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Abstract
A modern-day physician is faced with a vast abundance of clinical and scientific data, by far surpassing the capabilities of 
the human mind. Until the last decade, advances in data availability have not been accompanied by analytical approaches. 
The advent of machine learning (ML) algorithms might improve the interpretation of complex data and should help to 
translate the near endless amount of data into clinical decision-making. ML has become part of our everyday practice and 
might even further change modern-day medicine. It is important to acknowledge the role of ML in prognosis prediction of 
cardiovascular disease. The present review aims on preparing the modern physician and researcher for the challenges that 
ML might bring, explaining basic concepts but also caveats that might arise when using these methods. Further, a brief 
overview of current established classical and emerging concepts of ML disease prediction in the fields of omics, imaging 
and basic science is presented.
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Introduction

A modern-day physician is confronted with a staggering 
increase of health care data created every day, surpassing 
the computational capabilities of the human brain by far 
[63]. While traditionally it has been the art of physicians 

to incorporate available data into clinical decision-making, 
this task seems to be unsolvable in the reality of the digital 
century. There is a broad consensus that artificial intelli-
gence (AI) or machine learning (ML), often mistakenly used 
interchangeably [66], might pose a solution to this pressing 
issue. At the same time ML is seen as something unexplain-
able and unreachable by many health care workers. Soon, 
almost every physician will be using ML technology either 
consciously or weaved in the backend of medical software 
[76]. ML will likely aid us in diagnostic and management 
decisions, especially those that incorporate large digitized 
data [63]. In line with this, it is important for physicians and 
scientists alike to have a basic understanding of ML, to allow 
for a safe and conscious use in daily practice. The first part 
of this review will focus on providing a definition of ML 
and its capabilities, as well as limitations, while the second 
part will bring closer modern-day applications in cardiology 
including basic and translational science.

Basic concepts of machine learning

The term ML was coined in 1959 by Arthur Samuel and 
refers to the idea that computer algorithms will learn and 
adjust and thereby improve automatically within their given 

Karl-Patrik Kresoja, Matthias Unterhuber, Holger Thiele and 
Philipp Lurz should be considered as equal first and senior authors.

 *	 Holger Thiele 
	 holger.thiele@medizin.uni-leipzig.de

 *	 Philipp Lurz 
	 Philipp.Lurz@gmx.de

1	 Department of Internal Medicine/Cardiology, Heart 
Center Leipzig at University of Leipzig, Struempellstr. 39, 
04289 Leipzig, Germany

2	 Leipzig Heart Institute, Leipzig Heart Science at Heart 
Center Leipzig, Leipzig, Germany

3	 Department of Cardiology, University Hospital Leipzig, 
Leipzig, Germany

4	 Clinic for Cardiology and Pneumology, University Medicine 
Göttingen, Göttingen, Germany

5	 German Cardiovascular Research Center (DZHK), Partner 
Site Göttingen, Göttingen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00395-023-00982-7&domain=pdf
http://orcid.org/0000-0002-8616-6751


	 Basic Research in Cardiology (2023) 118:10

1 3

10  Page 2 of 12

boundaries through the use of data [67]. ML is considered 
to be a subset of AI and is therefore not an interchangeable 
term, and using it as synonym should be avoided. While 
ML and AI can clearly be distinguished from each other, 
it is quite hard to do so with conventional statistical meth-
ods [13]. Methods like hierarchical- or k-means clustering 
[31, 70] or linear regression [48] are increasingly termed as 
ML approaches. In fact, it is not easy to draw a clear line 
between conventional statistical approaches and ML [13]. 
In the absence of a uniform discrimination, both approaches 
can possibly be split according to their purpose: While con-
ventional statistical models try to inform on relationships 
between variables in a mostly linear manner, ML is mainly 
focused on providing optimal predictions—often sacrificing 
interpretability [13]. There is no clear line to draw to distin-
guish conventional statistical models and ML. ML models 
for example can provide various degrees of interpretability 
ranging from the highly interpretable regularized regression 
method [56] to impenetrable neural networks, but in gen-
eral, ML models will sacrifice interpretability for predic-
tive power. In practice, this loss of interpretability is hard 
to accept, as the human mind is mainly used to understand 
linear associations between variables [30]. The interest in 
clinical ML and AI applications is increasing, yet it is impor-
tant to keep in mind that there currently are no randomized 
clinical trials, which have shown that ML guided decision-
making is superior to conventional approaches. However, 
ML represents a new chapter in science which has to be 
addressed, and by adding knowledge of ML methods to the 
toolbox of scientists and clinicians the black box can be 
opened and understood and future trials will determine the 
value of ML in clinical practice [27].

