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Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medi-
cine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts 
and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching 
mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track 
and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over 
long-term culture (30–80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with 
an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to 
increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-
CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older 
cells. We have made this model available through an open source software interface that easily allows users to simulate 
hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This 
tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation 
of the culture-to-characterisation pipeline in the field of hiPSC-CM research.
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Introduction

Human-induced pluripotent stem cell-derived cardio-
myocytes (hiPSC-CMs) show immense promise for the 
cost-effective development of personalised medicine and 
the streamlining of preclinical cardiotoxicity testing [1]. 
Derived from blood or minimally invasive patient biopsies, 
in vitro hiPSC-CM constructs preserve patient-specific 
genotypes, are highly scalable and avoid the practical and 
ethical pitfalls associated with primary human tissue cul-
ture and animal experimentation [79]. hiPSC-CM tech-
nology has contributed to the emergence of initiatives 
such as the comprehensive in vitro proarrhythmia assay 
(CiPA) approach where multimodal examinations of drug 
responses aim to provide a more robust assessment of 
proarrhythmic risk [17, 60].

At present, in vitro hiPSC-CM technology is limited 
both by a persistent state of phenotypic immaturity and 
highly heterogenous readouts of electrophysiological func-
tion. The latter could simply reflect the genetic variability 
inherent in the general population; however, even hiPSC-
CM derived from the same donor and within the same 
cell-line can demonstrate large phenotypic variability [13]. 
Variability could arise from numerous sources including 
differentiation methods, plating densities, or indeed the 
age at which the hiPSC-CM construct is assayed. hiPSC-
CM morphology and function can evolve over long culture 
periods [49]. Functional expression of major ionic cur-
rents including the transient-outward K+ current (Ito) and 
L-type Ca2+ current (ICa,L) increases in human embryonic 
stem cell-derived cardiomyocytes (hESC-CM) cultured 
for several weeks [64], recapitulating electrophysiologi-
cal embryonic development described in animal models 
[30]. In hiPSC-CM, action potential (AP) characteristics 
have also been reported to change haphazardly during long 
culture periods, prompting the notion of temporal fluidity 
in the dominant cardiac subtype within in vitro cultures 
[3]. These findings suggest the presence of complex non-
linear changes in ion channel characteristics throughout 
cell culture. Although cardiomyocyte Ca2+-handling is 
essential for excitation–contraction coupling and plays a 
major role in arrhythmogenesis [67], a comparative read-
out of Ca2+-handling has yet to be reported in hiPSC-CM 
over 30 days post differentiation [11, 27, 48]. There is 
little standardisation of the ages at which hiPSC-CMs are 
employed for drug screening or modelling purposes [3, 
11]. We hypothesise that developmental processes dur-
ing long-term hiPSC-CM culture may contribute to the 
phenotypic variability frequently reported within and 
between laboratories. Therefore, the present work char-
acterises the passive maturation of hiPSC-CM electro-
physiology and Ca2+-handling during long-term culture. 

Finally, to evaluate whether our experimentally observed 
age-dependent changes in Ca2+-handling parameters and 
major ionic currents are sufficient to explain the experi-
mentally acquired AP characteristics, we have integrated 
our experimental data into an in silico framework based 
on recent hiPSC-CM-specific in silico models of cardiac 
cellular electrophysiology [36, 40, 54, 55].

Methods

Further details of all methods can be found in the Online 
Data Supplement.

Somatic cell reprogramming and cardiac 
differentiation

hiPSC cell line UMGi014-C clone 14 (isWT1.14) was 
derived from the dermal fibroblasts of a healthy male donor 
(31 years). They were cultured in feeder-free conditions 
using the integration-free CytoTune iPS 2.0 Sendai Repro-
gramming Kit (Thermo Fisher Scientific) with reprogram-
ming factors OCT4, KLF4, SOX2, c-MYC. Previously 
published pluripotency and karyotype analysis of this line 
revealed no abnormalities or chromosomal instability [59]. 
Experimental protocols were approved by the ethics com-
mittee of the University Medical Center Göttingen (10/9/15). 
Directed feeder-free cardiac differentiation was achieved via 
canonical WNT modulation with small-molecules CHIR and 
IWP2, followed by metabolic selection with lactate as previ-
ously described [19, 39]. Day-3 (d-3) indicates final passag-
ing whilst day 0 (d0) marks the onset of differentiation with 
WNT stimulation.

Cellular preparation

Between d27 and d30, purified hiPSC-CMs were digested 
with TrypLE (Thermo Fisher Scientific) and sparsely plated 
on 1:60 Matrigel-coated borosilicate glass 10 mm #0 round 
coverslips at a density of 15,000 cells/cm2. Cells were incu-
bated at 37 °C in 5% CO2 and maintained every 2–3 days 
with a culture medium containing RPMI 1640 supplemented 
with B-27 (both Thermo Fisher Scientific). Cellular beating 
rate was routinely measured by photometric capture at × 40 
magnification with a Retiga R6™ CCD camera mounted 
on an inverted microscope. Recordings were taken at 13 
frames per second and analysed offline using the MUSC-
LEMOTION™ plugin on ImageJ [62]. For experimenta-
tion, coverslips were removed from their media and inserted 
directly into a heated bath chamber mounted on the stage of 
an inverted epifluorescence microscope. The differentiation 
and preparation process is outlined in Fig. 1a.
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Electrophysiological recordings

Whole-cell ruptured-patch techniques were employed 
to measure membrane currents in single, isolated early 
(d30–d46) and late (d47–d80) stage hiPSC-CMs. ICa,L and 
intracellular Ca2+ were measured simultaneously at 0.5 Hz 
with a voltage-clamp protocol consisting of a 100-ms ramp 
to − 40 mV (inactivating the fast Na+ current; INa) followed 
by a 100-ms depolarising test-pulse to + 10 mV, as previ-
ously described [15, 77]. For current voltage (I–V) curves, 
the test pulse was altered from − 40 to + 60 mV with 5 mV 
steps. Bath solution contained (in mmol/L): CaCl2 2, glu-
cose 10, HEPES 10, KCl 4, MgCl2 1, NaCl 140, probene-
cid 2; pH = 7.35. 4-aminopyridine (5 mmol/L) and BaCl2 
(0.1 mmol/L) were added to block K+ currents [8, 73, 74, 
78]. Pipette solution contained (in mmol/L): Fluo-3 penta-
potassium salt 0.1, EGTA 0.02, GTP-Tris 0.1, HEPES 10, 
K-aspartate 92, KCl 48, Mg-ATP 1, Na2-ATP 4; pH = 7.2. 
Sarcoplasmic reticulum (SR) Ca2+ content was assessed 
through integration of the Na+/Ca2+ exchanger-mediated 
current (INCX) during perfusion with 10 mmol/L caffeine.

