depolarization, extracellular  Ca2+ enters 
the cytosol via voltage-dependent  Ca2+ channels and trig-
gers further  Ca2+ release from the sarcoplasmic reticulum. 
For relaxation,  Ca2+ has to be removed from the cytosol. In 
steady-state, the amount released from intracellular stores is 
returned by the sarcoplasmic/endoplasmic reticulum calcium 
ATPase, while the initial ‘trigger-Ca2+’ is extruded back to 

the extracellular space via the sodium  Na+/Ca2+ exchanger 
[17, 49]. The rapid and efficient activation of intracellular 
contractile units of a cardiomyocyte depends on transverse 
(T-) tubules, a network of membrane invaginations contain-
ing ion channels and transporters. The narrow and tortuous 
structure of the T-tubular system may impede diffusion and 
cause regional microdomains of different ion concentrations 
[171]. Similar to the heart as a whole that serves as a pres-
sure-suction-pump in the circulation, T-tubules are squeezed 
by contracting cardiomyocytes, pushing and pulling extra-
cellular fluid between T-tubular lumen and bulk extracel-
lular space. This recently described mechanism accelerates 
T-tubular diffusion dynamics, which may be important in 
particular at high heart rates [94, 171].

Sarcomeres are highly organized structures composed of 
actin, myosin, and titin filaments, and a number of acces-
sory proteins [202]. During cardiomyocyte contraction, 
myosin filament heads interact with actin filaments, form-
ing so-called ‘crossbridges’ that govern force development 
and sarcomere shortening. This crossbridge cycling requires 
the hydrolysis of one ATP per power-stroke, leading to an 
immense flux of ATP that is reflected by a high mitochon-
drial density in cardiomyocytes [42, 121]. Cardiomyocyte 
mitochondria communicate with one-another [75], and they 
participate in  Ca2+ handling [177, 179].

While cardiomyocytes from left or right ventricle share 
high similarity [102], atrial cardiomyocytes have a differ-
ent phenotype, with distinct  Ca2+-handling, contractile 
and electrophysiological properties [21, 128, 204]. Atrial 
cardiomyocyte sarcomeres contain different contractile 
protein isoforms, and while they develop less mechanical 
force, compared to ventricular myocytes [128], they contract 
faster [20, 127].

Working cardiomyocytes in the atria and ventricles 
are activated by a well-coordinated action potential wave, 
which originates from sino-atrial node pacemaker cells, 
and spreads through the atria, the atrio-ventricular node and 
His–Purkinje system, to the ventricular myocardium. The 
cells of sinus node and conducting system are specialized 
cardiomyocyte subtypes that show a distinct repertoire of ion 
channel expression and activity, which conveys upon them 
the spontaneous rhythmic depolarization that underlies pace-
making [204]. These cells are also cardiomyocytes, showing 
cross striations caused by sarcomeric arrangement of their 
contractile filaments, even if that had been questioned or 
overlooked in some of the early studies.

During pre-natal heart growth, cardiomyocytes show 
a high proliferation rate [215]. After birth, cardiomyo-
cyte proliferation rate declines rapidly and remains at no 
more than about ~ 1% in adult human [51, 201]. When the 
cell cycle abrogates before cytokinesis, cardiomyocytes 
become multinucleated, polyploid, or both. The extent 
of bi- or multinucleated (human 26%, mouse 78%) and 
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polyploid cardiomyocytes (human 58%, mouse 10%) in 
the adult heart varies between species [6, 15]. Postnatal 
growth of the adult heart is largely a function of cardiomy-
ocyte hypertrophy, often associated with increased ploidy 
[69, 215]. Cardiomyocyte growth can be triggered by a 
variety of physiological or pathological stimuli, including 
mechanical and biochemical factors. For example, physi-
ological stimuli caused by exercise or pregnancy can pro-
mote cardiomyocyte growth while maintaining or improv-
ing cardiac function, whereas pathological stimuli such as 
sustained volume or pressure overload (in valve disease 
of hypertension) can lead to hypertrophy with impaired 
function, altered metabolism, and dysregulated intracel-
lular signalling [126]. Cardiomyocytes not only receive 
growth signals, but they may stimulate local blood vessel 
sprouting and innervation via secretion of growth factors 
such as vascular endothelial cell growth factor (VEGF) 
[134] or nerve growth factor [44].

Endothelial cells form the inner layer of the vascula-
ture. They have distinct functions according to their locali-
zation and their association with different vascular beds. 
In the heart, capillary endothelial cells represent the larg-
est cell population [102]. Other subtypes include arterial, 
venous, lymphatic, and endocardial endothelial cells [102]. 
All endothelial cells share high expression of cadherin 5 
[102, 140] and platelet endothelial cell adhesion molecule-1 
(which shows weak expression also in the hematopoietic 
lineage; [140]. Subspecification of endothelial cells is tightly 
regulated by the activity of transcription factors, in particular 
SOX (SRY-related HMG-box) and FOX (forkhead box) fam-
ily members [112, 154].

Endothelial cells sense and respond to mechanical and 
biochemical stimuli [34, 41, 167]. Factors such as blood 
flow, mechanical stretch, and the interaction of cell mem-
brane proteins with the extracellular environment influence 
transcription factor activity and gene expression in endothe-
lial cells [143]. It has been proposed that the presence of pul-
satile or laminar flow, and of high or low shear stress deter-
mine arterial versus venous endothelial cell differentiation 
[154]. Moreover, it has been shown recently that mechanical 
stress can induce endothelial-to-mesenchymal transition by 
activating the force-sensitive transforming growth factor β 
type I receptor kinase [115]. This represents an example of 
how cells can change their phenotype in response to external 
stimuli, taking different functions in homeostasis or patho/
physiological remodelling [217].