Frequently used machine learning 
approaches

ML models can roughly be split into unsupervised and 
supervised approaches. While unsupervised ML focuses 
on discovering connections among variables, supervised 
approaches aim to achieve the optimal prediction of 
labeled samples (e.g. patients experiencing or not expe-
riencing a defined outcome). Using unsupervised models, 
a classifier learns to infer relationships within the given 
data (e.g. to identify some clusters of patients who may 
carry the same genetic features of risk factors). Therefore, 
unsupervised ML can be of use to find new associations 
and suggest new hypotheses for new study designs, but 
its capacities in terms of predicting future events are lim-
ited. As this review focuses on prognosis prediction, we 
will focus the manuscript on supervised approaches and 
methodical concepts. Examples of unsupervised ML in 
cardiovascular medicine have extensively been reported 
before [25, 27, 32, 40, 44, 51, 63, 69–72].

Linear and logistic regression likely represent the most 
well-known statistical methods that can be referred to as 
ML approaches. They are hindered by a large number of 
assumptions, which are often violated in medical literature 
[22]. These include linearity, normality, homoscedasticity, 
as well as independence of data [82]. When these statisti-
cal assumptions are met, those models tend to perform 
well on training data but might struggle to make accu-
rate predictions in never seen data, especially when linear 
assumptions are violated (Fig. 1). They tend to have low 
bias but high variance. For easier interpretation, a high 

Fig. 1   Examples of difficulties which might occur when choos-
ing unfitting models. The figures represent examples of problems of 
under- (B) and overfitting (C) models. A Shows the example of an 
‘optimal’ model, where an ideal trade-off between variance and bias 
is achieved. B Shows the example of an underfitted model. Albeit the 
data follow a non-linear relationship, a linear fit for the data was cho-
sen. This often happens as linear regression might be preferred as the 
simplest solution to statistical problems, without acknowledging the 

true spread and association of data. C Shows the problem of overfit-
ting, where the model is performing excellent on the training data, but 
struggles to predict unseen (testing) data. The model ‘learns’ the data 
rather than generalizable rules. Using machine learning solutions, 
one is usually rather prone to over- than underfitting, highlighting the 
importance of using external testing data to verify the generalizability 
of the model
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bias is useful to accommodate human associative think-
ing and to discover correlations between independent and 
dependent variables, e.g., a biased model will tend to 
ignore outliers, creating a simple rule “valid for all”. This 
penalizes events with fine-grained influences which are 
unlikely to happen. A model with high variance starts from 
the assumption that relationships are complex and allows 
a model to assume many divergent predicting points. This 
will include more or less outliers for a certain degree, in 
turn it will not create straight lines, losing generalizabil-
ity and interpretability. Further, this approach makes the 
model vulnerable to overfitting.

A possible way to improve the generalizability of a model 
is by performing so called regularized regression, which 
introduces a defined error termed λ. This penalization causes 
the model to perform a little bit worse on the training data 
but improves its prediction capabilities on unseen data [27]. 
The goal is to reach a favorable trade-off between the mod-
els’ decrease in accuracy and improvement in generalizabil-
ity. Lasso regression can further be used to remove variables 
which add little to the overall model, which decreases the 
model’s complexity [15].