Peak INa was measured in a bath solution containing (in 
mmol/L): NaCl 5, HEPES 10, MgCl2 1, CsCl 10, glucose 10, 
CaCl2 0.5, and TEA-Cl 120 (pH = 7.4, adjusted with CsOH). 
A voltage-clamp protocol was applied consisting of a hold-
ing potential at − 80 mV, followed by a 1000-ms pre-pulse 
step at − 110 mV (to increase availability of Na+ channels), 
and then 30-ms steps from − 80 to + 20 mV for I–V curves. 
Late Na+ current (INa,L) measurements were conducted with 
a bath solution containing (in mmol/L): NaCl 120, HEPES 
10, MgCl2 1, CsCl 10, glucose 10 and CaCl2 0.5 (pH = 7.4, 
adjusted with CsOH). A voltage-clamp protocol was applied 
consisting of a holding potential of − 120 mV, followed by 
a 5-ms activating step to + 50 mV and a 300-ms step to 
− 30 mV to assess INa,L. Pipette solution for both INa and 
INa,L measurements contained (in mmol/L): NaCl 5, EGTA 
10, GTP-Tris 0.4, HEPES 10, Mg-ATP 4, CsCl 20, CaCl2 3, 
Cs-Methansulfonate 90, pH = 7.2.

Delayed rectifier (rapid component; IKr) tail currents 
were measured using a high-performance automated 
patch clamp system (SyncroPatch 384; Nanion Technolo-
gies GmbH) with a voltage-clamp protocol consisting of 
a holding potential of − 80 mV followed by a 2-s step to 

Fig. 1   Overview of human induced pluripotent stem cell-derived 
cardiomyocytes (hiPSC-CM) differentiation. A Schematic overview 
of the differentiation protocol utilised in this study (upper), and the 
process of long-term continuous culture on glass coverslips (lower). 
Early (young) hiPSC-CM underwent experimentation between 30 
and 46  days after differentiation whilst late (old) hiPSC-CM were 
measured between day 47 to 80. B Immunofluorescent staining of 
hiPSC-CM at d29. C Flow cytometry analysis of hiPSC-CM at d29. 

D Longitudinal section area of early and late hiPSC-CM (left), cor-
responding cell capacitance (middle) and T-tubule density (right), 
estimated through a ratio of capacitance to longitudinal section 
area of each cell. E Representative photomicrographs of early (left) 
and late (right) hiPSC-CM. Scale bar represents 10  µm. Data are 
mean ± SEM. Symbols represent separate differentiations. n/N = num-
ber of hiPSC-CM/differentiation
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60 mV with steps of 10 mV for I–V acquisition. Bath solu-
tion contained (in mmol/L): CsCl 144, CaCl2 2, MgCl2 
2, glucose 5, HEPES 10 (pH = 7.4 adjusted with CsOH). 
Pipette solution contained (in mmol/L) CsCl 20, EGTA 
10, HEPES 10, CsF 110 (pH = 7.2 adjusted with CsOH) 
in accordance with a recently published protocol [26]. Cs+ 
was used as a charge carrier due to its selectivity for the 
hERG channel [65].

Basal inward-rectifier K+ current (IK1) was measured at 
0.5 Hz with a ramp pulse from − 100 to + 40 mV at 0.5 Hz 
while superfusing a modified Tyrode’s bath solution contain-
ing (mmol/L): NaCl 120, KCl 20, MgCl2 1, CaCl2 2, glu-
cose 10, HEPES 10, pH = 7.4. Pipette solution contained (in 
mmol/L): EGTA 0.02, GTP-Tris 0.1, HEPES 10, K-aspartate 
92, KCl 48, Mg-ATP 1, Na2-ATP 4; pH = 7.2. IK1 was iden-
tified as Ba2+ (1 mmol/L)-sensitive current as previously 
described [76].

APs were measured in current-clamp configuration at 
0.5 Hz in bath solution containing (in mmol/L) the follow-
ing: CaCl2 2, glucose 10, HEPES 10, KCl 4, MgCl2 1, NaCl 
140; pH = 7.35. Pipette solution contained (in mmol/L): 
EGTA 0.02, GTP-Tris 0.1, HEPES 10, K-aspartate 92, KCl 
48, Mg-ATP 1, Na2-ATP 4; pH = 7.2. Mean holding cur-
rents were − 0.86 ± 0.13 pA/pF for early hiPSC-CM and 
− 1.05 ± 0.16 pA/pF for late hiPSC-CM (P = 0.3651).

All electrophysiological experiments were carried out at 
37 °C, except for INa, INa,L and IKr which were measured at 
room temperature. Seal resistances were 3–6 GΩ. Borosili-
cate glass pipettes with tip resistances of 2–7 MΩ were used 
for voltage clamp experiments. High resistance borosilicate 
glass pipettes (5–10 MΩ) were used for current clamp exper-
iments. All current recordings (except for IKr) were acquired 
using an Axopatch 200B microelectrode amplifier and ana-
lysed using pClamp-Software V 10.7 (both from Axon 
Instruments Inc., Foster City, USA). Membrane currents 
were corrected for membrane capacitance and expressed 
in pA/pF. Action potentials were acquired using a HEKA 
amplifier and HEKA patchmaster software and analysed 
using Lab Chart 7 (AD instruments, Otago, New Zealand).

Simultaneous intracellular Ca2+ measurements

[Ca2+]i of single, isolated early- and late-stage hiPSC-CM 
was measured using the fluorescent Ca2+ indicator fluo-
3-acetoxymethyl ester (Fluo-3-AM, 10 µmol/L, 10 min load-
ing, 30 min de-esterification, λEx = 488 nm, λEm = 535 nm) 
during simultaneous ICa,L measurement at 37 °C as previ-
ously described [77]. Fluorescence emission was collected 
with a photomultiplier optimised for high-speed signal cap-
ture (10 kHz). Emission was correlated to [Ca2+]i with the 
formula [Ca2+]i = Kd [F/(Fmax − F)]. Here, Kd represents the 
dissociation constant of Fluo-3 (864 nmol/L), F denotes 

Fluo-3 fluorescence, and Fmax describes Ca2+-saturated 
fluorescence obtained through cellular laceration at the end 
of each experiment [15].

