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Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Most cardiovascular deaths are caused by 
ischaemic heart diseases such as myocardial infarction (MI). Hereby atherosclerosis in the coronary arteries often precedes 
disease manifestation. Since tissue remodelling plays an important role in the development and progression of atherosclerosis 
as well as in outcome after MI, regulation of matrix metalloproteinases (MMPs) as the major ECM-degrading enzymes with 
diverse other functions is crucial. Here, we provide an overview of the expression profiles of MMPs in coronary artery and 
left ventricular tissue using publicly available data from whole tissue to single-cell resolution. To approach an association 
between MMP expression and the development and outcome of CVDs, we further review studies investigating polymorphisms 
in MMP genes since polymorphisms are known to have an impact on gene expression. This review therefore aims to shed 
light on the role of MMPs in atherosclerosis and MI by summarizing current knowledge from publically available datasets, 
human studies, and analyses of polymorphisms up to preclinical and clinical trials of pharmacological MMP inhibition.

Keywords Matrix metalloproteinases · Myocardial infarction · Atherosclerosis · Single nucleotide polymorphisms · Single-
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Introduction

Approximately 17.8 million deaths worldwide were attrib-
utable to cardiovascular diseases (CVDs) in 2017, making 
them the leading cause of death [36]. Thereby, most of these 
CVD-related deaths are caused by ischemic heart diseases 

including myocardial infarction (MI) [137]. This interrup-
tion of oxygen and nutrient supply to the heart is typically 
preceded by atherosclerosis in the coronary arteries [120]. 
Here, the rupture of unstable and vulnerable plaques can 
lead to coronary thrombus, causing type I MI due to coro-
nary embolism [41, 44, 120]. The development and stabil-
ity of atherosclerotic plaques is highly dependent on the 
abundance, composition, organization and integrity of their 
extracellular matrix (ECM), which includes proteins such 
as elastin and collagen fibrils. Destruction of these proteins 
promotes atherogenesis or destabilizes the fibrous cap of ath-
erosclerotic plaques [96, 138]. ECM remodelling also plays 
a critical role in the outcome of MI: the cardiomyocyte death 
after MI is followed by reparative fibrosis replacing damaged 
tissue [31, 32]. Since adult cardiomyocytes are thought to 
be unable to proliferate to regenerate damaged myocardium 
[144], reparative fibrosis is essential to maintain cardiac 
integrity and to prevent left ventricular (LV) wall dilation. 
Yet, an exaggerated fibrotic response is at the same time 
detrimental by stiffening the cardiac tissue and needs to be 
mitigated [116]. Regarding the remodelling processes in 
atherosclerosis and MI, matrix metalloproteinases (MMPs), 
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as a major class of enzymes with structural matrix protein-
cleaving capabilities, have been in focus of cardiovascular 
research. The versatile family of MMPs consists of more 
than 20 members [54], which are involved in numerous bio-
logical processes including angiogenesis, embryonic devel-
opment, tissue remodelling and growth, cell proliferation, 
migration, differentiation, and regulating immune responses 
[18]. Some of these actions are direct or associated con-
sequences of MMP-mediated proteolysis of ECM proteins.

This review aims to provide an overview of the biological 
role of MMPs in the development and progression of ath-
erosclerosis and MI deduced from publically available data. 
Thus, we provide an overview including expression data 
from human studies showing the diverse role of different 
MMPs in those remodelling processes. Moreover, we dis-
cuss the biological role of genetic polymorphisms in MMP 
genes in the context of atherosclerosis, MI development and 
post-MI remodelling.

Structure, activation and function of MMPs

In general, all MMPs share a common structure, which is 
listed below from N- to C-terminus. As depicted in Fig. 1a, 
they usually consist of a signal peptide, a pro-peptide, a 
catalytic domain, a hinge region, and a hemopexin-like 
domain. The signal peptide that targets the protein for 
secretion is usually 16–30 amino acids long and is cleaved 
off during translation. In general, MMPs are synthesized 
as zymogens and therefore they contain an 80 amino acids 
long N-terminal pro-domain. A cysteine residue within 
the pro-domain interacts with the central zinc  (Zn2+) ion, 
which is attached to the catalytic domain, thus serving as 
an intra-molecular inhibitor [18]. The  Zn2+-ion is attached 
to three conserved histidine residues within the zinc-bind-
ing motif of the 170 amino acids long catalytic domain 
[123]. The catalytic domain is linked by a hinge region 
of variable length to the hemopexin-like domain. This 
domain forms a four-blade-propeller structure, is slightly 

Fig. 1  Structure of MMPs and summary of selected intra- and extra-
cellular substrates in the cardiac context. (a) Most MMPs share a 
common structure consisting of a signal peptide (SP), a pro-peptide 
(Pro) with a conserved cysteine-residue (Cys), a catalytic domain 
binding a zinc  (Zn2+) ion, a hinge region, and a hemopexin-like 
domain complexed with a calcium  (Ca2+) ion. (b) In the past, only 
proteins of the extracellular matrix (ECM) were considered to be 
substrates of MMPs. Today it is known that MMPs have many extra- 

and intracellular substrates. Various MMPs extracellularly target 
cytokines and pro-MMPs in addition to ECM proteins. Intracellular 
target structures for MMP-2, -7, and -9 were selected and are depicted 
here. CX43 connexin 43, ER endoplasmic reticulum, GSK-3β gly-
cogen synthase kinase-3 beta, IκB inhibitor of kappa B-alpha, JPH-
2 junctophilin-2, MLC-1 myosin light-chain I, MHC myosin heavy 
chain, SERCA2a Sarcoplasmic/endoplasmic reticulum calcium 
ATPase 2a, SR sarcoplasmic reticulum
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modified in some MMPs, and contributes to substrate 
specificity [18, 28, 115]. While MMP-7 and MMP-26 
lack the hemopexin-like domain, membrane-bound MMPs 
(MT-MMPs) contain either an additional transmembrane 
type I domain or a glycosylphosphatidylinositol (GPI) 
anchor at the C-terminus [90].