Endothelial cells are the main source of nitric oxide in the 
heart, which via cyclic guanosine monophosphate (cGMP)-
dependent signalling induces smooth muscle cell relaxa-
tion and vascular dilation [203]. Endothelin-1 (ET-1) from 
endothelial cells is a potent vasoconstrictor, primarily by act-
ing on  ETA receptors on smooth muscle cells. On the other 
hand, autocrine ET-1 signalling, acting via  ETB receptors on 

endothelial cells, increases nitric oxide synthesis and inhibits 
ET-1 production in a negative feedback loop [203].

Cardiac capillary endothelial cells form a dense layer, 
with cells connected via tight junctions, which controls vas-
cular permeability and trafficking of cells between blood and 
the surrounding cardiac tissue [47]. The high energy demand 
of cardiomyocytes demands high flux rates for oxygen and 
carbon dioxide, which benefits from a tight capillary net-
work [134] with a capillaries-to-myocyte ratio of between 
1.3:1 and 1.5:1 [90, 107]. During angiogenesis, a complex 
network of angiocrine factors such as VEGF guides endothe-
lial cells to alter their state, proliferate, migrate, and form 
new capillaries [48].

Smooth muscle cells are a major constituent of coronary 
arterial and arteriolar walls. Their physiological function 
involves active changes in vessel cross-sectional area by con-
traction of circularly oriented cells, thereby controlling vas-
cular resistance and—hence—regional blood flow (of note, 
the resistance R to flow is a fourth power inverse function 
of vessel radius r: R ~  r−4) [46, 104]. Efficient autoregula-
tion of myocardial perfusion is of pivotal importance as it 
is positively correlated with contractile function [71]. In the 
healthy heart, arterioles are the primary site of flow regula-
tion. Several autoregulatory mechanisms (endothelial, neu-
ral, metabolic, myogenic) adjust myocardial blood supply 
through effects on vascular smooth muscle cells [82]. In 
addition, smooth muscle cells respond to a number of parac-
rine and endocrine factors such as nitric oxide, endothelin-1, 
angiotensin II, aldosterone, or norepinephrine, secreted by 
cardiac cells or delivered through the circulation [46].

Traditionally, a contractile and a synthetic smooth muscle 
cell phenotype have been distinguished, though these are 
more likely to represent two ends of a continuum. Contrac-
tile smooth muscle cells are packed with (non-sarcomeric) 
myofilaments, which can be identified by expression of 
myosin heavy chain 11 or smooth muscle cell actin α 2; 
[25, 184]). Similar to cardiomyocytes, smooth muscle cell 
contraction depends on  Ca2+ fluxes, but it is more than an 
order of magnitude slower [46].

Substantial plasticity of smooth muscle cells has been 
observed, including conversion to myofibroblast- or mac-
rophage-like phenotypes [184]. Although smooth muscle 
cells are not thought to give rise to fibroblasts in the healthy 
heart [84], they modulate ECM remodelling by paracrine 
signalling [13, 150].

Pericytes are mesenchymal cells that share phenotypi-
cal similarities with smooth muscle cells and it has been 
suggested both cell types have a shared lineage, deriving 
from endocardial progenitor cells [30]. In pericytes, but not 
exclusively there, high expression of neuron–glial antigen 2 
and platelet-derived growth factor receptor β can be detected 
[11]. Due to the lack of specific markers, pericytes and 
smooth muscle cells are usually distinguished by anatomical 
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localization and sometimes summarized as mural cells [133, 
148]. Pericytes are largely restricted to the microvascula-
ture [9, 12, 27]. They discontinuously surround capillaries, 
forming circumferential and longitudinal processes that can 
contribute to vessel contraction, including contributions to 
post-ischaemic non-reflow phenomena [38, 70, 133].

Together with smooth muscle cells and pericytes, fibro-
blasts belong to the group of mesenchymal cells. They are 
characterized by high expression of platelet-derived growth 
factor receptor α, DDR2, and transcription factor 21 [84, 
141, 192]. Cardiac fibroblasts may be distinguished by their 
localization (e.g. ventricular or atrial interstitial fibroblasts 
versus valvular fibroblasts), activation status (e.g. fibroblast, 
myofibroblast), or origin. While the vast majority of fibro-
blasts in the healthy heart is of epicardial origin, there is an 
ongoing debate whether other sources contribute to the car-
diac fibroblast population after injury, including endothelial 
cells, bone marrow-derived cells, and other mesenchymal 
cells such as smooth muscle cells or pericytes [84, 141, 182, 
191].

Fibroblasts secrete collagens and proteoglycans [55] and 
therefore they are traditionally regarded as the ‘cells that 
create and maintain... extracellular matrix’ [152]. However, 
over the last 30 years our view has substantially evolved, 
as it is evident that other cell types contribute to the ECM, 
while fibroblasts are now seen as much more versatile cells. 
Upon mechanical or biochemical activation, fibroblasts 
express contractile proteins such as αSMA and are then con-
sidered to be myofibroblasts [152]. In the context of cardiac 
lesion repair, up to four states have been suggested: resident 
fibroblast, activated fibroblast, myofibroblast, and matrifi-
brocyte, all with distinct functional properties [56]. Fibro-
blasts interact with one-another, and with other cell types, 
via multiple biochemical (cytokines, growth factors) [196] 
and biophysical cues (mechanical and electrical contacts) 
[24] to steer cardiomyocyte and non-myocyte functions as 
reviewed before and addressed in more detail below.