Molecular biology studies

Early and late hiPSC-CM were trypsinised and cellular 
membranes were isolated by differential centrifugation and 
then solubilized at 1 mg/ml of total protein in solubilisation 
buffer. Ca2+-handling proteins SERCA2a and NCX1, as well 
as expression of Kir2.1 were analysed with immunoblotting 
techniques. (LI-COR Biotechnology, US). Antibodies are 
outlined in Online Table S1. Immunofluorescent screening 
stained for nuclear and sarcomeric proteins using hiPSC-
CM (d29) fixed in 4% PFA and permeabilised in 0.1% Tri-
ton X-100 with an AxioObserver A1 fluorescence micro-
scope (Carl Zeiss, Jena, Germany). Flow cytometry utilised 
trypsinised, fixed and permeabilised hiPSC-CM (d29). Cells 
were screened using the LSRII flow cytometer (BD Bio-
sciences, US).

Computational modelling

The state-of-the-art in silico hiPSC-CM model by Kernik 
et al. [36] formed the basis for our simulations. The model 
was implemented in Myokit [9] and model parameters were 
adjusted to reproduce experimental data from early- or 
late-stage hiPSC-CM obtained in the present study (Online 
Table S2). The model age was set to 30 days for early-stage 
hiPSC-CM and 50 days for late-stage hiPSC-CM. For opti-
misation of IK1, 40 days and 60 days were used, based on the 
maturity levels of the experimental data. Finally, we inter-
polated the parameters obtained for the early- and late-stage 
hiPSC-CM models to obtain parameter values as a function 
of age (Online Table S2, right columns). Linear functions 
were used for interpolation whenever possible. Alternatively, 
Hill functions were employed to prevent unphysiological 
values (e.g., negative membrane capacitance) at advanced 
age. AP simulations were performed and the steady-state 
AP following 1000 beats of prepacing was used for analy-
sis in the presence of 0.2 pA/pF hyperpolarising current 
injected to suppress hiPSC-CM automaticity. The model 
code is freely accessible at www.​github.​com/​jordi​heijm​an. 
The installation guide for the induced pluripotent stem cell-
derived maturity evaluator (iMATURE) is available in the 
Online Supplement.

Statistical analysis

Data are reported as mean ± SEM and n-numbers as n/N, 
where n indicates number of hiPSC-CM studied from N 

http://www.github.com/jordiheijman
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differentiations, unless otherwise stated. Analyses were car-
ried out with Prism 8 software (Graphpad, San Diego, USA). 
Normality of the data distribution was assessed using the 
Shapiro–Wilk normality test. Normally distributed data were 
compared using unpaired two-tailed Student’s t-test unless 
otherwise indicated. Data with unequal variance were com-
pared using Welch’s t-test. Non-normally distributed data 
were compared using the Mann–Whitney U test. P < 0.05 
was taken as statistically significant.

Results

In order to generate highly controllable and standardised 
data sets, we applied a fully defined feeder-free mon-
olayer-based differentiation protocol to our hiPSC cultures 
(Fig. 1a), directing cardiac induction as previously described 
[39]. Spontaneous beating was regularly observed by day 
8 (d8). Following differentiation, hiPSC-CM stained posi-
tive for cardiac marker alpha-actinin, with clear sarcom-
eric structures visible (Fig. 1b). 90.1 ± 1.6% of cells were 
alpha-actinin positive, indicating satisfactory differentiation 
efficiency (Fig. 1c). Following differentiation, hiPSC-CM 
were plated at low density (15,000/cm−2) to ensure regular 
analysis of single, isolated cells which remain unaffected by 
electrical and paracrine influences of dense syncytial layers 
or cellular aggregates. Based on experimental and modelling 
data, cells assayed between d30 and d46 were designated 
as early-stage hiPSC-CM while d47–d80 were allocated 
to the late-stage development category. Cellular size was 

ascertained through longitudinal cross-sectional area meas-
urement by tracing the perimeter of the hiPSC-CM using the 
freehand selection tool on ImageJ in a cohort of cells also 
utilised for patch-clamp experiments. Longitudinal cross-
sectional area appeared unchanged in accordance with com-
parable membrane capacitance. The ratio between cellular 
area and capacitance indicated limited structural alterations 
in t-tubule density between early and late cultures (Fig. 1d). 
Isolated cells with no contact to neighbouring cells and clear 
membrane resolution were used for electrophysiological 
characterisation (Fig. 1e).

Increased systolic Ca2+ release from the SR of late 
hiPSC‑CM cultures

Next, we assessed ICa,L-triggered Ca2+ transients (CaTs) at 
different stages of hiPSC-CM development. ICa,L was initi-
ated by a voltage-clamp protocol and was measured simul-
taneously with CaT (Fluo-3) in hiPSC-CM (Fig. 2a). Peak 
ICa,L was significantly larger in late hiPSC-CM versus early 
culture (− 29.24 ± 3.98 vs. − 10.52 ± 1.27 pA/pF, n/N = 28/3 
vs. 19/3, P = 0.0005; Fig. 2b). Current–voltage relationships 
showed a positive shift in maximal current density in late 
cultures (Fig. 2c). Diastolic [Ca2+]i was similar between 
both groups; however, systolic [Ca2+]i was higher in late 
cultures. This was matched by a significant increase in CaT 
amplitude in late cells versus early cells (191.6 ± 26.81 
vs. 134.3 ± 15.49 nmol/L, n/N = 28/3 vs. 19/3, P = 0.0358; 
Fig. 2d). The Cav1.2 blocker nifedipine (1 µmol/L) produced 
a reduction in ICa,L in every instance, suggesting presence of 

Fig. 2   ICa,L-triggered Ca2+ transients (CaT) in isolated early and late 
human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-
CM). A Representative simultaneous recordings of ICa,L (upper) and 
triggered CaT (lower) in early (left) and late hiPSC-CM (right). Inset: 
voltage-clamp protocol. B Peak ICa,L. C Current–voltage relationship 

curve for ICa,L. D Diastolic and systolic [Ca2+]i (left) and resulting 
CaT-amplitude (right). Data are mean ± SEM. *P < 0.05 ***P < 0.001 
versus early hiPSC-CM culture by Welch’s t test or Student’s t test 
(D left). Symbols represent separate differentiations. n/N = number of 
hiPSC-CM/differentiation
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functional CaV1.2 from an early stage in cellular differentia-
tion (Online Fig. S1).

SR Ca2+ content was assessed through caffeine applica-
tion (10 mmol/L) after cessation of the ICa,L-activating pro-
tocol (Fig. 3a). The resulting caffeine-induced CaT (cCaT) 
amplitude and integral of corresponding membrane current 
(reflecting NCX-mediated Ca2+ extrusion; charge) were 
comparable between late and early hiPSC-CM cultures, 
indicating that higher CaT amplitude in late cells is mainly 
due to increased trigger ICa,L (Fig. 3b).