Canonical, extracellular functions of MMPs are the 
degradation of ECM proteins, activation of cytokines and 
other pro-MMPs [18, 134]. In this case, the signal pep-
tide targets the protein for secretion and the pro-domain 
is cleaved by proteolysis, activating the MMP [90]. Thus, 
MMPs are activated by the resolution of the cysteine-Zn2+ 
bond between the Pro- and catalytic domain. Nowadays, 
it is known that many MMPs are active not only in the 
extracellular space but also intracellularly, as previously 
comprehensively reviewed [6, 56]. Some MMPs remain 
inside the cell because of variations within their signal 
peptide sequence or re-enter the cell after secretion—in 
case of MMP-2 it was shown that almost half of the pro-
tein remains cytosolic [3, 50, 56]. For MMP-2, it is even 
known that there are two truncated splice forms lacking 
the signal peptide and are therefore not secreted [3, 77]. 
Several mechanisms for intracellular activation of MMPs 
have been identified. Among these, a major mechanism is 
activation by oxidative and nitrosative stress. However, 
modulation of MMP activity by phosphorylation and intra-
cellular proteolytic activation has also been described [6, 
50].

In the cardiac context, mainly intracellular functions of 
MMP-2 have been studied and reviewed so far [21, 50], 
but intracellular substrates of MMP-7 and MMP-9 have 
also been discovered in cardiomyocytes. Well-studied 
targets of MMP-2 are sarcomeric structures (troponin I, 
titin, myosin light-chain I (MLC-1)) and the cytoskeleton 
of cardiomyocytes (α-actinin) as depicted in Fig. 1 [2, 17, 
109, 114, 122, 131]. These are degraded by MMP-2 under 
oxidative stress, particularly under ischemic conditions, 
which can lead to contractile dysfunction in the heart [2, 
109, 114, 122, 131]. Furthermore, MMP-9 is thought to 
be involved in the degradation of sarcomere structures, in 
particular in myosin heavy chain [107]. In the endoplasmic 
reticulum (ER) of cardiomyocytes, MMP-2 contributes to 
the degradation of sarcoplasmic/ER calcium ATPase 2a 
and junctophilin-2 under ischemic conditions [16, 104]. 
Both MMP-2 and MMP-9 have been shown to target mito-
chondria-associated proteins. In cardiomyocytes, MMP-2 
degrades the inhibitor of kappa B-alpha and MMP-9 tar-
gets mitochondrial citrate synthase and connexin 43 [19, 
20, 76, 121]. MMP-7 has also been proven to degrade con-
nexin 43 in MI, but in the cytosol rather than in mitochon-
dria [72]. In the cytosol, also MMP-2 targets glycogen 
synthase kinase (GSK)-3β under oxidative stress, thereby 
increasing its kinase activity [61].

Expression of MMPs in human tissues

The human genome possesses 24 MMP genes, of which two 
genes encode an identical MMP-23 protein leading to 23 
different MMPs. The Genotype-Tissue Expression (GTEx) 
project provides publically available, tissue-specific gene 
expression data from 54 tissue sites across nearly 1000 
individuals [39]. For LV tissue samples, 432 donors were 
available, whereas for coronary artery tissue only 240 donors 
were included. The age range of the donors was 20–70 years. 
Unfortunately, GTEx does not report the cause of death for 
each donor individually. However, the majority of donors 
died of non-cardiac diseases. In Fig. 2a, the gene expression 
of all MMPs is plotted for LV and coronary tissue. Here, 
MMP-2, -14 and -19 are the highest expressed MMPs in 
coronary arteries and MMP-2, -14 and -15 in LV tissue. 
However, most MMPs are expressed at a low level in non-
diseased tissue. Moreover, the recently published single-cell 
sequencing dataset HeartCellAtlas provides information 
about MMP expression in healthy human cardiac tissue on 
single-cell level [74]. Here, heart tissue from 14 adult donors 
was processed. In Fig. 2b, MMP gene expression is pre-
sented as heat map for each cell type in LV tissue, indicat-
ing that MMP expression is highly variable in different cell 
types. In non-diseased LV tissue, MMP-2 is predominantly 
expressed by fibroblasts, in line with in vitro studies [11, 
71], while other MMPs like MMP-14, -16 or -24 are almost 
equally expressed by several cell types.

Besides providing gene expression data, the GTEx project 
also built a catalogue of genetic effects on gene expression 
across different tissues and identified genomic variants that 
influence the gene expression, so-called expression quan-
titative trait loci (eQTLs) [39]. Genomic variants such as 
single-nucleotide polymorphisms are capable of altering all 
steps of gene expression in dependency of their genomic 
position, but polymorphisms in transcriptional regulatory 
elements in particular are known to influence the mRNA 
levels. Both, genotype data from whole-genome sequenc-
ing together with RNA-sequencing data were available 
from 386 donors for LV tissue identifying 9642 genes sig-
nificantly regulated by genetic variations (eQLT genes) and 
from 213 donors for coronary artery tissue identifying 6296 
eQTL genes [39]. Out of these identified genes, we listed 
MMP coding genes with at least one genetic variation that 
influences their transcription in LV or coronary artery tis-
sue (Table 1). For example, while 93 eQTLs are described 
for MMP-1 in LV-tissue, none of the variants affect MMP-1 
expression in coronary arteries.