 Cardiac immune cells comprise all major leukocyte 
classes of the innate and adaptive immune system, includ-
ing myeloid cells such as macrophages, monocytes, dendritic 
cells, neutrophils, or mast cells, and lymphoid cells such as 
B cells and T cells. Each of these major cell populations con-
tains several subtypes and states [102, 186, 189]. The car-
diac macrophage population stems from different origins and 
can be distinguished from other leukocyte populations by 
combined surface expression of respective markers  (CD45+, 
F4/80+,  CD11b+) [189]. In steady-state, the population 
mainly consists of tissue-resident macrophages derived from 
yolk-sac progenitors, maintained by local proliferation, and 
a smaller, C–C chemokine receptor 2 (CCR2)+ macrophage 
population derived from circulating monocytes [50, 189]. 
After myocardial injury,  CCR2+ monocytes make a major 
contribution to replenishment of the cardiac macrophage 

pool [67]. In the healthy heart, tissue-resident macrophages 
have essential roles in maintaining tissue homeostasis, as 
they are involved in ECM turnover and in the removal of 
cellular debris [189], which is of particular importance for 
organs that contain cells that are maintained for the life-
time of an individual (see information on post-natal cardio-
myocyte proliferation, above). Accordingly, experimental 
depletion of resident macrophages impairs the elimination 
of dysfunctional mitochondrial fragments from cardiomyo-
cytes, leading to disturbed metabolism and ventricular dys-
function [131].

The heart is covered by the epicardium, a thin layer of 
mesothelial cells, and in particular in the perivascular areas 
by adipocytes [102]. The epicardium has been recognized as 
a multipotent cardiac progenitor tissue [26]. During cardiac 
development, Wilms’ tumour 1 expressing epicardial cells 
undergo epithelial-to-mesenchymal transition and give rise 
to multiple cell types, including fibroblasts, smooth muscle 
cells, and pericytes [26, 159]. In addition, epicardial cells 
steer coronary vessel formation via paracrine signalling 
[135]. In the adult heart, the epicardium is largely quiescent. 
However, it becomes re-activated upon injury and contrib-
utes to cardiac repair via cytokine signalling [159]. Whether 
epicardial progenitors are able, after tissue injury, to form 
cardiomyocytes or fibroblasts at significant numbers remains 
controversial [26, 84, 159].

Epicardial adipose tissue has several roles in cardiac 
physiology, such as energy supply and mechanical protec-
tion of the heart [7, 77]. In addition, there is increasing evi-
dence for more complex interactions between adipocytes and 
myocardial cells. Via secreted factors such as adiponectin or 
leptin, adipocytes can influence cardiomyocyte  Ca2+ cycling, 
metabolism, and redox state, and thereby alter contractility 
or contribute to arrhythmogenesis [7, 136]. This refers to 
circulating, visceral tissue-derived adipocytokines, but also 
to the paracrine action of epicardial adipocytes. In obesity, 
accumulation and inflammation of epicardial fat contribute 
to adverse cardiac remodelling, fibrosis, and arrhythmia (as 
recently reviewed elsewhere [77, 137]). Epicardial adipose 
tissue is most abundant in the atrio-ventricular and the inter-
ventricular sulcus, surrounding the coronary arteries [77]. 
More recently, a population of cardiac adipocytes has been 
identified that derives from cardiac mesenchymal cells and is 
located in subendocardial myocardium [81]. Whether these 
adipocytes have distinct functions remains to be explored. 
In diseases such as atrial fibrillation, fibro-fatty infiltration 
may contribute to electrical isolation of myocardial tissue 
regions, affecting action potential conduction and, poten-
tially, facilitating the onset of arrhythmias [39, 52, 110].

Heart function is tightly controlled by the cardiac auton-
omous nervous system. Sympathetic and parasympathetic 
neurons located in ganglia of the sympathetic chain or in 
epicardial plexus form postganglionic nerve fibres reaching 
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the myocardial tissue and modulating heart rate and con-
tractility [5, 216]. In addition to this extrinsic part, the heart 
contains a large number of neurons forming an intrinsic car-
diac nervous system. High-resolution imaging with subse-
quent 3D modelling revealed the majority of neurons to be 
localized in a compact region posterior of both atria with a 
dense network of neuronal processes reaching distant car-
diac tissue [1]. Others suggested additional neuronal bodies 
within the ventricular myocardium [102]. Cardiac nerves 
also include Schwann cells and perimysial fibroblasts [74]. 
Their roles are assumed to be similar to those in non-cardiac 
nerves, although development, regulation, and remodelling 
of intracardiac nerves during aging and/or disease [174] are 
underinvestigated, beyond anatomical characterization.

Each cardiomyocyte is considered to be targeted by 
several neuronal processes via multiple neurotransmitter 
release sites [216]. More recently it has been reported that 
the cholinergic transdifferentiation of sympathetic neurons 
that occurs after myocardial injury may harmonize action 
potential durations and thereby reduce the risk for ventricu-
lar arrhythmia [209]. In addition, sympathetic neurons may, 
via direct cell–cell interactions (neuro-cardiac junctions), 
promote cardiomyocyte growth [147], while cardiomyo-
cytes, via neuronal growth factor release, may help to sus-
tain local innervation [44]. Thus, it is becoming increasingly 
clear that the intracardiac nervous system is subject of highly 
dynamic bidirectional neuro-muscular cross-talk.