Altered diastolic Ca2+‑handling in late hiPSC‑CM 
cultures

Diastolic Ca2+ removal from the cytosol was faster in 
late cultures versus early cultures as indicated by the 
rate constant of systolic CaT decay (inverse of CaT τ, 
ksyst, Fig. 3c). Decay of cCaT mainly reflects NCX-medi-
ated Ca2+ removal and was also faster in more mature 

cells. This is consistent with higher peak INCX density 
(2.03 ± 0.38 vs. 0.97 ± 0.16 pA/pF, n/N = 22/3 vs. 13/3, 
P = 0.0455; Fig. 3d), pointing to increased NCX activity 
in late hiPSC-CM cultures. In accordance, average protein 
expression of NCX1 was numerically larger in late hiPSC-
CM (Fig. 3e, f). Absolute levels of housekeeping protein 
calsequestrin (CSQ2) showed no difference between early 
and late cultures (1.00 ± 0.33 vs. 1.03 ± 0.28 a.u relative 
to early, n/N = 3/3 vs. 3/3 [not shown]). The rate constant 
kSERCA​ represents the difference between the rate constant 
of cCaT decay and that of systolic CaT decay [15]. kSERCA​ 
was significantly larger in late cultures versus early cul-
tures (1.82 ± 0.38 vs. 0.91 ± 0.21 s−1, n/N = 22/3 vs. 13/3, 
P = 0.0453; Fig. 3c). This was supplemented by the west-
ern blot findings (Fig. 3e, f).

Confocal line-scan analysis of Ca2+ sparks revealed a 
tendency towards decreased Ca2+ spark frequency and sig-
nificantly decreased Ca2+ leak from the SR in late hiPSC-
CM cultures versus early (12.73 ± 5.06 vs. 30.35 ± 9.04 
100 µm−1  s−1, n/N = 41/7 vs. 39/2, P = 0.0416; Online 

Fig. 3   Caffeine-induced Ca2+ transients (cCaT) with correspond-
ing transient-inward currents (INCX) to assess sarcoplasmic reticulum 
(SR) Ca2+ content in isolated early and late human induced pluripo-
tent stem cell-derived cardiomyocytes (hiPSC-CM). A Representa-
tive cCaT (upper) and corresponding INCX (lower) in early (left) and 
late hiPSC-CM (right). B SR Ca2+ load, quantified as cCaT amplitude 
(left), or integrated membrane current (Charge; right). C Rate con-
stants of Ca2+ transport ksyst (far left), kcaff (centre left), kSERCA​ (cal-
culated as the difference between ksyst and kcaff; centre right) and the 

resulting relative proportions of NCX and SERCA-mediated cytosolic 
Ca2+ removal in early and late hiPSC-CM (far right). D Peak INCX. 
E Representative western blots showing the expression of NCX1 and 
SERCA2a against CSQ2. F Quantification of NCX1 and SERCA2a 
expression relative to early hiPSC-CM (3 independent experiments 
per group). Data are mean ± SEM. *P < 0.05 versus early hiPSC-CM 
culture by Welch’s t test or Mann–Whitney U test (B). Symbols repre-
sent separate differentiations. n/N = number of hiPSC-CM/differentia-
tion
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Fig. S2). In addition, spontaneous beating rate, a marker 
of automaticity, was decreased in late-stage hiPSC-
CM (0.45 ± 0.18 vs. 0.79 ± 0.4 Hz, n/N = 11/2 vs. 12/2, 
P = 0.0067; Online Fig. S2).

Maturation dependent increase of peak INa 
during long‑term culture

Peak INa was significantly larger in late-stage hiPSC-CM 
(− 71.12 ± 15.77 vs. − 26.63 ± 4.89 pA/pF, n/N = 29/3 vs. 
21/3; P = 0.0237) with current–voltage relationships show-
ing a slight negative shift in peak current density (Fig. 4a, 
b). INa,L was subsequently measured as current responsive to 
tetrodotoxin (TTX, 10 µmol/L) in both late and early hiPSC-
CM cultures (Fig. 4c). In contrast to peak INa, integrated 
INa,L was not different between early and late hiPSC-CM 
(Fig. 4d).

Emergence of robust IK1 during long‑term culture

K+ currents are responsible for repolarisation and stabilisa-
tion of resting membrane potential (RMP). Assessment of 
the rapid component of the delayed rectifier K+ current (IKr) 
following complete block with 25 µmol/L E-4031 revealed 
no age-dependent difference in tail current between late and 
early hiPSC-CM (− 2.94.12 ± 0.55 vs. − 3.84 ± 0.82 pA/pF, 
n/N = 77/4 vs. 60/4, P = 0.6733; Fig. 5a, b). Comparable I–V 
curves and pharmacology were also observed across early 
and late hiPSC-CM (Online Fig. S3).

The basal inward-rectifier K+ current IK1 was measured 
in both early- and late-stage hiPSC-CMs using a modified 
ramp protocol with high extracellular [K+] (20 mmol/L), 
which produces a positive shift in reversal potential and 
allows for precise current detection, as previously described 
[76] (Fig. 5c). Ba2+-sensitive IK1 was markedly increased 
in late-stage cells compared with early cells in both inward 
direction (− 100 mV: − 48 ± 12.3 vs. − 12.63 ± 2.28 pA/
pF, n/N = 17/4 vs. 43/6, P = 0.0004; Fig. 5c, d) and outward 
direction (− 10  mV: 4.10 ± 0.62 vs. 2.75 ± 0.47 pA/pF, 
n/N = 17/4 vs. 43/6, P = 0.009), without changes in rectifi-
cation (Online Fig. S4). In accordance, expression of Kir2.1 
protein was significantly increased in late hiPSC-CM cul-
tures (Fig. 5e, f).

Computational modelling of hiPSC‑CM 
Ca2+‑handling maturation

We employed computational modelling to assess (1) whether 
the experimentally identified changes in ICa,L, INCX and 
SERCA are sufficient for the observed changes in hiPSC-CM 
Ca2+-handling and (2) to predict the maturation-dependent 
changes in AP characteristics resulting from the remodelling 
of all ionic currents. The recent Kernik et al. hiPSC-CM 
model was fit to our experimental data from early- or late-
stage hiPSC-CM [36]. Besides the changes in ICa,L, INCX and 
SERCA function, adjustments in Ca2+ buffering and back-
ground Ca2+ influx were needed to reproduce the experimen-
tally observed Ca2+-handling properties (Online Table S2). 