In Fig. 2c, GTEx data for MMP-16 are shown exempla-
rily: RNA-sequencing coverage as well as eQTL data for 
coronary artery tissue are depicted in the upper panel and 
for LV tissue in the lower panel. The MMP-16-eQTLs are 
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indicated as red dots with their p-value on the Y-axis—162 
eQTLs in coronary and 398 eQTLs in LV tissue. The 
RNA-sequencing coverage shows a higher expression of 
MMP-16 in coronary artery tissue (light red) than in LV 
tissue (purple). Furthermore, RNA-sequencing counts cor-
respond well to the exon structure of the MMP-16 gene 
depicted below. Although GTEx shows an association 

between polymorphisms and gene expression level, this 
by itself does not establish clinical relevance. Therefore, 
a reasonable complement are clinical cohort or genome-
wide association studies (GWAS), which may reveal a 
relationship between disease development, progression, 
or outcome, and specific polymorphisms, but usually can-
not examine gene expression in cardiac or coronary tissue.
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MMPs in human cardiovascular diseases

Atherosclerosis and CAD

MMP expression in atherosclerosis and CAD

For more than 20  years, MMPs have been studied in 
human atherosclerotic plaques. In most studies, increased 
abundance of the investigated MMPs, such as MMP-1, 
-2, -3, -7, -8, -9, -12, and -13 was found in vulnerable 
regions of human atherosclerotic plaques as summa-
rized in Fig. 3 [33, 40, 43, 86, 113]. Moreover, some of 
these studies examined not only the presence but also the 
activity of MMPs revealing that the activity of MMP-
1, -2, -3, and -9, measured by in situ zymography, was 
upregulated in the plaques [33]. Interestingly, regions 
with higher MMP activity were prone to plaque rupture 
[33]. Partially conflicting results were reported by Molloy 
et al. In their study, the active levels of MMP-1, -13 and 
-8 were quantified by ELISA, but only the active form of 
MMP-8 was upregulated in plaques, whereas the levels of 
active MMP-1 and MMP-13 were not altered [86]. Higher 
activity of MMP-8 as well as of MMP-9 was confirmed 
in rupture-prone plaques whereas MMP-2 activity was 
increased in fibrous, more stable plaques [111]. Studying 
MMP expression on cellular level revealed that the expres-
sion of MMP-1, -3, -7, -8, -12 and -13 was mostly attrib-
uted to macrophages [1, 33, 40, 80, 86, 113]. In addition, 
MMP-1, -3, and -9 were also detected in smooth muscle 
cells (SMCs) and lymphocytes [33, 127], while MMP-1 
and MMP-10 were co-localized with plaque endothelium 
[33, 87]. In a published single-cell sequencing dataset 
of human arteriosclerotic plaques, MMP-2 and -28 were 

detected as marker genes for a cluster of endothelial cells 
representing a type of activated endothelium, which might 
exacerbate inflammation through cell adhesion, neovascu-
larization and leukocyte extravasation. MMP-9 and MMP-
19, on the other hand, were found to be marker genes for 
a cluster of myeloid CD68-positive cells that exhibited a 
foam cell phenotype [24]. Thus, the increased MMP-8 and 
MMP-9 activities detected in plaques could be a reflection 
and subsequent risk factor of dysregulated inflammation.

The association between MMP expression or activ-
ity with plaque instability has been investigated in several 
studies, the results are summarized in Fig. 3. Among them, 
the correlation of increased MMP-9 expression or activ-
ity with an unstable plaque phenotype has been repeatedly 
described [43, 75, 99], and increased MMP-8 expression 
has also been associated with an unstable plaque phenotype 
[99, 111]. Additionally, MMP-12 has been associated with 
symptomatic atherosclerosis [80]. The authors suggested 
that MMP-12 activity influences plaque progression through 
elastin degradation and macrophage invasion. In contrast, 
more contradictory results have been reported for MMP-2: 
while Heo et al. associated high MMP-2 expression with cap 
rupture, intra-plaque haemorrhage, and a thin fibrous cap 
[43], Sluijter et al. found increased MMP-2 activity in stable 
lesions associated with the presence of SMCs and a fibrous 
phenotype [111]. In a third study examining MMP-2 activ-
ity in plaques, as with MMP-1 and MMP-3, no differences 
were found between symptomatic and asymptomatic patients 
[75]. Since molecular study of human plaques is limited by 
their low availability, many studies investigate the influ-
ence of MMPs on plaque stability in atherosclerosis mouse 
models. Here, the accumulation of SMCs in the cap of the 
arteriosclerotic lesions was frequently investigated, as it has 
an impact on plaque stability: it was shown, that the pres-
ence of MMP-2, -3 and -9 resulted in more SMCs in plaque 
lesions, indicating more stable plaques and a beneficial role 
of these MMPs [59, 67]. The opposite effect, thus the knock-
out leading to an increase in SMCs and consequently higher 
plaque stability, was shown for MMP-7 and MMP-12 [59]. 
Additionally, MMP-7 promoted vascular SMC apoptosis, 
which could affect plaque stability [136]. This detrimental 
role in plaque stability, was also shown for MMP-14. Its 
upregulation in macrophages of ApoE-deficient mice was 
accompanied by slight decrease in vascular SMC content 
of the lesions [25]. Another indicator of plaque stability is 
a high collagen content. In this regard, MMP-deficiency 
appears to be beneficial. In ApoE-deficient mice, knock-out 
of MMP-8 as well as MMP-13 resulted in increased amounts 
of collagen in lesions or the intima [68]. Also in another 
study MMP-13-deficiency lead to an increased collagen 
amount in plaques, indicating a more stable phenotype, 
while it was not shown to participate in plaque formation 
[22]. Although differences in collagen content were not 