Supervised ML algorithms see a rapid increase in medi-
cal sciences as linear algorithms are often not capable to 
fully replicate biological reality [78]. For example, specific 
drug–drug interactions only might occur depending on the 
state of another variable [45]. Traditional statistical methods 
are limited in modeling such interactions, especially when 
considering a larger number of variables. One example are 
decision tree approaches which often can outperform tra-
ditional linear regression analysis on derivation, but due 
care must be given to not overfit models which will result 
in poor performance on validation data [18, 78]. Decision 
tree algorithms such as random forests [80], extreme gradi-
ent boosting or its predecessors adaptive boosting [83] are 
based on simple decision trees. Given a relevant number of 
variables, a normal decision tree can make a perfect pre-
diction on a given dataset but will rather ‘memorize’ the 
shown dataset than learn generally applicable rules-the 
model ‘overfits’ (Fig. 1). The bias of such a model is zero, 
while the variance will be very high. Therefore, the aim in 
every ML decision tree algorithm is to reduce overfitting 
to avoid learning noise instead of generalizable patterns. 
Random forests were one of the first solutions described to 
address this problem. Instead of a very large and powerful 
‘zero bias’ tree, random forests produce many smaller deci-
sion trees with data randomly sampled out and creation of 
random duplicates of the original dataset (‘bootstrapping’). 
Every produced tree could predict a different outcome for 
the same patient. Therefore, random forests do not provide a 
single answer but a ‘vote’, which comes down to the number 
of tree classifiers voting for either result this approach is 
often referred to as ‘bagging’ [11]. A further development 

of decision tree approaches are decision trees leveraging 
boosting methods. Again, ensembles are constructed from 
decision tree models, but unlike random forests, individ-
ual trees are not built on random subsets of data. Boosting 
approaches sequentially put more weight on instances with 
wrong predictions, so they learn from past mistakes. Trees 
are added one at a time to the ensemble and fitted to cor-
rect the prediction errors made by prior models. The latest 
development of boosting algorithms is the extreme gradi-
ent boosting (XGboost) approach recently developed by the 
University of Washington, which does not only outperform 
other decision tree approaches in terms of accuracy but has 
also an eighteen-times faster computing speed than random 
forests [16].

The last supervised ML approach we want to mention is 
deep learning (DL). DL aims to solve complex problems by 
mimicking the organization and functionality of the human 
brain with neural networks [27]. Nodes, which are labeled 
‘neurons’ are arranged in a network layout. The first level of 
neurons feed into a finite number of other nodes called ‘hid-
den layers’ and can be considered as many layers of regres-
sions. When a certain threshold of input is surpassed, a 
neuron in the hidden layer is ‘activated’ and by itself passes 
values further to neurons in the next layer. Like in linear and 
binomial regressions, these thresholds can be triggered by 
different values and follow straight, curved or edged lines. 
This goes on until the final layer is reached which is called 
output layer. DL excels at analyzing imaging data and are 
widely used for applications such as facial recognition or 
image enhancement. The training of DL networks require 
immense computational capacities, making their processing 
speed either very slow or very hardware demanding [27]. 
Reports of use of basic neural networks in cardiology data 
go as far back as to 1995 [6, 61]. Profound introductions into 
DL can be found elsewhere [7, 17, 24, 37, 65].

Table 1 shows a summary of advantages and drawbacks 
of the presented approaches to supervised ML.

Limitations of machine learning

ML is not the panacea for every unsolved and yet to come 
problem in medical sciences. As any other statistical model, 
ML models are limited by the quality and magnitude of sig-
nal in the dataset from which it is trained. The observation of 
an event is assumed to be the result of many causal factors. 
Theoretically, by knowing every predisposing factor and 
causal variable, an event could be perfectly predictable. In 
nature, however, adding variables to the equation can lead to 
noise due to measurement errors and methods, further many 
outcomes are associated to ever-changing non-predictable 
environmental factors (e.g., communicable diseases leading 
to infections triggering cardiovascular events). Even with 
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the ‘perfect model’, the prediction can only be as good as 
the true connection between independent and dependent 
variables but in reality the unpredictability of external cues 
makes prediction of ‘all events and outcomes’ impossible 
[27]. So, while models are not able to provide an absolute 
truth, they are very good at providing probabilities.