Fig. 4   Peak Na+ current (INa) and late Na+ current (INa,L) in isolated 
early and late human induced pluripotent stem cell-derived cardio-
myocytes (hiPSC-CM). A Representative INa in early (left) and late 
hiPSC-CM (right). Inset: voltage-clamp protocol. B Current–volt-
age relationship for INa. C Representative INa,L in early (left) and late 
hiPSC-CM (right) in the absence (Baseline) or presence of 10 µmol/L 

tetrodotoxin (TTX). Inset: modified voltage-clamp protocol to accen-
tuate late current (as described in Poulet et al. [56]). D INa,L integral. 
Data are mean ± SEM. *P < 0.05 versus early hiPSC-CM culture. 
Symbols represent separate differentiations. n/N = number of hiPSC-
CM/differentiation
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Nevertheless, with this limited number of changes, the model 
was able to reproduce all experimentally observed properties 
of early- and late-stage hiPSC-CM (Online Figs. S4–S8). 
Of note, interpolation of these Ca2+-handling parameters 
produced non-linear maturation-dependent changes in CaT 
properties that reflected the non-linear patterns observed in 
the experimental data (Fig. 6a). These modelling data sug-
gest that gradual increases or decreases in expression levels 
of Ca2+-handling proteins may produce complex temporal 
changes at the cellular level.

Identification and experimental corroboration of AP 
shortening during long‑term culture

Under current-clamp conditions at 0.5 Hz, the in silico 
hiPSC-CM model predicted a maturation-dependent 

decrease in action potential duration (APD) from 365 
ms at d30 to 174 ms at d70. (Fig. 6b). In order to corrobo-
rate and validate the maturation-dependent AP shortening 
predicted by the modelling data, APs were measured at 
multiple time points during long-term hiPSC-CM mon-
olayer culture (Fig. 6c). Under experimental current-clamp 
conditions, hiPSC-CM indeed displayed maturation-
dependent changes, with late cells showing APD short-
ening at 50% and 90% repolarisation (APD50, APD90) 
compared with early-stage cells (APD50: 163 ± 35.76 vs. 
205.34 ± 26.87 ms [not shown]; APD90: 259.1 ± 42.13 
vs. 393.8 ± 38.65 ms, n/N = 13/3 vs. 23/3, P = 0.0358; 
Fig. 6d). Repolarisation fraction ([APD90-APD50]/APD90), 
a representation of repolarisation profile and, therefore, 
an index of cardiomyocyte subtype, remained unchanged 
throughout hiPSC-CM culture suggesting the absence of a 

Fig. 5   Rapid component of the delayed-rectifier K+ current (IKr) 
and basal inward-rectifier K+ current (IK1) in isolated early and 
late human induced pluripotent stem cell-derived cardiomyocytes 
(hiPSC-CM). A Representative IKr in early (left) and late hiPSC-CM 
(right). Inset: voltage-clamp protocol. B Maximum tail IKr defined as 
E4031-sensitive current. C Representative recordings of IK1 in early 
(left) and late hiPSC-CM (right) during a depolarising ramp pulse 

protocol (inset). D Peak IK1 defined as Ba2+-sensitive current. E Rep-
resentative western blots showing the expression of Kir2.1 against 
CSQ2 (same gel as Fig.  3). F Quantification of Kir2.1 expression 
relative to early hiPSC-CM (3 independent experiments per group). 
Data are mean ± SEM. *P < 0.05 ***P < 0.001 versus early hiPSC-
CM culture. Symbols represent separate differentiations. n/N = num-
ber of hiPSC-CM/differentiation
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transient subtype shift during long culture periods (Online 
Fig.  S9). Upstroke velocity and AP amplitude (APA) 
were increased in late-stage hiPSC-CM (upstroke veloc-
ity: 66.98 ± 20.9 vs. 30.22 ± 10.24 mV/ms, n = 10/3 vs. 
16/3, P = 0.0309; APA: 123.7 ± 4.06 vs. 110.6 ± 3.67 mV, 
n = 13/3 vs. 23/3, P = 0.0298; Online Fig. S9), consistent 
with the increase in INa. No change was observed between 
early- or late-stage RMP both in the presence (Fig. 6d) and 
absence of injected current (Online Fig. S9), which is in 
line with our in silico simulations. In silico, the unchanged 
RMP could be attributed to a parallel increase in depolar-
izing NCX during maturation, counterbalancing the effects 
of increased IK1 on RMP.

We then went back to the model to establish the major 
ionic determinant of the AP shortening by making use of 
the perfect control offered by in silico models. Prevent-
ing the maturation-dependent increase in IK1 abolished the 
APD reduction and eventually elicited spontaneous activity 
(Fig. 7a). A progressive depolarisation of RMP was also 
observed due to increased NCX (Fig. 7a, b), highlighting 
the importance of maturation-dependent changes in IK1 for 
cellular electrophysiology of hiPSC-CM. To further high-
light the electrophysiological consequence of increased IK1 

in hiPSC-CM experimentally, we evaluated the effects of 
partial IK1 inhibition. Older cells showed a 50% increase in 
AP duration following IK1 blockade with BaCl2 (1 mmol/L) 
compared to a non-significant 5% change in early cells 
(Online Fig. S10). In addition, application of BaCl2 pro-
duced more instability and a high occurrence of arrhythmo-
genic events in late cells compared to early hiPSC-CM 
(Online Fig. S10).

Discussion

In this multimodal study, we have identified dynamic devel-
opmental behaviour of key ionic currents and Ca2+-handling 
properties in hiPSC-CM during long-term culture. Older 
hiPSC-CM display significantly larger ICa,L density along 
with temporally complex SERCA and NCX development 
(Figs. 2, 3). INa and IK1 densities were also significantly 
increased in late-stage cells, which increases AP upstroke 
velocity and shortens APD, respectively (Figs. 4, 5, 6; 
Online Fig. S9). In addition, we updated an existing in silico 
hiPSC-CM model which reproduced our experimental find-
ings. Interpolation of the model parameters as a function of 

Fig. 6   Overview of maturation-dependent changes in cellular Ca2+ 
dynamics and electrophysiology which drive action potential (AP) 
characteristics in experimental and in silico human induced pluri-
potent stem cell-derived cardiomyocytes (hiPSC-CM). A Plots of 
the experimental data for all measured electrophysiological cellular 
parameters in aging hiPSC-CM. The red line indicates the in silico 
output of expected results demonstrating non-linear maturation-
dependent characteristics. B Simulated steady-state AP traces at 
0.5  Hz in d30 and d70 modelled hiPSC-CM. The stimulus current 