Interactions

Cell communication in the heart involves different modes 
of signal exchange, including ‘biochemical’ and ‘biophysi-
cal’ cues (Fig. 2). Biochemical signalling may occur in 
an autocrine (sender and receiver are the same cell) or 
paracrine way (sender and receiver are separate cells). 
Secreted factors include various classes of molecules 
such as cytokines, chemokines, or growth factors. These 
molecules typically act as ligands at membrane-bound 
or intracellular receptors of the target cell [162]. They 
may be secreted to the extracellular space, ‘wrapped up’ 
in exosomes, or transported between cells, for example 
via tunnelling nanotubes. In addition, metabolites such 
as nitric oxide, carbon dioxide, or reactive oxygen spe-
cies can act as signalling molecules. Finally, cardiac cells 
are responsive to endocrine factors and neurotransmitters 
such as endothelin-1 or noradrenalin that may derive from 
the circulation, intracardiac nerve endings, and/or be pro-
duced by cardiac cells. Biophysical interactions involve 
direct mechanical cell–cell coupling via adherens junc-
tions or tight junctions, as well as indirect mechanical 
coupling via extracellular matrix/integrin connections, 
through extracellular and vascular fluid mediated forces, 
as well as tissue shear, twisting, etc. Electrical coupling 
in the heart typically occurs through connexins, a class of 
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Fig. 2  Heterocellular interactions in the healthy heart. Cell commu-
nication in the heart involves ‘biochemical’ and ‘biophysical’ cues. 
Secreted factors that act in a paracrine or autocrine manner include 
cytokines, chemokines, or growth factors. These factors may be 
secreted to the extracellular space, ‘wrapped up’ in exosomes, be 
transported via tunnelling nanotubes, etc. In addition, metabolites 
may act as signalling molecules. Cardiac cells are responsive to endo-

crine factors and neurotransmitters that may derive from the circula-
tion or intracardiac nerve endings. Biophysical interactions involve 
direct mechanical cell–cell coupling via adherens junctions or tight 
junctions, as well as indirect mechanical coupling such as via extra-
cellular matrix/integrins connections. Electrical coupling in the heart 
typically involves connexins, a class of transmembrane proteins that 
forms gap junctions between cells
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transmembrane proteins that forms gap junctions between 
neighbouring cells, although other electrical interactions 
(ephaptic, capacitative) may be of functional relevance as 
well [180] (Fig. 2).

To enumerate all individual forms of cell communication 
in the heart would be an immense undertaking that is beyond 
the scope of a single review article. Instead, we summarize 
key examples of cell–cell interactions across a range of cell 
types and focus in the following on more targeted and in-
depth analyses of exemplary new facets of heterocellular 
cross-talk that form potential areas for further research and 
therapeutic intervention.

Biochemical cell interactions in the heart

Transcriptomic data from five cardiac cell types (cardio-
myocytes, endothelial cells, fibroblasts, monocytes, mac-
rophages) predicted more than 6000 possible heterocellular 
ligand–receptor interactions in healthy adult mouse heart 
[106]. Similar findings were obtained by analysing scRNA-
seq data of non-myocytes [182], with fibroblasts accounting 
for the greatest proportion of potential heterocellular signal-
ling pathways in both studies [106, 182].

Heterocellular biochemical signals in steady-state condi-
tions are thought to be critical for forming and maintain-
ing the cardiac microenvironment. For example, endothe-
lial cells from different organs have highly specialized 
functions. Capillary endothelial cells in the kidney form 
a fenestrated endothelium, allowing renal filtration, while 
endothelial cells in the brain form a dense monolayer and 
express specific junctions and transporters that maintain 
the blood–brain barrier [154]. In the heart, endothelial cells 
appear to adapt to the high oxygen and energy demand of 
cardiomyocytes, which is reflected by a high capillary den-
sity and nutrient transport capacity [154]. Cardiomyocytes 
largely depend on fatty acids as their energy source, and 
cardiac endothelial cells, in contrast to endothelial cells from 
other organs, show high expression of fatty acid binding pro-
tein 4 (Fabp4), CD36, and other proteins that facilitate fatty 
acid uptake from the circulation [35, 80, 105, 132, 183]. It 
has been suggested that vascular endothelial growth factor 
B (VEGFB), acting on the VEGF receptor 1, is a key regu-
lator of fatty acid transport. VEGFB is highly expressed in 
tissues which use fatty acids as an energy source, including 
the heart [65], indicating cardiomyocyte–endothelial cell 
cross-talk. Several studies showed that ablation of VEGFB 
in mice decreases the expression of fatty acid transport pro-
teins, impairing fatty acid uptake [65, 109, 114]. However, 
there are conflicting data from another study using VEGFB 
deletion that could not reproduce that phenotype [89]. The 
transcription factors MEOX2 and TCF15 cooperatively reg-
ulate CD36 expression in endothelial cells, independently 
of VEGFB [35]. MEOX2/TCF15 haplodeficiency decreases 

CD36 expression, diminishes fatty acid uptake, and impairs 
left ventricular function [35]. Whether this represents an 
intrinsic pathway controlling fatty acid transport in cardiac 
endothelial cells, or is a response to yet undefined external 
signalling, remains to be explored.