Fig. 2  Gene expression of MMPs in human tissue. (a) Tissue-specific 
gene expression data as transcripts per million (TPM) from the GTEx 
project are plotted as heat map [39]. The expression of all human 
MMPs is compared between coronary artery and left ventricle. Since 
presumably non-diseased tissue-sites were sampled, MMP expression 
is relatively low. (b) Gene expression of all MMPs of different left-
ventricular cell types from the single-cell sequencing dataset Heart-
CellAtlas is plotted as heat map [74]. (c) Since MMP-16 is the only 
MMP in the GTEx database that has eQTLS in both, LV and coro-
nary artery tissue, this example was selected to show how to obtain 
and depict information from the GTEx database. Using GTEx data, 
expression quantitative trait loci (eQTLs) and RNA-seq data are plot-
ted using the integrative genomics viewer (IGV) for the MMP-16 
gene coded at chromosome 8 (red arrow). eQTLs, (red dots) are plot-
ted for coronary artery (upper panel) and left ventricular tissue (lower 
panel) with the p-value (−  log10) of eQTLs plotted on the Y-axis. 
Additionally, RNA-sequencing coverage from an individual sample is 
plotted for coronary artery (upper panel, light red) and left ventricular 
tissue (lower panel, purple) as histogram. The collapsed gene model 
of MMP-16 is depicted below the RNA-sequencing coverage showing 
exon and intron structure of the gene. Data source: GTEx Analysis 
Release V8 [39] (dbGaP Accession phs000424.v8.p2) on 19.04.2021 
created with GTEx IGV Browser [103, 119]

◂
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found in MMP-12-deficiency, its absence protected against 
elastin degradation, also indicating more stable plaques [78].

In addition to examining MMP activity and expression in 
atherosclerotic plaques, several studies determined serum 

or plasma levels of MMPs and correlated them with plaque 
burden, plaque development, or outcome (Fig. 3). Thus, 
the levels of MMP-1, -3, -7, -10 and -12 were increased in 
patients with carotid atherosclerosis [1, 47, 94]. Moreover, 

Table 1  List of MMP genes 
with at least one significant 
cis-eQTL in left ventricular or 
coronary artery tissue according 
to the GTEx data source and 
their respective numbers of 
eQTLs

a eQTL genes are genes with at least one significant cis-eQTL acting upon them. Data source: GTEx Analy-
sis Release V8 (dbGaP Accession phs000424.v8.p2) on 19.04.2021 [39]

Left ventricle Coronary artery

Total samples with donor genotype 386 213
Number of significant eQTL  genesa 9642 6296
Gene symbol Gencode Id Numbers of eQTLs
MMP-1 ENSG00000196611.4 93 –
MMP-7 ENSG00000137673.8 – 3
MMP-11 ENSG00000099953.9 206 –
MMP-16 ENSG00000156103.15 398 162
MMP-17 ENSG00000198598.6 29 –
MMP-21 ENSG00000154485.4 – 4
MMP-23A ENSG00000215914.4 20 3
MMP-25 ENSG00000008516.16 27 –
MMP-28 ENSG00000271447.5 5 –

Fig. 3  Matrix metalloprotein-
ases in atherosclerosis and 
myocardial infarction. Various 
matrix metalloproteinases 
(MMPs) are increased in 
atheriosclerotic plaques and 
are involved in plaque stability. 
Additionally, circulating levels 
of some MMPs are increased 
in atherosclerosis and myocar-
dial infarction (MI). The boxes 
show MMPs and respective 
single-nucleotide polymor-
phisms, which are shown to be 
associated with atherosclerosis / 
coronary artery disease (CAD) 
or MI in at least one study
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the levels of MMP-1, -3, and -12 were significantly posi-
tively correlated with cardiovascular and cerebrovascular 
events in patients with carotid atherosclerosis [47]. In case 
of MMP-12, this was confirmed in another study [80] and 
for MMP-1 and MMP-3 additional studies have associated 
their circulating levels with the presence of atherosclerotic 
lesions [7] or MMP-1 levels with total plaque burden [69].

To assess a relationship between MMPs and plaque 
development, a number of studies investigated intima-media 
thickness (IMT) and circulating MMP levels. The plasma 
levels of MMP-1, -3 and -7 were elevated in a random cohort 
of participants with high IMT values compared with a ran-
dom cohort with low IMT, while MMP-2, -8 and -9 were not 
increased in the same study [35]. This result was confirmed 
for MMP-9 in other studies in which circulating levels were 
not associated with increased IMT [7, 94]. However, contra-
dictory results have been reported for MMP-1 and MMP-3 
levels, with no IMT association in patients with dyslipidemia 
or cardiovascular risk factors [7, 94]. Levels of circulating 
MMP-9 were significantly higher in patients with a fatal 
cardiovascular event during follow-up than in survivors 
[10]. In contrast, MMP-12 plasma levels were associated 
with IMT progression in patients at high risk of CVD [80]. 
Thus, multiple studies indicate altered circulating levels of 
MMPs in arteriosclerosis and CAD. However, the results for 
specific MMPs appear contradictory which indicate study, 
disease and cohort specific contextuality. It also highlights 
challenges to draw conclusions when the pathophysiological 
mechanisms underlying the changes are incompletely eluci-
dated. This impression is further reinforced by the different 
intra- and extracellular functions of MMPs.