Another practical problem is the quality of data used to 
train models. While omics analysis provides highly standard-
ized and reproducible data, data from clinical practice might 
often be prone to higher variance alleviating relationships 
between outcome and input variables (e.g., NYHA class 
assessment). Imaging data also seem very standardizable at 
first thought, but there is a broad variety of different stand-
ards with respect to hardware and vendor software, making 
transferal of imaging data with sufficient quality often chal-
lenging. Lastly, there has been a broad discussion on a selec-
tion bias introduced into early established ML approaches 
used for facial image reconstruction due to a lack of diversity 
in the validation cohorts [49]. This emphasizes that more 
effort should be put on validation of established ML mod-
els in independent cohorts, rather than development of new 
approaches that only work well in the region or specific sub-
set where it was developed.

Also of importance is the outcome the model seeks to 
predict. Mortality for example is an excellent outcome to 
predict as it is an absolute and discrete outcome, with an 
undoubtable definition. Other factors that are influenced by 
physiological variance like blood pressure measurements 
are more difficult to predict. Also, outcomes which require 
subjective definition might be challenging. While every 

endpoint adjudication committee will have no difficulties 
agreeing on whether a patient is dead, defining ‘simple’ cate-
gories such as cardiovascular death or heart failure hospitali-
zation might become a point of disagreement. Accordingly, 
a study showed that a ML algorithm struggled to predict 
30-day readmission for heart failure (C-index between 0.59 
and 0.62) despite being fed with over 200 different variables 
accounting for demographics, socioeconomic status, medical 
history, characterization of heart failure (HF), admission and 
discharge medications, vital signs, weights, selected labo-
ratories treatment, and discharge interventions [23]. Other 
studies have added to this demonstrating that ML models 
are better in predicting death than HF hospitalization given 
the same input data [53]. It is further important to keep in 
mind that there are outcomes that can be predicted well, but 
have only limited therapeutic use. In the clinical context, 
prediction should be focused on cases where actionable con-
sequences for individuals arise.

Lastly, there is a disparity between the kind of answer 
provided by ML algorithms and the kind of answer 
required by physicians. Clinicians are expected to make 
a yes or no decision (e.g., initiate treatment or withhold), 
while ML algorithms provide probabilities (e.g., 64.73% 
chance of a patient responding favorably to initiating a 
specific treatment). A practical example can be found in 
everyday lab-charts. For example, high-sensitivity cardiac 
troponin T is usually presented with a cut-off of 14 pg/ml, 
which represents the upper limit of normal for a healthy 
reference population [33]. While for the physician it is 
very clear that a value of 15 pg/ml has a strikingly different 

Table 1   Examples of machine learning approaches

a Interpretability is good for conventional decision tree models but becomes less when using bagging approaches with multiple decision trees 
incorporating votes on decisions

Conventional regression Regularization Decision trees Deep learning| neural networks

    
Examples Linear regression

Logistic regression
Ridge regression
LASSO
Elastic net

Simple decision trees
Bagging
Random forest
Gradient boosting
XGBoost

Convolutional neural networks
recurrent neural networks
long short-term memory networks

Model accuracy on linear data ↑ ↑ ↑ ↑
Model accuracy on non-linear data ↓↓ ↓↓ ↑↑ ↑↑
Model performance on imaging data ↓ ↓ ↓ ↑↑↑
Interpretability ↑↑↑ ↑↑ ↓↓a ↓↓↓
User know-how required ↓  ↔  ↑↑ ↑↑↑
Processing speed ↑ ↑ ↑ ↓↓
Hardware requirements ↓↓ ↓↓ ↓ ↑↑↑
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risk than a value of 1400 pg/ml, guidelines have to provide 
decision-making support and break probabilities down into 
a ‘yes’ or ‘no’. This leads to a loss of valuable information 
and is called improper dichotomization [14, 28]. Dichoto-
mization might become even less appropriate for lab val-
ues like hemoglobin, which might show U-shaped associa-
tion with cardiovascular risk [57]. Therefore, physicians 
should keep in mind that most dichotomizations carry a 
significant loss of information and an informed physician 
will treat patients according to their personalized risk, as 
many already intuitively do [21, 27].