Another example for heterocellular interactions that 
until recently were underestimated, is the role of pericytes 
in cardiac physiology and pathophysiology [12]. Pericytes 
are critical for vessel stability and the integrity of the capil-
lary wall. During early vessel formation, as well as in neo-
angiogenesis, sprouting endothelial cells release platelet-
derived growth factor β (PDGFβ) which attracts pericytes 
[101]. During vessel maturation, pericytes in turn act on 
endothelial cells via paracrine angiopoietin-1 signalling, 
which regulates vessel permeability and, in a feed-forward 
mechanism, induces the expression of PDGFβ—thereby 
further enhancing pericyte attraction [27]. In addition to 
their effects on endothelial cell junctions, pericytes form a 
second, subendothelial vessel barrier. The endothelial cell-
derived macrophage migration inhibitory factor decreases 
pericyte contractility, allowing transmigration of leukocytes 
into the surrounding tissue [142]. Pericyte contraction not 
only controls capillary permeability but also (re-)perfusion. 
Hyperemia induces pericyte contraction, leading to capillary 
derecruitment [117]. This can contribute to the fine-tuning 
of local tissue perfusion and energy supply. Recently, an ele-
gant study demonstrated ATP-sensitive electrical feedback 
signalling through gap junctions from cardiomyocytes to 
microvascular cells, regulating pericytes, smooth muscle cell 
contraction, and blood flow [221]. After acute myocardial 
infarction, pericyte contraction may contribute to what is 
called the ‘no reflow’ phenomenon [116, 133]: despite suc-
cessful re-opening of the occluded coronary arteries, tissue 
perfusion remains impaired. This involves capillary destruc-
tion, followed by myocardial haemorrhage and oedema, and 
impaired vasomotion [70]. Application of vasodilators such 
as adenosine may reverse capillary constriction, but also act 
on arterioles and induce unwanted hypotension [133]. Inter-
estingly, deletion or pharmacological inhibition of G-pro-
tein coupled receptor 39 prevents pericyte contraction and 
improves tissue reperfusion in mice [116], thus representing 
a potentially more selective therapeutic approach compared 
to currently used vasodilators [38].

Biophysical cell interactions in the heart

Biophysical cross-talk of cardiomyocytes with one-another 
and with the ECM is part of textbook-level knowledge in 
terms of electro-mechanical organization of cardiac function 
[146], and increasingly also in terms of other processes such 
as mechano-electric or mechano-chemical feedback [79].

Heterocellular biophysical cross-talk, in contrast, had 
long been ignored [91]. This is surprising, given that 
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already the very first cardiac cell culture studies over 5 
decades ago indicated that non-myocytes can form elec-
trically conducting bridges between cardiomyocytes [61]. 
Heterocellular electrical coupling was subsequently con-
firmed using structured in vitro models, which showed that 
fibroblasts can passively conduct excitatory electrical sig-
nals over 300-μm gaps between groups of rat ventricular 
cardiomyocytes [57]. Confirmation of connexin-mediated 
electrotonic coupling in native myocardium became pos-
sible with the advent of optogenetic targeting of membrane 
potential reporters to non-myocytes [160], which estab-
lished the presence of heterocellular electrotonic coupling 
between cardiomyocytes and non-myocytes, presumably 
fibroblasts, in cardiac lesions after ablation and myocar-
dial ischaemia [160, 172]. Such heterocellular coupling 
allows electrical conduction along stretches of myocar-
dium, which may not necessarily contain uninterrupted 
strands of cardiomyocytes [92]—a principle that has been 
used to design heterocellular tissue constructs that can 
bridge atrio-ventricular conduction upon destruction of 
the atrio-ventricular node [32].

In addition to cardiomyocyte–fibroblast electrical cou-
pling in myocardial lesions or engineered tissue strands, it 
was recently discovered that this mode of signalling also 
is present between cardiomyocytes and macrophages in 
healthy murine myocardium [76]. The presence of connexin 
hemichannels and their relevance, both for heterocellular 
electrical coupling [93] and for the function of individuals 
cells (such as fibroblasts [93], pericytes [139] or endothelial 
cells [153], to name but a few), is ill-investigated and forms 
an exciting area for further study.

While electrotonic coupling affects cells in the immediate 
proximity, and with a ‘speed of conduction’ in the  100 m/s 
range, mechanical coupling connects ‘all’ cells of the heart, 
over long distances, and essentially with the speed of sound 
 (102 m/s). Given that all cardiac cell types are mechano-
sensitive, this offers vast potential for mechanically induced 
heterocellular signalling effects, including links to chemical 
signalling, such as via nitric oxide [19], ROS [210], micro-
RNA [163] or calcium [78], to name but a few, potentially 
going full circle to effects on cardiac mechanical [85] and 
electrical function [145], or cardiomyocyte structure [214].

In addition to the general exposure of all cells to the 
dynamic cardiac mechanical environment, and to the effects 
of this on cell function, there are novel structural links 
emerging, whose relevance for biophysical signalling remain 
to be explored. This includes perhaps counter-intuitive and 
cardiac disease-modulated projections of ECM-associated 
collagen fibres into the T-tubular system of cardiac myocytes 
[36], stretch- and contraction-induced advection of T-tubular 
content that may contribute to sustenance of ion homeo-
stasis in this crucial cell compartment [171], as well as the 
formation of heterocellular tunnelling nanotubes [94, 160] 

whose relevance for heterocellular signalling is unknown 
in the heart.