Genetic polymorphisms of clinical relevance

As described above, polymorphisms within the promotor 
region or even in the coding sequence of MMP genes can 
affect their gene expression. Thus, associations between 
polymorphisms and CAD were investigated in a number of 
studies.

The 2G-allele of the MMP-1 polymorphism rs1799750 
(-1607 1G/2G) was associated with the presence of femoral 
plaques, but not carotid plaques, in participants with mainly 
non-severe stenotic plaques [97]. For MMP-3 it has been 
shown that the polymorphism rs3025058 (-1612 5A/6A) 
affects the MMP-3 promoter activity thereby regulating the 
MMP-3 expression [141]. While, the 6A-allele was asso-
ciated with reduced MMP-3 expression and linked to the 
progression of atherosclerosis and CAD [51, 110, 140–142], 
it is suggested that the 5A allele is beneficial in atheroscle-
rosis. Consequently, as MMP-3 is an anti-adipogenic fac-
tor, these studies propose that therapy of CAD in 6A allele 
carriers should focus on intense lipid-lowering programs. 
Nevertheless, a potential link between the polymorphisms, 

MMP-3 and CAD is more intricate—a meta-analysis of 
multiple studies of rs3025058 found that European partici-
pants carrying the 5A allele had a reduced, but East Asian 
participants with the 5A allele had an increased risk of 
developing MI [64]. In another study, specific combinations 
of the MMP-1 polymorphism rs1799750 and the MMP-3 
polymorphism rs3025058 (2G/1G&6A/6A, 2G/1G&6A/5A, 
2G/1G&5A/5A, 1G/1G&5A/5A) were associated with CAD 
compared to 2G/2G&6A/6A genotype in a univariate analy-
sis [46]. Contrarily, 2G/2G genotype in combination with 
6A/6A genotype was found to predict an increased risk of 
internal carotid artery stenosis and the 6A/6A genotype 
alone was an independent risk factor of carotid stenosis [38].

The polymorphism rs11568818 in the MMP-7 promotor 
region (-181 A/G) has been reported to play an important 
role in the development of vulnerable plaques. The fre-
quency of A/G and G/G genotypes was significantly higher 
in patients with vulnerable plaques, and rs11568818 was 
also associated with vulnerable plaques independently of 
other factors [48]. In other studies, the same genotypes were 
more prevalent in femoral but not in carotid plaques [97], 
and G-allele carriers were shown to have a smaller coronary 
artery luminal diameter [60].

Two polymorphisms in the MMP-8 promotor, rs11225395 
(-799 C/T) and rs1320632 (-381 A/G) were analysed in the 
context of carotid plaques. Thereby, the -381G allele resulted 
in higher mRNA expression of MMP-8 in the plaque. How-
ever, this was associated with a higher incidence of carotid 
atherosclerosis only in female patients, while MI suscepti-
bility or plaque stability was not assessed in this study [26].

The MMP-9 polymorphism rs17576 (R279Q A/G in 
exon 6) was associated with the presence of plaques in 
femoral and carotid arteries in male patients [97], while 
in another study rs17576 was associated with MI but not 
with CAD [46]. In a large meta-analysis involving more 
than 10,000 CAD patients ethnic differences in associa-
tion with CAD were found for the MMP-9 polymorphism 
rs3918242 (-1562 C/T): while East Asian T-allele carriers 
had an increased risk of CAD, no significant difference was 
found in Western populations [132]. Still, in some of the 
included studies with Western participants, T-allele carri-
ers were found to have an increased risk of cardiac events 
during CAD [93] or an increased risk of developing coro-
nary artery stenosis [88]. In addition, C/T and T/T geno-
types were significantly associated with the mean area of 
complicated plaques, and the genotype was an independ-
ent predictor of complicated lesion area after adjustment in 
patients ≥ 53 years of age [101].

Associations between polymorphisms of other MMPs and 
CAD have rarely been investigated. In a Chinese cohort, 
an association was found between the MMP-2 polymor-
phism rs2285053 (-735 C/T) and the formation of vulner-
able plaques in the carotid artery, with the T/T genotype 
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appearing to be protective and overrepresented in cases 
with stable plaques [128]. The MMP-12 polymorphism 
rs2276109 (-82 A/G) was associated with the occurrence of 
femoral plaques in women but not in men [97]. The MMP-
13 polymorphism rs2252070 (-77 A/G) showed a signifi-
cant correlation to fibrous plaques in the abdominal aorta in 
young black male participants [143].

Myocardial infarction and heart failure

MMP expression in the context of MI

Cardiac tissue samples of patients suffering from MI are 
rarely available. Therefore, most studies investigating MMP 
expression in the context of MI focus on circulating and 
plasma levels of MMPs to investigate MMPs as predictors 
for LV remodelling and outcome, which are summarized 
in Fig. 3.

In two studies, plasma levels of MMP-2 were elevated in 
patients with acute MI compared to controls with CAD [62, 
70]. In another study, MMP-2 levels were not found to be 
elevated in patients with acute MI compared with control 
subjects with stable CHD, yet the control group consist-
ing of 15 participants was very small compared with the 
other studies [95]. Webb et al. even reported downregulated 
MMP-2 levels after MI compared to age-matched healthy 
controls [133]. Interestingly, Squire et al. demonstrated 
higher MMP-2 plasma levels in inferior compared to ante-
rior MI, which was not considered in the other studies [112]. 
Several studies reported on elevated MMP-9 levels after MI 
[55, 62, 95, 133]. Additionally, Webb et al. reported on ele-
vated MMP-8 levels after MI, while MMP-7 was not altered 
compared to age-matched healthy controls [133]. MMP-12 
plasma levels were elevated in patients with MI with ST 
elevation compared to patients with stable angina pectoris 
as well as healthy controls [129].