The present use of machine learning 
in cardiovascular medicine

Papers on ML have skyrocketed in the last years with over 
80,000 Pubmed entries referring to either ‘machine learn-
ing’ or ‘artificial intelligence’. Using a miner algorithm 
kindly provided by Quer et al. [63] we displayed current 
uses of ML with respect to the source data used, the spe-
cific disease field investigated as well as the modes of 
ML used (Fig. 2). As shown, atherosclerosis is the main 
domain of ML use. Most of the input data used come from 
imaging like computed tomography (CT)- or magnetic 
resonance imaging (MRI) scans. DL makes up the largest 
fraction of ML models, which again is not surprising as 
they excel at interpreting these kind of imaging data [84]. 
Figure 3 shows a heatmap of the number of papers on ML 
in accordance to the subspeciality as well as input data 
used. Notably, basic science shows only a minor use of 
ML. In basic science understanding associations between 
variables might be more important than establishing strong 
but uninterpretable prediction models, yet there might be 
some promising new ML opportunities in this field dis-
cussed below.

Prognostic value of machine learning 
in omics

The development of high-throughput platforms has left cli-
nicians and scientists with a dilemma. It is now possible to 
analyze thousands of proteins, metabolites, genes, etc. with 
a minimum of material and effort. While statistical solutions 
have significantly developed over the last decade, they still 
have been outpaced by the rapid development seen in labo-
ratory analytical approaches. This held true until the recent 
advent of ML approaches. ML enabled predictive algorithms 
now allow to better model the intricate working of physiol-
ogy and pathophysiology alike [64].

Despite a vast number of established clinical risk scores 
for cardiovascular patients predicting outcomes among 
patients on an individual level remains challenging [38, 62]. 

Fig. 2   Current use of machine learning approaches in accordance 
to publications on Pubmed. Distribution of publications on machine 
learning according to A data types, B diseases and C ML methods 
used. Other includes basic science and congenital heart disease for 

the subspecialty section B and nearest neighbor method, as well as 
Gaussian and Bayesian analysis approaches for the modality section 
C. Data were mined by an algorithm kindly provided by Quer et al. 
[63]

Fig. 3   Heatmap of machine learning use in accordance to subspeci-
ality by input data type. Heat map indicating the number of manu-
scripts with respect to disease and machine learning modality across 
the cardiovascular field. Data were mined by an algorithm kindly pro-
vided by Quer et al. [63]
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The incorporation of biomarkers from large omics panels 
has shown promising results in the prediction of long-term 
mortality (C-index conventional cox regression 0.65 versus 
0.93 for a XGBoost model, net reclassification improvement 
78%) [78]. ML does not only improve long-term predictive 
capabilities but has also shown superiority in short-term pre-
diction of mortality among patients with cardiogenic shock, 
by using biomarkers [15]. Performing advanced and impor-
tantly individualized risk prediction for patients might lead to 
intensified treatment in high-risk patients and therefore tailor 
optimal therapy for patients in dire need for optimized care 
[9]. But not only does ML enable the predictive capabilities of 
large omics data, it might also improve our understanding of 
these. By allowing for modeling of complex interactions, pro-
teins are not forced into linear relationships and interpretative 
approaches like Shap values might be used to acknowledge the 
non-linearity of biological processes, or to identify possible 
novel treatment targets [79].

Amongst omics approaches, genetics represent one of the 
most growing fields in cardiovascular medicine and shows 
huge potential. Due to the goal of understanding pathways in 
disease-causing genetic disorders, ML has gained importance 
and is commonly used in genome-wide association studies 
(GWAS) [1]. ML methods have been successfully applied to 
predict the incidence of hypertension by using polygenic risk 
factors [39, 41, 58], to predict advanced coronary calcium [60], 
inheritable cardiac disease[12] and to predict type II diabetes 
in a multi-ethnic cohort [47]. Of interest, the number of lay-
ers within neural network architectures used in genomics has 
generally been far less than those used for image recognition 
[77], and typically consist of only a few layers [86] with many 
hundreds to thousands of parameters [35].