Implications…

…for basic research

The heterocellular nature of the heart has important impli-
cations for cardiology and cardiovascular science, reaching 
from basic research to clinical application. In basic research, 
one needs to consider that the different cell types of the 
heart have distinct cellular, biochemical, and mechanical 
properties, adapted to their highly specialized functions. 
This implies that studying heterogeneous cells requires cell 
type-specific approaches. For instance, it is more and more 
accepted that gene expression and epigenetic analysis should 
be performed on the cell population of interest and not rely 
on bulk tissue data [144]. Gene expression analyses from 
bulk heart tissue will represent a mixed pool of mRNA from 
different cell populations. The mRNA content of a cell is 
approximately linearly correlated with cell volume (Fig. 3A; 
[86]). Cardiomyocytes are large cells, occupying a tissue 
volume that is disproportionate to their numerical share: they 
account for most of the tissue volume and thus mRNA in the 
heart (Fig. 3B). Conversely, mRNA from smaller and/or less 
abundant cell types is underrepresented in the tissue mRNA 
pool [105, 106]. As the majority of genes is expressed in 
more than one cell type, differential mRNA expression in 
one cell type may be masked by up- or down-regulation of 
the same gene in another cell type [106] (Fig. 3C). In addi-
tion, the make-up of cardiac cell populations changes in 
disease, predominantly because of increasing non-myocytes 
numbers and diversity. The increasing abundance of a cell 
type may be misinterpreted as upregulation of a gene in car-
diac tissue, even if said gene is stably expressed (or, conceiv-
ably, even reduced) in a given cell population [106]. All this 
shows that gene expression analysis from tissue may not only 
be less sensitive, but even lead to false conclusions [106].

The most suitable experimental approach to study cell 
type-specific gene expression should be chosen in accord-
ance with the scientific question at hand. scRNA-seq is now 
widely accessible and frequently used in cardiovascular sci-
ence [60, 118]. One key strength of single-cell technolo-
gies is their suitability for assessing cell type diversity and 
cell-to-cell gene expression variability [29]. In addition, the 
power of the analysis can be increased by including spatial 
information, and/or multiple time points during develop-
ment, disease progression, or therapy [10, 95, 100, 111]. 
Single-cell techniques enable researchers to determine gene 
expression in all captured cells, thereby reducing selection 
bias. However, some experimental factors that influence 
results need to be considered. Before sequencing, heart 
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tissue is dissociated into single cells. This preparation of 
single-cell suspensions, usually achieved by a combination 
of enzymatic and mechanical disruption [185], is a critical 
step because it has a strong impact on obtaining a repro-
ducible yield of viable cells that reflects the composition 
of cell populations in the heart, especially in diseased tis-
sue with excessive presence of ECM. In addition, some of 
the available microfluidic or droplet-based scRNA-seq sys-
tems are not suitable for large cells such as cardiomyocytes 
[60]. In contrast to intact cells, nuclei are of small size and 
may be isolated for transcriptomic and epigenetic studies 
from fresh or frozen heart tissue without prior enzymatic 
digestion [8, 157]. Thus, researchers in the cardiovascular 
field are increasingly relying on snRNA-seq [60, 102, 188]. 
Despite improved low RNA input protocols the number of 
transcripts per cell, and the even lower number per nucleus, 
limits the number of genes that can be detected, cutting off 

low abundant transcripts and potentially making snRNA-seq 
more prone to noise [29]. In addition, rare cell types may 
only be represented by a few cells. Here, bulk RNA-seq may 
have advantages for determining differential gene expression 
in a defined cell population, as long as that population is well 
represented and identifiable in post-isolation cell suspen-
sions. Cells or nuclei can be isolated by flow cytometry or 
magnetic bead-assisted sorting, based on their size, surface 
marker expression, or genetic labelling [58, 96, 105, 106, 
158].

Cell culture has been used for decades to study cellu-
lar functions in a defined and reproducible setting. More 
recently, more complex approaches for assessing hetero-
cellular interactions ex vivo have been developed, ranging 
from multi-cell type and spatially structured co-cultures and 
3D organoids to printed cell and ECM scaffolds or ‘heart-
on-a-chip’ systems [31, 87, 119, 124]. While 3D organoids 
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largely rely on the self-assembly of stem cells into spheroids, 
3D printed cell assemblies are typically built from defined 
mixtures of cardiac cell types and exogenous extracellular 
matrix [124]. These systems may be adjusted in multiple 
ways to meet different experimental needs. Generally, one 
can say that systems that model more mature tissue are more 
difficult to scale for high-throughput applications, which 
requires careful balancing of ease of utilization with the 
level of insight gained [31]. An alternative to engineered 
tissue models are living myocardial tissue slices [23, 175, 
206, 207]. These slices offer an interesting addition to the 
tool-kit of heterocellular interaction research [151, 175], as 
live tissue can be kept for days, even weeks [175], and it is 
possible to isolate well-preserved cells from the same tis-
sue donor on multiple days [211]. This opens the door to 
the exploration of intervention effects, such as exposure to 
modulators of biochemical of biophysical signalling [150], 
in as far as they can be achieved outside the body (i.e. in the 
absence of circulating cells of extra-cardiac origin) [63].

The perhaps most important breakthrough in studying 
heterocellular interactions has come from the availability of 
optogenetic tools to target specific cell populations, whether 
with effectors that allow one to modulate function of target 
cells by exposure to light [76], or with reporters of cell activ-
ity that allow one to explore minority cell contributions to 
ensemble activity that may be dominated by another cell 
type (e.g. fibroblast electrophysiology signals, which would 
otherwise be drowned-out by the dominating electrophysi-
ological activity of cardiomyocytes [160]. The availability of 
effectors and reporters is continuously growing [16] includ-
ing light-activated enzymes (such as Cre) that allow one to 
steer gene expression not only in a cell type-specific setting, 
but also in a spatio-temporally controlled manner [213].