Several studies not only examined changes in plasma lev-
els but also associated them with outcome after MI. Nilsson 
et al. reported that circulating MMP-2 levels 0–12 h after MI 
were negatively correlated with LV function and positively 
correlated with infarct size at 4 months of follow-up [91]. 
Contrarily, Squire et al. reported on a significant inverse cor-
relation between circulating MMP-2 levels and LV volume, 
while MMP-9 positively correlated with LV volume [112]. 
Another study demonstrated an association between circulat-
ing MMP-2 and MMP-9 activity after MI and increased LV 
end-diastolic and systolic volumes after a follow-up period 
of 6 months [84]. Also in mouse models of MI, several stud-
ies showed that the deficiency of MMP-2 as well as MMP-9 
protected mice from cardiac rupture, accompanied by attenu-
ated LV dilation and less macrophage infiltration [23, 27, 
42, 45, 83]. Contrarily, a deficiency of MMP-12 or MMP-28 
aggravated cardiac function and reduced survival due to an 

increase in cardiac rupture post-MI in mice. The improved 
survival of wildtype compared to MMP-12-deficient mice 
was attributed to higher expression levels of MMP-12 pro-
duced by  Ly6Clow macrophages possibly through promoting 
wound healing and reducing neutrophil infiltration [65, 79]. 
Ventricular wall rupture in MMP-28-deficient mice resulted 
from a defective inflammatory response and insufficient scar 
formation indicated by reduced mRNA expression of pro-
inflammatory and pro-fibrotic genes [79]. In human, elevated 
MMP-3 plasma levels were determined in the course of 
acute MI and were associated with reduced ejection fraction, 
indicating worsened LV dysfunction, recurrent acute MI and 
an increased risk of death [63]. In line with this, Cavusoglu 
et al. found that plasma MMP-3 levels were an independent 
predictor for MI until 5 years of follow-up [14]. An associa-
tion between plasma level and clinical outcome was also 
reported for other MMPs. Persistently elevated MMP-9 lev-
els 5 days after MI were accompanied by a threefold end-
diastolic volume increase at day 28 [133]. In another study, 
maximal MMP-9 levels were predictive for lower LV ejec-
tion fraction at admission and for greater changes in LV end-
diastolic volume between admission and follow-up, while 
high MMP-9 levels during follow-up period were associated 
with relative preservation of LV function [62]. In contrast 
to these studies, Jefferis et al. only found a univariate asso-
ciation of MMP-9 serum levels with MI and stroke, while 
those were not an independent risk marker [55]. Accord-
ingly, baseline levels of MMP-2, -8 and -9 were positively 
associated with cardiovascular death or hospitalization for 
heart failure by a univariate analysis, while only MMP-8 
baseline levels were an independent predictor of LV remod-
elling and cardiovascular outcome after MI [29].

A more newly developed method—single-nuclei 
sequencing—allows to study gene expression at the cel-
lular level even from frozen tissue and therefore improves 
the opportunities to study the expression of MMPs in the 
context of MI. Recently, one such dataset was published 
that examined cellular gene expression from more than 
20 hearts, including 4 non-transplanted donor hearts and 
samples of necrotic areas from 12 patients with acute MI 
[66]. Samples from this infarct zone were collected from 
all patients at various time points (2–45 days) after the 
onset of clinical symptoms, before the patients received an 
artificial heart or an LV assist device. Using the publicly 
available dataset, MMP-expression can be compared in 
each cell type between the control tissue and the infarct 
zone (Fig. 4). Note that there are significantly fewer nuclei 
in the infarct zone than in the control tissue and that the 
proportions of cell types diverge greatly between these 
groups. For example, in the control tissue 45% of the cells 
are cardiomyocytes, whereas in the infarct tissue only 15% 
of the cells are cardiomyocytes as shown in Fig. 4 [66]. 
This might be an explanation, why cardiomyocytes showed 
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no differences in MMP expression in the infarct zone after 
MI, while expression of MMP-14, -16, -19, -23B and -28 
was increased in other cell types. Contrarily, MMP-24 
expression was downregulated in most cell types. Overall, 
only few MMPs were differentially regulated after MI or 
were below the detection limits, which are relatively high 
in single-nuclei sequencing approaches [66]. However, 
it should be noted that this analysis is based on mRNA 
levels. Since MMPs are enzymes, a very small amount of 
activated protein in stressed cells can have considerable 
effects, so mRNA levels alone are not sufficient to deter-
mine the importance of MMPs in MI.