Another approach where ML might pave the way for car-
diovascular medicine is the so called “liquid biopsy”. Liq-
uid biopsy is a minimally invasive technology for detect-
ing molecular biomarkers of a tumor without an invasive 
biopsy and has been established in oncology [8]. Liquid 
biopsy came up as a non-invasive way to characterize cir-
culating biomarkers of tumor origin. Like in oncology we 
one day maybe will be able to fully characterize cardiovas-
cular diseases such as heart failure, acute myocarditis, or 
coronary artery disease, without the need of further invasive 
testing and the combination of ML methods and multiom-
ics approaches might be the way to achieve this ambitious 
goal [42].

Prognostic value of machine learning 
in imaging

The capabilities in classifying objects in the entertainment 
and leisure sector started to improve with Kaggle compe-
titions [10]. Up until today, image recognition abilities of 

neural networks are the most widespread application of DL 
in clinical practice. ML approaches might especially excel 
when analyzing standardizable two-dimensional images like 
electrocardiogram (ECG) data. For example, using a previ-
ously trained convolutional neural network in a prospective 
designed, non-randomized trial, ML was able to identify the 
occurrence of atrial fibrillation among patients at risk for a 
stroke with an odds ratio of 5.0 (95% confidence interval 
2.3–5.4) [59].

For coronary artery disease (CAD), there is a large num-
ber of established ML algorithms for interpretation of CT 
scans and recently even approaches that aid decision-making 
and interpretation for invasive coronary angiography were 
proposed [54]. ML does not only aid in identifying patients 
with CAD but is also useful in prognosis prediction among 
these patients [2]. Using a mix of readily available clinical 
data and data from coronary artery CT scans Motwani et al. 
were able to show that ML outperforms conventional sta-
tistical models with regards to 5-year mortality prediction 
[55]. A combination of ML methods was presented within 
a prospective study of 1.912 patients with coronary artery 
CT scans, where extracardiac adipose tissue was quantified 
using a fully automated DL approach. Those data together 
with clinical variables, plasma lipid panel measurements, 
risk factors, coronary artery and aortic calcium scoring were 
analyzed by an extreme gradient boosting model and showed 
excellent predictive capability with respect to the occurrence 
of myocardial infarction and cardiac death [20]. Investigat-
ing approaches where different ML methods are combined 
on multiple levels could pave the way for an individualized 
patient risk assessment.

ML algorithms are also increasingly used to automati-
cally interpret echocardiographic images and calculate fac-
tors like left ventricular ejection fraction to ease diagnosis 
of HF in clinical practice and have shown to outperform 
humans [5, 85]. (NCT05140642) These approaches might be 
leveraged to increase the interpretation as well as processing 
speed of lab animal echocardiographic assessment, increas-
ing analysis speed while decreasing the need for additional 
workforce, after a stable workflow has been established.

Prognostic value of machine learning 
in basic research

ML cannot only be used to predict clinical outcome but can 
also be leveraged to predict defined responses, or identify 
patterns previously missed by conventional approaches.

Most modern high-throughput genomics like Hi-C essen-
tially represent a multilabel image classification problem and 
therefore DL approaches are ideal to address this problem. 
Recently, a DL framework called EagleC was presented to 
detect structural variations in human genome data. This 
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algorithm was able to capture a set of fusion genes that are 
missed by whole-genome sequencing and was applied suc-
cessfully to bulk and single-cell genomics in studying struc-
tural variation heterogeneity of primary tumors from Hi-C 
maps [81].