(Istim) was set to − 120 μA/μF and the hyperpolarising current (Ihyper) 
was set to 0.2 μA/μF. C Representative experimental AP traces in 
early (left) and late hiPSC-CM (right). D Comparison of experimen-
tal and model AP properties during 0.5 Hz pacing: resting membrane 
potential (RMP; left) and AP duration at 90% repolarisation (APD90; 
right). Experimental data are mean ± SEM. *P < 0.05. Symbols repre-
sent separate differentiations. n/N = number of hiPSC-CM/differentia-
tion
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cellular age revealed complex, nonlinear temporal dynam-
ics of hiPSC-CM electrophysiological development that was 
consistent with our experimental data (Fig. 6a). Using this 
tool, we also established the primary ionic determinant of 
APD shortening by abolishing the maturation-dependent 
increase in IK1, which successfully attenuated APD reduc-
tion (Fig. 7). Finally, we have developed an open-source 
user interface which allows for multi-level simulations of 
cellular electrophysiology and Ca2+-handling across a wide 
range of cellular ages post differentiation (Fig. 8). This tool 
also exhibits the capacity for age-based deductions of drug-
induced proarrhythmic risk.

In this study, cardiomyocyte maturity is defined as a gen-
eral phenotypical state equivalent to that of a fully developed 
native adult ventricular cardiomyocyte. In particular, this 
study assesses time-dependent changes in hiPSC-CM cal-
cium handling and electrophysiology as key components of 
their maturation state. Similar to previous work, our hiPSC-
CM show functional variability and an immature electrical 
phenotype characterized by less negative RMP, slower AP 
upstroke velocity and automaticity [12, 23, 34]. This is not 
surprising, as native adult cardiomyocytes develop continu-
ally within a complex and precisely organised system over a 
lifetime of phasic load and physiological stimulation in vivo.

Maturation of cytosolic Ca2+ homeostasis

There is a paucity of systematic studies assessing passive 
maturation of electrophysiological and Ca2+-handling 
processes in isolated hiPSC-CM cultured for more than 
30 days after differentiation onset. Here, we report evi-
dence of robust Ca2+-handling and operational SR Ca2+ 
stores in early hiPSC-CM, similar to results reported by 
Hwang et al. [27]. However, as our cells aged further, they 
displayed increased ICa,L and CaT amplitude (Fig. 2) along 
with a functional increase in key Ca2+-removal mechanisms, 
NCX and SERCA (Fig. 3). The present work expands on 
that of Hwang et al. and indicates that further maturation of 
Ca2+-handling machinery is possible in hiPSC-CM under 
prolonged culture of more than 50 days. Previous studies 
using cells under 30 days of age have outlined a dominant 
role of NCX function and poor SR development in hiPSC-
CM [44]. Increased NCX-mediated electrogenic activity 
coupled with a leaky SR leads to increased incidence of 
delayed after-depolarisations (DADs) and could play a role 
in the cellular automaticity typically displayed by hiPSC-
CM. The interplay of low inward-rectifier K+ current density 
paired with increased funny current (If) is assumed to be the 
major cause of spontaneous activity in hiPSC-CMs [66]. 
However, previous studies have shown that If density alone 
is not sufficient to induce automaticity in hESC-CM. Instead, 
Ca2+ release from the SR has been hypothesised as a major 

Fig. 7   The role of inward-rectifier K+ current (IK1) and inward Na+/
Ca2+-exchanger (NCX) current in maturity-dependent action poten-
tial (AP) shortening in in silico human induced pluripotent stem cell-
derived cardiomyocytes (hiPSC-CM). A Steady-state AP simulations 
over increasing ages with IK1 clamped at 30 days of maturation (solid 
lines), as well as during acute inhibition of NCX at d60 (dashed line). 
Note: automaticity is observed at d60 and d65. The stimulated AP 

at d65 is short due to the incomplete repolarisation of the preceding 
spontaneous AP. B AP duration at 90% repolarisation (APD90; left) 
and resting membrane potential (RMP; right) at increasing stages of 
development in the absence of IK1 maturation, as well as at d60 with 
acute NCX inhibition (black/white bars). Note: RMP and APD90 val-
ues for d60 and d65 in the absence of NCX inhibition are not shown 
due to abnormal automaticity
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driver of automaticity with RyR2 abolition leading to cellu-
lar quiescence [38]. IK1 also influences cellular automaticity 
and previous work highlights a potential regulatory effect 
of increased cytosolic Ca2+ flux during diastole by increas-
ing rectification in cardiomyocytes, effectively blocking IK1 
and facilitating spontaneous beating [16, 80]. We, among 
others, report high SR Ca2+ leak and increased automaticity 
in early hiPSC-CM. However, as the cells age, we noted a 
lower incidence of Ca2+ sparks and decreased SR Ca2+ leak 
coupled with a significant decrease in spontaneous beating 
rate (Online Fig. S2). Interestingly, SR Ca2+ load remained 
comparable between early and late cultures, suggesting coor-
dinated development of Ca2+-handling machinery during 
maturation (Fig. 3). The increased NCX function identified 
in older hiPSC-CM was not strongly replicated at the protein 
level, possibly also implicating the concurrent development 

of intracellular signalling, trafficking and phosphorylation 
mechanisms. Indeed, increased cAMP and cGMP have been 
found to enhance forward mode NCX function through pro-
tein kinase activation in older, but not in younger, embryonic 
mouse ventricular cardiomyocytes [58].

Together, these data point to a strong age-dependence 
of SR function under standardised and prolonged culture 
conditions. When interpolated in silico, a non-linear behav-
iour with exponential consolidation of SERCA activity is 
observed as hiPSC-CM age over time (Fig. 6). Our in silico 
model is the first to incorporate a detailed analysis of CaT 
and Ca2+-reuptake mechanisms across various stages of 
hiPSC-CM maturation.