Genetic polymorphisms of clinical relevance

Several studies investigated the relationship between dif-
ferent MMP polymorphisms and MI or heart failure, sum-
marized in Fig. 3. The MMP-1 polymorphism rs1799750 
(1G/2G) is often related to MI and cardiovascular death. 
In a small study with 42 patients, participants with 2G/2G 
genotype had an increased risk for LV remodelling after MI 
compared with other genotypes [82] and were associated 
with an increase in QRS widening rate [92]. In contrast, it 
is described that the 2G polymorphism is related to higher 
transcription rates of MMP-1 in fibroblasts [108], which 

Fig. 4  MMP expression on 
single-cell level in the infarct 
zone after myocardial infarction 
in human hearts [66]. Average 
gene expression was calculated 
and compared between controls 
and ischaemic hearts for each 
cell type and plotted as heat 
map. Differential gene expres-
sion between control and infarct 
zone was calculated with the 
FindMarker function of Seurat 
(* = adjusted p-value < 0.05). 
Cell populations in the control 
as well as in the infarct tissue 
were plotted as pie charts. Note 
that adipocytes, neuronal and 
cycling cells were excluded 
from this analysis
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was shown to lead to substantially reduced heart failure-
related mortality [125]. However, in heart failure patients, 
an ischemic etiology with previous MI and regional LV dys-
function was more frequent in MMP-1 2G allele carriers in 
the same study [125]. Other studies did not find differences 
in distribution of 1G/2G genotypes in patients with MI his-
tory or acute MI and control group [37, 105]. Additionally, 
the polymorphism was not associated with the combined 
endpoint in a Caucasian cohort study [98]. However, in this 
study other MMP-1 polymorphisms rs1144393 (-519 A/G) 
and rs475007 (-422 A/T) showed significant association 
with combined endpoint after MI [98].

The AA genotype of the polymorphism rs243866 
(-1575 G/A) in the promotor region of MMP-2 was associ-
ated with developing MI in a Mexican population and more 
frequent in patients with MI [100]. However, outcome after 
MI was not associated with rs243866 in another study [98]. 
For another polymorphism in the MMP-2-promotor, 
rs2285053 (-735 C/T), the frequency of the TT genotype was 
significantly lower in controls than in MI-patients compared 
with the CC genotype in a Turkish population [4]. Still, this 
could not be confirmed in another study [100]. Also for other 
MMP-2 polymorphisms rs243865 (-1306 C/T) and rs243864 
(-790 G/T) associations with MI or heart failure were not 
detected [4, 46, 85, 92, 100].

The polymorphism rs3025058 in the promotor region of 
MMP-3 (-612 5A/6A) was associated with MI in several 
studies. Thereby, the 5A/5A genotype was significantly more 
frequent in patients with acute MI than in controls and logis-
tic regression analysis indicated that the 5A allele is an inde-
pendent risk factor for the development of MI [37]. Another 
study showed similarly that the prevalence of the 5A allele 
was significantly more frequent in patients with MI than in 
controls and additionally an independent risk factor for acute 
MI [117]. Moreover, the 5A/5A genotype was associated 
with cardiac mortality in patients with non-ischemic heart 
failure [85]. In contrast, no differences in the distribution of 
the polymorphism between the MI group and controls were 
observed in a Mexican population [105] and it was described 
as being protective against QRS widening [92] suggesting 
reduced cardiac remodelling.

Only one study reported on significant differences in 
allele frequency in rs11568819 (-153 C/T) of MMP-7 in MI 
patients versus controls [5], whereas others reported on simi-
lar frequencies in rs11568819 [100] as well as rs115688198 
(-181 A/G) [98, 100].

Combined MMP-9 polymorphisms rs3918242 
(-1562 C/T) and rs17576 (R279Q A/G in exon 6) were asso-
ciated with an increased risk of MI in a Caucasian study 
cohort [46]. Thereby, the CT/RQ and TT/QQ genotype were 
significantly associated with MI incidence [46]. Both poly-
morphisms were investigated independently in other studies 
[85, 92, 98, 105, 125, 130]: here, rs17576 was not associated 

with MI [130]. For the polymorphism rs3918242, the T/T 
genotype was more frequent in the MI group than in controls 
and additionally the C/T and T/T genotype were identified as 
independent risk factors for MI [130]. This was confirmed 
in a Mexican cohort, where C/T and T/T genotypes were 
associated with increased risk of developing MI compared 
to C/C genotype [105]. Furthermore, the T allele was an 
independent predictor of cardiac mortality in heart failure 
patients [85] and the T/T genotype was reported to have a 
trend to affect disease progression and long-term survival 
after MI [98]. In contrast, rs3918242 was not associated with 
QRS widening rate in patients with heart failure [92] and the 
outcome in Brazilian heart failure patients [125].

In one study analysing the MMP-12 polymorphism 
rs2276109 (-82 A/G), carriers of the AG or GG variants 
showed an increased risk of a higher number of occlusions 
in their coronary arteries [100]. Still, no associations were 
found with LV dysfunction and heart failure [92, 98]. For the 
MMP-13 polymorphism rs11225490 (+92 C/T) an associa-
tion with combined endpoint and a worse outcome after MI 
for CC carriers was shown [98].

Inhibitors of MMPs as potential new 
therapeutics

As described in the previous sections, higher levels or activ-
ity of MMPs are often associated with cardiac diseases and 
are thus may represent a potential treatment option. The 
early MMP inhibitors were all broad-spectrum inhibitors, 
usually targeting the catalytic  Zn2+ ion [30, 135]. These 
have been tested in clinical trials for the treatment of vari-
ous cancers, but have all failed due to side effects that are 
likely attributable to the inhibitors’ lack of specificity [124]. 
Improved broad-spectrum inhibitors of MMPs have also 
been tested in cardiac disease in preclinical trials in in-vivo 
animal models and in a few cases of patients, which will 
reviewed in the following section.