ML might enhance our understanding of biologi-
cal processes when accurately dissecting them in logical 
units. Clerx et al. recently presented elegant ion-channel 
research, where they investigated the effects of mutations 
in the SCN5A gene on clinical phenotypes. New unclassi-
fied variants of SCN5A are regularly found but predicting 
their pathogenicity has proven exceedingly difficult. Clerx 
et al. established a two-step ML model which first aims to 
establish effects from the gene to functional properties (from 
gene to function) and then adds a second step where pre-
dicted functional properties are used to describe a clinical 
phenotype (from function to phenotype). They were able to 
show an improvement in the prediction of functional sodium 
channel properties and outperformed traditional approaches 
with the prediction of clinical phenotypes, but predictive 
performance remained limited [19]. The strength was to split 
the process into a multi-step approach, which is often the 
case in biological reality, but the approach was limited due 
to the imbalance of the available data favoring pathogenic 
mutations. This practical example highlights the importance 
of quality of both the outcome as well as the input data used 
for ML models.

DL has also been described to excel in aiding the analysis 
of cellular imaging. Beneficial use with image classification, 
segmentation, object tracking and augmenting microscopic 
images has been demonstrated. DL for these applications 
is still in its early phase but has shown promising results 
and are positioned to render difficult analyses routine and to 
enable researchers to carry out new, previously impossible 
experiments [52].

Recently, AlphaFold 2, a ML software developed by 
Alphabets DeepMind company, has been acknowledged as 
a milestone in the problem of protein folding [29]. As a 
protein’s physiological function is determined by its three-
dimensional structure, the knowledge of latter is essential 
to understand the biological processes involved [68]. Pro-
tein folding is hard to forecast and while models based on 
simulating quantum mechanics showed promising results, 
calculation of protein folding in large proteins is challenging 
due to the exponential rise in required computational capac-
ity. Fundamentally, protein folding is an imaging challenge. 
It was, therefore, speculated that ML, especially DL, might 
perform very well. In fact, AlphaFold 2 using novel deep 
learning approaches, has altered the field of protein fold-
ing prediction, vastly outperforming all other 145 presented 
approaches at the CASP14 competition (Critical Assess-
ment of Structure Prediction, a bi-annual competition for 
the prediction of protein folding) [73]. AlphaFold 2 as an 

open-source end-to-end user software is expected to have 
a relevant impact on the field of protein folding prediction 
making it more time efficient and accessible for public. How-
ever, it is important to keep in mind that, while encouraging, 
AlphaFold 2 has the limitation that it was trained on the 
protein data bank (PDB), which incorporates many protein 
structures which were observed only during experimental 
conditions, which might not reflect biological reality. There-
fore, while AlphaFold 2 is a masterpiece of ML programing, 
as any other model, it is not protected from the bias of the 
data used to train the model. Ultimately, ML aims at predic-
tion or reflecting reality, with the latter is always difficult to 
define and derive [46].

Lastly, ML can also be used to inform on pathways 
involved in outcomes of interest following steps undertaken 
by specific peptides, all the way up to their origin in the 
genome [79]. Jaganathan et al. successfully trained a DL 
algorithm to predict splicing from pre-mRNA out from a 
genomic sequence to detect noncoding mutations in rare 
genetic diseases, possibly paving the way for a reverse 
engineering of the human genome-protein processing [26]. 
Further, ML was used for designing molecules to modify 
specific targets, but also to influence properties like solu-
bility and bioactivity, raising the level of this former trial 
and error approach to a precision process [75]. In the near 
future, ML approaches might, therefore, allow treatment 
response prediction, assessment of in silico protein interac-
tions, identification of novel drug targets, monitoring and 
predicting response to latter; all of these leading towards 
a patient-tailored precision medicine approach. There are 
already interesting commercially available systems like IBM 
Watson Health’s cancer AI algorithm, an algorithm used for 
recommending treatments for patients with cancer trained on 
simulated cases. However, the algorithm has been shown to 
give erroneous outputs in some real-life cases underlying 
the importance of proper input data and prospective valida-
tion [76].