Fig. 8   Screenshot of the induced pluripotent stem cell-derived car-
diomyocyte maturity evaluator (iMATURE) software tool. The 
iMATURE tool incorporates the experimentally-observed maturity-
dependent changes on cardiac ion channels (i.e., INa, INaL, ICa,L, IKr 
and IK1) and Ca2+-handling proteins in the Kernik hiPSC-CM model 

[36]. The tool enables the simulation and comparison of two maturity 
levels simultaneously under different experimental conditions. It also 
enables rapid evaluation of the effects of inhibition of major ionic 
currents
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Maturation of cellular electrophysiology

An overview of hiPSC-CM electrophysiology from 2D 
and 3D preparations compared with our data and with 
data from native ventricular cardiomyocytes is provided 
in Tables 1, 2 and 3. It is important to emphasize that ion 
currents are dependent on experimental ion concentra-
tions, which differ between studies. Direct comparisons 
should, therefore, be made with caution, ideally between 
groups studied under identical conditions. Nevertheless, 
similar to previous studies, our hiPSC-CM show a rela-
tively immature phenotype characterized by less negative 
RMP, slower AP upstroke velocity and automaticity [8, 

18, 26]. Lack of IK1 is a hallmark of hiPSC-CM [23, 50]. 
To allow for comparison between studies performed at dif-
ferent extracellular K+ concentrations and temperatures, 
we estimated the conductance values based on reported 
IK1 densities and calculated the resulting reversal poten-
tials (Erev, Tables 1, 2 3). The reduced IK1 conductance 
observed throughout all studies is a major contributor to 
the less negative RMP and thereby facilitates the occur-
rence of spontaneous activity in hiPSC-CM constructs 
[24, 31, 34]. In addition, the depolarized RMP also causes 
reduced availability of voltage-dependent Na+ channels 
due to incomplete recovery from inactivation. Therefore, 
the reduced IK1 may also contribute to the typically lower 
AP upstroke velocity in hiPSC-CM [12, 43, 50]. This 

Table 2   Electrophysiological properties of hiPSC-CM in engineered heart muscle

Currents are dependent on ion concentrations, which differ between studies. Be cautious with direct comparisons which should ideally be made 
between groups studies under identical conditions

Lemoine et al. [46] Lemoine et al. [45] Horváth et al. [25] Tiburcy et al. [68]

Capacitance (pF) 28 47
INa

 Peak INa density − 19
 Potential − 30
 [Na]i for Peak INa (mM) 5
 [Na]e for Peak INa (mM) 5
 Temperature (°C) 20
 Erev (mV) 0
 Conductance(S/F) 633

ICa,L

 ICa,L density
 Temperature (°C)

IK1

 IK1 density (pA/pF) − 14
 Step potential − 100
 [K]i for IK1 (mM) 150
 [K]e for IK1 (mM) 20
 Temperature (°C) 20
 Erev (mV) − 51
 Conductance (S/F) 285

IKr

 IKr tail (pA/pF) 
 IKr step (pA/pF) 
 Temperature (°C)

Action Potential
 RMP (mV) − 78 − 78 − 75 − 72
 dV/dtmax (V/s) 219 348 107
 APA (mV) 103 109 97
 APD90 (ms) NA 255 271 436
 Frequency (Hz) 1 1 1 Spontaneous 
 Temperature (°C) 37 37 37 37

Days after differentiation onset 42 39–114 42 NA
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combination induces proarrhythmic traits in hiPSC-CM 
which presents a severe disadvantage for their use for drug 
safety screening initiatives such as CiPA. Targeting IK1 
is therefore an important aspect of enhancing hiPSC-CM 
maturity and several methods exist to increase inward rec-
tifier density. The hybrid method of dynamic patch clamp 
aims to overcome this limitation using an in silico ion 
channel model to adjust hyperpolarising current injection 
in real time based on the measured membrane potential 
[18, 52]. This technology is promising; however, it can-
not capture native regulation of IK1, e.g., by intracellular 
Ca2+ or Na+ [22, 75, 80]. Our combination of standardised 
serum-free differentiation and prolonged monolayer cul-
ture of > 50 days is sufficient to produce a 70% increase in 
IK1 density with increased INa and concomitant increases in 
AP upstroke velocity (Figs. 4, 5, Online Fig. S9). Similar 
maturation-dependent increases in IK1 density have been 
reported previously in hESC-CMs during prolonged cul-
ture [37, 64]. Doss et al. reported a transient increase in 
IK1 density in hiPSC-CMs after 2 months, followed by a 
decrease after 4 months [12]. Our in silico extrapolation 
of IK1 maturation does not support this parabolic devel-
opmental pattern, which could be due to differences in 
cellular culture techniques or their harsher dissociation 
procedures prior to measurement.

In the majority of studies, the maximal peak INa ampli-
tude appears to be larger in hiPSC-CM compared with native 
cardiac tissue (Tables 1, 2, 3). This contradicts the lower 
expression levels of the underlying Nav1.5 subunit which 
are found in hiPSC-CM in comparison to human native ven-
tricular cardiomyocytes [7]. Furthermore, direct comparison 
of peak INa currents is often hindered by different experi-
mental conditions such as extracellular Na+ concentration 
and temperature. A direct comparison of hiPSC-CM and 
native human ventricular cardiomyocytes by Lemoine et al. 
suggests that peak INa currents are indeed lower in hiPSC-
CM [46]. In addition, Lemoine et al. provide evidence for 
higher peak INa currents in more advanced 3D tissue culture 
models. This is in agreement with our study and a previous 
study in hiPSC-CM showing a tendency towards increased 
peak Na+ current in older hiPSC-CM [81]. Taken together, 
it appears that electrophysiological maturation of hiPSC-
CM is associated with increased INa densities, although AP 
upstroke velocity remains low compared to adult ventricular 
cardiomyocytes.

The present work identifies maturation-dependent IK1 aug-
mentation as a key mediator of AP shortening in hiPSC-CM. 
Rapid delayed rectifier K+ currents remained unchanged 
throughout long term culture (Fig. 5) and, in the absence 
of maturation-dependent changes of IK1 in silico, APD pro-
longed as the cells matured in the presence of increasing 
cytosolic Ca2+ activity (Fig. 7). This is in contrast to the 
Paci model [54], which attributes maturation-dependent 

AP shortening of hiPSC-CM to ICa,L and IKr dynamics. AP 
shortening upon IK1 injection has indeed been shown previ-
ously in native cardiomyocytes [72], in hiPSC-CMs [4, 70], 
and in silico models [14]. To our knowledge, we provide 
the first evidence of maturation-induced IK1 mediation of 
APD shortening in hiPSC-CM. This finding, along with our 
accompanying iMATURE maturation simulation software, 
could provide insight into the heterogeneous AP profiles 
which are regularly reported within and between hiPSC-
CM cohorts. Future innovative studies promoting hiPSC-
CM maturation should focus similarly on IK1 development 
as this will be a key component in optimising hiPSC-CM for 
widespread screening initiatives [25].