In an atherosclerosis model in mice, the MMP inhibitor 
RS-130830 aggravated plaque formation and stability [58]. 
Treatment of LDL receptor- or apolipoprotein E (ApoE)-
deficient mice with the non-selective MMP inhibitor CGS 
27023A had no beneficial response on plaque development 
[102]. Similar results were observed by treating ApoE-
deficient mice with doxycycline, another broad-spectrum 
inhibitor preferentially inhibiting MMP-2 and MMP-9 [81]. 
The MIDAS prospective, double-blind placebo pilot study 
evaluated the effect of subantimicrobial doxycycline in 
angina patients. Since this study was likely underpowered, 
it failed to detect a difference in the composite endpoint, 
including fatal or nonfatal MI. However, it did show that 
treated patients had lower levels of C-reactive protein and 
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interleukin-6, suggesting a beneficial effect on the inflam-
matory response [12].

The effects of doxycycline on remodelling after MI have 
been investigated in several animal studies. In rats, early 
MMP inhibition by doxycycline after MI lead to a preserva-
tion of LV structure and passive function and also late and 
long-term administration (2–7 days post-MI) improved LV 
structure after MI [34, 126]. In line with this, Camp et al. 
showed that continuous administration of doxycycline from 
2 days before MI to 4 weeks after MI decreased infarct size, 
improved cardiac fibrosis and cardiac conductance in rats 
[13]. Only one study revealed contradictory results: even 
if doxycycline treatment decreased MMP-2 and -9 activity 
after MI it did not prevent LV remodelling or dysfunction 
[118]. The phase II trial TIPTOP analysed doxycycline in 
addition to standard therapy in patients with acute STEMI 
and LV dysfunction. Doxycycline treatment significantly 
reduced LV remodelling and the rate of death, MI, conges-
tive heart failure and stroke in a 6 months follow-up [15]. 
Another broad-spectrum MMP inhibitor GM6001/ilomas-
tat reduced infarct size when administered either before the 
onset of ischemia or the onset of reperfusion in rats and mice 
[8, 9]. Despite the positive results of preclinical studies and 
small clinical trials for the treatment of atherosclerosis or to 
improve remodelling after MI, non-selective MMP inhibitors 
are still not approved for the clinic due to the lack of large 
phase III trials.

To overcome challenges with broad-spectrum MMP 
inhibitors, more selective MMP inhibitors were developed. 
The inhibitor CP-471,474 selectively targets MMP-2, -3, 
-9 and -13 rather than MMP-1. After experimental MI, 
CP-471,474 did improve cardiac function in mice and rabbits 
[73, 106]. In pigs, PGE-530742 (renamed to PG-116800, 
inhibiting MMP-2, -3, -8, -9, -13, and -14, sparing MMP-1 
and -7) as well as PD166793 (inhibiting MMP-2, -3 and 
-13 sparing MMP-1, -7 and -9) attenuated LV remodelling 
after MI [89, 139]. In case of PD166793, even infarct size 
was decreased 2 weeks after MI [89]. Oral administration of 
PG-116800 was even tested in the phase II double-blinded 
PREMIER trial in patients suffering from MI. Yet, the inhib-
itor had no beneficial effects on LV remodelling or outcome 
after MI in patients. This could be explained by the low 
concentrations used, which were below the reported effec-
tive dose. But still, adverse events like arthralgia and joint 
stiffness were increased [49].

Besides the selective MMP inhibitors targeting not all 
but multiple MMPs, several pharmaceutical substances exist 
that target only one MMP. However, specific inhibition of 
MMPs in cardiac conditions was not yet as successful as 
with broad-spectrum and selective inhibitors. Inhibition of 
MMP-9 early after inducing experimental MI in mice aggra-
vated cardiac function, because immune responses were 
prolonged, contradicting results gained from studies with 

MMP-9 knock-out mice [52]. The highly selective MMP-12 
inhibitor RXP470.1 exacerbated LV dysfunction, in line with 
the fact that MMP-12 was already described to be protective 
after MI [53]. In atherosclerosis, however, that same MMP-
12 inhibitor was beneficial, confirming disease-specific 
effects of MMPs [57]. Pharmacological inhibition of MMP-2 
with the selective inhibitor TISAM increased survival after 
experimental MI in mice compared to non-treated mice. The 
survival rate was similar to that of MMP-2 knock-out mice 
with only approximately 20% mortality compared to 50% 
mortality in untreated mice [83]. However, data included in 
the publication show that other MMPs are also inhibited by 
TISAM, albeit with slightly lower binding affinity, so one 
might question whether TISAM is truly a specific inhibitor.

Conclusion and future perspectives

Analyses of published and publically available data support 
MMPs as promising targets in the treatment of atheroscle-
rosis and MI. Nevertheless, multiple challenges exist in 
regard to the incomplete knowledge of cellular sources as 
well as tissue-specific and systemic consequences of distinct 
MMP activities in the context of atherosclerosis and MI. 
For research in this field, new techniques such as single-
cell or single-nucleus sequencing offer new opportunities 
to study the expression profiles of MMPs at a cellular level 
in healthy or diseased human tissues. Since the activity of 
MMPs is strongly regulated at the protein level, analysis of 
MMPs only at the mRNA level may never be sufficient, but 
these new data may complement previous research. As the 
number of available online datasets continues to increase, 
this review also shows how these data can be processed and 
used to address the specific question of MMP regulation in 
cardiac disease. In addition, the GTEx database provides 
the opportunity to gain insights into the association between 
polymorphisms and gene expression. Furthermore, clinical 
studies demonstrated the correlation between polymorphism 
and disease burden in many cases. Further insights into the 
relationship between polymorphisms, altered MMP expres-
sion, and clinical outcome may be an important approach to 
more individualized cardiovascular disease therapy in the 
near future. Initial attempts to pharmacologically inhibit 
MMPs have shown promising results in animal models of 
atherosclerosis and MI as well as in first human clinical tri-
als, although larger clinical studies are needed in the future.
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