How to interpret ML applications as clinician

Cardiovascular medicine is well positioned to leverage ML 
methods to facilitate precision medicine approaches by inte-
grating the vast abundance of ‘omics’ and clinical data avail-
able (Fig. 4) [4, 76]. Scientists and clinicians alike often 
reject ML approaches as they argue that they are a ‘black 
box’ and the predictions made by ML are not understandable 
[50]. Yet, in practice we rely on many established scores and 
predictors which we do not truly understand. In fact, most 
scientists and clinicians will acknowledge that they do not 
know the derivation and validation of a large fraction of 
scores they use. While they might be easy to calculate with-
out the knowledge of how they were derived and validated 
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the trust we lay upon them is in fact no lesser a ‘black box’ 
than the trust we may lay upon ML. It is important to keep 
in mind that interpretability might mean different things for 
clinicians, scientists but also patients [36]. Interpretability 
by itself might also have different levels. Van der Schaar 
proposed 3 types to provide interpretability for ML models. 
The first one is to show explanatory patient features. This 
means highlighting what features were considered in the ML 
model and how they were weighted. Gain plots and SHap-
ley Additive exPlanations (SHAP) values provide practical 
example of this application [43]. The second type suggests 
grouping patients according to similarities with regards to 
the predicted outcome, this might allow to identify specific 
high- or low-risk phenotypes. The third type is vastly harder 
to establish as it suggests identifying rules and laws, that 
cause the model to significantly alter a decision and there-
fore reduce the model to the most important decisions. The 
first and second types are already practical reality and used 
in many papers, but while they seem to thoroughly inform on 
the model they might also introduce dangers as they do not 
allow on the causal relationship of outcome and the variables 
of interest. The third type which allows the establishment 

of rules might likely be the most sought-after approach in 
clinical practice, but up until today no valid method exists 
to establish these laws.

To be able to interpret new ML solutions, it is essential 
for physicians to apply structured criteria. In line with this 
the U.S. Food and Drug Administration (FDA), as well as 
the Standards for Reporting of Diagnostic Accuracy Study 
(STARD) have established standard of ‘Good machine 
learning practice’ and STARD-AI guidelines, respectively, 
to allow for a common scientific standard [74]. In line with 
this we provide an overview of questions inspired by Meskó 
et al. [50] that physicians can ask themselves when assessing 
new ML approaches in Table 2.

Outlook

ML poses a vast amount of opportunities, but this does not 
come without the cost of certain pitfalls which have been 
discussed within the first part of this review. In cardiology, 
ML has already reached center stage and many fields have 
already seen interesting proof-of-concept studies especially 

Fig. 4   The use of machine 
learning models to integrate 
complex multi omics data as 
well as clinical data and their 
potential to support clinicians 
and scientists. Machine learning 
approaches have the potential 
to integrate large numbers of 
variables from large populations 
to allow for individualized risk 
prediction. This can be trans-
lated into clinical practice by 
reporting on important features, 
establishing clinical phenotypes 
with comparable outcomes and 
ultimately identifying novel 
pathomechanisms



Basic Research in Cardiology (2023) 118:10	

1 3

Page 9 of 12  10

as medical data is increasing in amount and complexity 
daily. However, it is important to keep in mind that ML 
approaches are not always the optimal solution and espe-
cially in basic research where causal associations between 
variables might be more important than optimized pre-
dictions, conventional statistical approaches might at this 
stage provide better use than modern ML techniques. But 
acknowledging the potential of ML methods which allows 
non-linear assessment of associations, that further accounts 
for complex interactions, ML might be able to help basic 
research methods raise to new frontiers in a large scale of 
fields, especially in the setting of high-throughput data like 
omics. Further, ML approaches might be used to streamline 
image processing [34] and, therefore, increase and standard-
ize workflows traditionally prone to require high amounts 
of work force.

In the light of the complex interplay of variables used in 
ML, surpassing the capabilities of the human brain, it will 
be more important than ever to validate those algorithms 
meticulously in prospective clinical trials [3]. After all, even 
if we may not be able to grasp the individual calculations 
the ML algorithm makes, we must be able to trust in the 
answers it provides.
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