Potential implications

Inherent variability in hiPSC-CM function hinders reliable 
quantification of average behaviour. In silico modelling has 
emerged as a powerful solution to link dispersed data sets 
and precisely define cellular parameters that contribute to 
experimentally observed heterogeneity. The recent state-of-
the-art Kernik hiPSC-CM model integrates a wide range of 
experimental data by building a predictive array of cellular 
variability that allows for detailed investigation of cellular 
electrophysiology and underlying causal mechanisms of 
phenotypical heterogeneity [36]. Despite the availability of 
several useful hiPSC-CM models, none has comprehensively 
considered the ages of the hiPSC-CM used in the underly-
ing experimental data. Using our own experimental findings 
and the framework of the Kernik model, we present the first 
hiPSC-CM model in which minimal parameter change can 
reproduce a wide range of electrophysiological properties 
of early- and late-stage hiPSC-CM (Online Figs. S4–S8). 
To facilitate analyses of maturation-dependent effects, our 
model has been integrated into an open-source interface, 
iMATURE, which allows the user to manually select the 
age of hiPSC-CM post differentiation and receive predic-
tive readouts of AP morphology and ion channel dynam-
ics over their specified age range. This platform also allows 
for manual modulation of individual ion channels and Ca2+ 
fluxes at any cellular age between 21 and 80 days post dif-
ferentiation, enabling the investigation of age-dependent 
responses to hypothetical cardiotropic compounds (Fig. 8). 
Increased understanding of the impact of time-dependent 
phenotypic changes in hiPSC-CM is expected to contribute 
to standardisation of methodological techniques. Accord-
ingly, this may enhance the quality of hiPSC-CM platforms, 
reduce variability in functional readouts, and promote effi-
cient outlets for personalised medicine and streamline drug 
development [21].
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Potential limitations

In addition to prolonged cultivation times, strategies to 
enhance hiPSC-CM maturity include the adoption of appro-
priate cardiac differentiation protocols [6], culture substrates 
[23] and the application of mechanical, chemical or electri-
cal stress to hiPSC-CM embedded in 3D hydrogels or fibrin 
blocks to more closely replicate the in vivo environment 
[35, 57, 68]. From an electrophysiological point of view, 2D 
cultivation strategies seem to be particularly limited with 
respect to the slow upstroke velocity of the AP, which is 
a common finding in all studies (Table 1). In contrast, 3D 
culture strategies seem to provide a promising improvement 
showing faster AP upstroke velocities (Table 2) [46]. It is 
important to note that the concept of hiPSC-CM matura-
tion is a broad paradigm which also encompasses molecular, 
metabolic and structural properties [47]. Previous reports 
of hiPSC-CM maturation indeed show structural elongation 
and heightened sarcomere organisation, resembling the clas-
sical rod shape of cardiomyocytes [33, 49]. We observed 
highly heterogeneous morphological features in our develop-
ing cellular cultures with both rod-like and rounded cells. 
Measuring individual cells in sparsely seeded monolayers 
is essential for gathering true electrophysiological read-
outs; however, this environment is inherently artificial due 
to severely decreased cell-to-cell communication. Therefore, 
various external paracrine effects and electrical stimuli may 
not play a major role in the development of our cells [37]. 
Our differentiation technique enables a baseline assessment 
of cellular function under fully defined culture conditions. 
Further studies using targeted maturation-enhancing tech-
niques can, therefore, build upon this foundation.

In addition to the remodelling characterised in the present 
study, other currents may contribute to hiPSC-CM electrical 
development and age-dependent action potential shortening. 
Cardiac currents such as t-type calcium current (ICa,T), If, 
transient-outward K+ current (Ito) or the slow component of 
the delayed-rectifier K+ current (IKs) were not experimen-
tally quantified, although they are present within the Kernik 
hiPSC-CM computer model [36] that our work is based on. 
Previous studies have identified a large role for IKs and IKr 
in the maintenance of repolarization reserve in adult human 
cardiomyocytes [5, 32]. During our experimental examina-
tion of IK1 block on AP duration, we cannot exclude the 
possibility that our high concentration of BaCl2 could also 
cause unspecific inhibition of the delayed-rectifier K+ cur-
rents [32]. Following consolidation with our entire experi-
mental data set, our iMATURE platform is able to provide 
appropriate readouts of all cardiac-related currents and does 
not indicate a strong contribution of the delayed-rectifier K+ 
currents in age-related AP shortening in hiPSC-CM.

hiPSC-CMs also show regional subtype-specific traits 
that allow them to be classified as ventricular-, atrial- or 

nodal-like cardiomyocytes [29]. In the absence of an inter-
vention to direct subtype differentiation, for example by pro-
moting an atrial phenotype with retinoic acid, hiPSC-CM 
generally show predominantly ventricular traits, with mini-
mal mixing of other subtypes [10]. We cannot definitively 
state that our experimental data contains only ventricular-
like cells. Differences in ionic makeup of atrial and nodal 
cells influence their AP morphology and repolarisation pro-
file, which are, therefore, commonly utilised as functional 
markers of cellular subtype [13]. The repolarisation fraction 
provides an index of phase 3 AP kinetics and, in our hands, 
does not show evidence of atrial or nodal cell contamina-
tion in our experimental cohort. In addition, no significant 
change in repolarisation fraction was detected during matu-
ration, indicating the absence of a subtype-shift during pro-
longed culture as has been recently proposed [3].

Additionally, some potential limitations should be con-
sidered related to the computational modelling performed 
in this study. (1) Although we employed a widely used and 
well-validated state-of-the-art in silico model of hiPSC-
CM [36], the model dependence of our results cannot be 
excluded. (2) The intercellular heterogeneity of ion chan-
nel distribution and activity could potentially affect our 
observed AP properties. Here, we present a single deter-
ministic hiPSC-CM model without intercellular variability. 
Although we do identify an overall trend of age-dependent 
AP shortening in hiPSC-CM, future research should employ 
high-throughput electrophysiological techniques and multi-
ple populations of in silico hiPSC-CM models to properly 
capture and map this phenomenon.

Conclusions

In this study we have shown that hiPSC-CM under standard 
and simplified culture conditions show distinct alterations 
in electrical function and Ca2+ handling over extended time 
periods. Key ionic currents such as ICa,L and IK1, crucial 
for homeostatic cellular function, show increased functional 
expression in older hiPSC-CM cultures, with the latter likely 
contributing to maturation-dependent AP shortening. Our 
experimental data fit well within established in silico frame-
works, and our new user interface software allows for easy 
and rapid analysis of an optimal temporal ‘window’ in which 
disease modelling or assessments of proarrhythmic risk can 
be effectively performed, thus minimising heterogeneity 
between functional readouts.
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