…for therapeutic interventions

A more detailed understanding of cell type-specific molecu-
lar functions and cellular cross-talk from basic research may 
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enable new therapeutic approaches in cardiovascular disease 
(Fig. 4). Many drugs that are currently used in cardiovas-
cular medicine, such as betablockers, angiotensin receptor 
blockers, or endothelin receptor antagonists, are used to 
modulate biochemical cell–cell interactions that are medi-
ated via secreted factors, such as hormones, cytokines, or 
growth factors (Fig. 4A). This includes long-range inter-
actions via circulating factors, as well as local paracrine 
actions. Cell–cell interactions can be modulated in multi-
ple ways, e.g. by receptor block or by preventing enzymatic 
activity. For example, the combined angiotensin receptor and 
neprilysin inhibitor sacubitril/valsartan prevents the degra-
dation of natriuretic peptides that are secreted by cardio-
myocytes, thereby increasing their local and systemic levels. 
Natriuretic peptides act on multiple organ systems includ-
ing the kidney or the vasculature, but they also have direct 
anti-hypertrophic and anti-fibrotic effects on the heart [108]. 
More recently, neutralizing antibodies have been developed 
to eliminate secreted factors and prevent their effects on 
cardiac cells. This principle has been applied therapeuti-
cally, e.g. for the interleukin-1 targeting antibody canaki-
numab [223], but needs to be considered with care for other 
indications due to potential risks of adverse effects on the 
cardiovascular system, e.g. for VEGF targeting antibodies 
[194]. The difficulty of targeting factors to a specific organ 
or cell type, combined with the lack of specificity for the 
often pleiotropic actions of secreted factors, is a common 
issue with therapeutics targeting cell–cell interactions.

Cell type-selective pharmacology may be one way to 
enhance efficacy of treatments, while reducing undesired 
side-effects [33]. Effective concentrations of therapeutic 
drugs depend on their resorption, tissue penetration, metabo-
lism, and elimination. Circulating drugs have to pass multi-
ple barriers before they reach their targets, including vessel 
walls, ECM, and plasma membranes of target cells [222]. 
Several therapeutics, including antiarrhythmic drugs, show 
higher concentrations in heart tissue than in plasma [198], 
however, this may also be true for other organs and does not 
necessarily indicate organ-specificity (Fig. 4B).

A number of strategies for drug targeting share the idea 
of linking a therapeutic ‘cargo’ to a cell-selective ‘car-
rier’ [222] (Fig. 4C). Possible cargos include not only 
small molecules or peptide drugs, but also nucleic acid 
therapeutics or antibodies. Potential carriers are antibod-
ies against a specific epitope, peptides or small molecules 
binding to surface receptors or extracellular matrix com-
ponents, as well as liposomes [22, 178, 222]. Development 
and clinical application of targeted drug delivery systems 
is most advanced in oncology [22, 222], while suitable 
target structures for cardiac cells remain to be exploited. 
Based on the findings described above, CD36 appears 
to be a promising candidate, however, this has not been 
experimentally tested yet. In addition, certain differentially 

expressed surface markers may lead to preferential binding 
of substances, such as lectins. Lectin A (a virulence factor 
that promotes endocytosis of bacteria into host cells), for 
example, binds to cardiac non-myocytes but not to muscle 
cells, sensitizing the former to mechanical activation [37]. 
Similarly, regional cell specificity may arise from target-
ing differentially expressed proteins, such as ion channels. 
Attempts to develop atrial cardiomyocyte-selective drugs 
for atrial fibrillation have not, however, been very success-
ful—in part because atrial preferentiality, let alone ‘selec-
tivity’, established in healthy tissue, may not be sustained 
after disease-induced electrophysiological remodelling 
[173].

RNA-based therapy represents another innovative 
approach that is currently moving forward (Fig. 4D) [169]. 
Most advanced is the development of antisense oligonucle-
otides and small interfering ‘siRNA’ molecules, with first 
therapeutics approved for clinical use—most of them for 
treatment of hereditary diseases [212]. In the cardiovascular 
field, the siRNA formulations patisiran [2] and inclisiran 
[164] are used for treatment of transthyretin amyloidosis 
or uncontrolled hypercholesterolaemia in atherosclerosis, 
respectively. However, these siRNA primarily target the 
liver, not cardiac cells [212]. Recently, a phase 1 clinical trial 
in patients with chronic heart failure demonstrated benefi-
cial effects of an antisense oligonucleotide against miR-132 
[193]. Mechanistic studies had shown before that miR-132 
is a driver of pathological hypertrophy, expressed in cardio-
myocytes but not in fibroblasts [200].

Viral vectors, most commonly adeno-associated viral 
(AVV) vectors, are used for gene transfer in basic cardio-
vascular research, and they have been tested for gene ther-
apy in clinical trials [168] (Fig. 4D). Viral vectors bind to 
surface receptors of their target cells, undergo endocytosis 
and intracellular processing, and release their genetic infor-
mation into the nucleus [219]. Depending on their capsid 
structure, different viral vectors or serotypes may prefer-
entially target different tissues and cell types, with AAV1, 
AAV6, AAV8, and AAV9 showing high efficacy in trans-
ducing cardiomyocytes [168]. To improve tropism towards 
certain cell types, capsid modification can be a productive 
[170]. Cell type-specific promoters can be used to limit 
gene expression to the cell type of interest, e.g. TCF21 or 
periostin to target (myo-)fibroblasts [54, 149], potentially 
even in a heart chamber specific manner [18]. Viral vectors 
are mostly used to directly increase or restore the expres-
sion of proteins that are involved in cardiac function [168]. 
More recently, genome editing tools such as CRISPR–Cas9 
[103] have been applied successfully in preclinical models 
[122, 138] with the long-term vision of treating hereditary 
cardiac disease that are caused by single gene mutations. 
Furthermore, a catalytically inactive Cas9 (dCas9) can be 
fused to histone acetyltransferases, histone deacetylases, or 
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DNA methyltransferases and transferred by viral vectors, 
which could enable targeted epigenetic modulation of gene 
expression [103].

Chimeric antigen receptor (CAR)-T cells are genetically 
engineered T cells, directed against a specific antigen on 
the surface of their target cell [97] (Fig. 4E). CAR-T cells 
have been successfully used to tackle cardiac fibrosis in mice 
[4, 173]. Cardiac fibroblasts were selectively destroyed by 
CAR-T cells aiming at fibroblast activation protein (FAP) 
[4, 173]. In most studies, T cells were genetically modified 
by adenoviral transduction ex vivo, requiring extensive lab 
work and impeding clinical use. Very recently, a protocol 
has been reported to generate FAP-CAR-T cells in vivo. The 
authors used lipid nanoparticles that were decorated with 
anti-CD5 antibodies, targeting T cells and carrying mRNA 
cargo, directing the T cell against FAP [173]. This example 
illustrates how knowledge of cell type-specific features can 
facilitate targeted therapies. However, despite these prom-
ising results, substantial barriers remain, related to immu-
nogenicity, delivery, and specificity of RNA-based or viral 
therapies, that need to be addressed before routine use in 
humans [168, 212].

Epigenetic drugs such as histone deacetylase (HDAC) 
or bromodomain and extra-terminal motif inhibitors show 
therapeutic potential in heart disease [45, 129, 197, 208] 
(Fig. 4F). Cell type-specific gene expression is determined 
by the activity of regulatory elements (‘enhancers’ or ‘sup-
pressors’) that are characterized by posttranslational modi-
fication of neighbouring histones and low methylation of 
the DNA. Enhancers are primed by pioneering transcription 
factors in a cell type-specific manner, making them acces-
sible to signal-dependent transcription factors [68]. DNA 
methylation-guided analysis of cardiomyocytes, fibroblasts, 
endothelial cells, and macrophages revealed that approxi-
mately 40% of the regulatory elements are specific for one 
of those cell types [106]. An extended analysis of acces-
sible chromatin by snRNA-seq of nine different cardiac cell 
types identified ~ 6% specific regulatory elements, which 
were associated with typical cell functions [73]. The cell-
specificity of enhancers makes them interesting potential 
drug targets. Therapeutic drugs such as HDAC inhibitors 
will potently be able to inhibit gene expression [129]. How-
ever, strategies need to be developed to steer epigenetic 
inhibitors towards specific genomic regions or cell types. 
Another approach to steer gene expression is to modulate 
protein–protein interactions within nuclear transcription fac-
tor complexes [33]. For instance, the novel non-steroidal 
mineralocorticoid receptor antagonist finerenone acts as a 
‘bulky’ antagonist, mediating a conformational change of 
the receptor that impedes interaction with certain cofactors 
[88]. It has been suggested that the resulting distinct cofac-
tor recruitment and ligand-specific gene program may con-
tribute to an enhanced anti-fibrotic activity of finerenone 

compared, to other mineralocorticoid receptor antagonists 
[64] (Fig. 4F).

Conclusions

The heterocellular nature of the heart has important impli-
cations for basic and translational research in cardiology. In 
addition to cardiomyocytes, the heart consists of endothe-
lial cells, smooth muscle cells, fibroblasts, various immune 
cells, and other cell types including pericytes, adipocytes, 
neurons, and Schwann cells. The advent of scRNA-seq tech-
nologies, which enable the detection of subtle distinctions 
in cellular identities, has brought some of the not so usual 
suspects more into focus. However, it has also challenged 
the traditional view of what defines a cell type. Researchers 
need to consider the distinct molecular, biochemical, and 
biophysical properties of different cell types in the heart that 
require specific experimental approaches. A better under-
standing of cell type-specific molecular functions and cel-
lular interactions, arising from basic research, may lead to 
new therapeutic approaches for cardiovascular medicine. 
Currently, many drugs used in cardiovascular medicine aim 
to modulate biochemical cell–cell interactions that are medi-
ated via secreted factors. However, the lack of specificity 
for the often pleiotropic actions of these secreted factors 
is a common challenge. Several strategies for therapeutic 
targeting have been developed, including the linkage of a 
drug to a cell-selective ‘carrier’, RNA-based therapeutics, 
epigenetic drugs, or CAR-T cells. Novel approaches such 
as optogenetics, currently in experimental use for cell type-
specific steering of cardiac function by exposure to light, 
may progress to clinical development in the future—in par-
ticular if ‘single-exposure’ to light (via catheter) can give 
rise to sustained effects on the heart (e.g. triggering local 
and cell type-specific expression of certain traits). Overall, 
it becomes increasingly clear that the cardiomyocyte-centric 
view of the heart is obsolete, while the identification of het-
erocellular identities and interactions promises to have sub-
stantial implications for the future of cardiology.
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