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Abstract
Treatment options for myocarditis are currently limited. Inhibition of calpains has been shown to prevent Coxsackievirus B3 
(CVB3)-induced cardiac injuries, but the underlying mechanism of action of calpains has not been elucidated. We investigated 
whether NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome participated in CVB3-induced myocarditis, 
and investigated the effects of calpain-1 on CVB3-induced cardiac injury. NLRP3 inflammasome was activated in CVB3-
infected hearts, evidenced by elevated protein levels of NLRP3, N-terminal domain of Gasdermin D, and cleaved caspase-1, 
and the increased co-localization of NLRP3 and apoptosis-associated speck-like protein. The intraperitoneal administration 
of MCC950, a selective inhibitor of the NLRP3 inflammasome, led to decreased levels of serum creatine kinase-MB, cardiac 
troponin I, lactate dehydrogenase, interleukin-18, interleukin-1β, prevention of the infiltration of inflammatory cells, and 
improvement of cardiac function under CVB3 infection. Transgenic mice overexpressing the endogenous calpain inhibitor 
calpastatin (Tg-CAST mice) exhibited not only decreased apoptosis, inflammation, fibrosis, and enhanced cardiac function 
but also inhibition of NLRP3 inflammasome and pyroptosis. The selective inhibition of calpain-1 using PD151746 protected 
cardiomyocytes in vitro from CVB3 infection by downregulating NLRP3 inflammasome and, thus, preserved cell viability. 
Mechanistically, we showed that mitochondrial dysfunction preceded inflammatory response after CVB3 treatment and 
elimination of mitochondrial reactive oxygen species (ROS) using mitochondria-targeted antioxidants (mito-TEMPO) recapi-
talized the phenotype observed in Tg-CAST mice. Furthermore, the promotion or inhibition of calpain-1 activation in vitro 
regulated the mitochondrial respiration chain. Mito-TEMPO reversed calpain-1-mediated NLRP3 inflammation activation and 
cell death. We also found that mitochondrial calpain-1, which was increased after CVB3 stimulation, activated the NLRP3 
inflammasome and resulted in cell death. Furthermore, ATP synthase-α (ATP5A1) was revealed to be the cleaving target of 
calpain-1 after CVB3 treatment. Downregulating ATP5A1 using ATP5A1-small interfering RNA impaired mitochondrial 
function, decreased cell viability, and induced NLRP3 inflammasome activation. In conclusion, CVB3 infection induced 
calpain-1 accumulation in mitochondria, and led to subsequent ATP5A1 cleavage, mitochondrial ROS overproduction, and 
impaired mitochondrial function, eventually causing NLRP3 inflammasome activation and inducing pyroptosis. Therefore, 
our findings established the role of calpain in viral myocarditis and unveiled its underlying mechanism of its action. Calpain 
appears as a promising target for the treatment of viral myocarditis.
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Introduction

Myocarditis is an inflammatory disease of the heart fre-
quently resulting from viral infections and/or post-viral 
immune-mediated responses [52]. Although most individu-
als affected with myocarditis recover, up to 20% of these 
patients develop chronic myocarditis, leading to dilated 
cardiomyopathy (DCM) and congestive heart failure [13]. 
Myocarditis has been identified as the third leading cause 
(6%) of cardiovascular deaths in young athletes, next only to 
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coronary artery abnormalities (17%) and hypertrophic car-
diomyopathy (36%) [34, 50]. Although remarkable progress 
in the diagnosis, pathophysiological mechanisms, and treat-
ment of acute myocarditis have been made in the last few 
years, there exist no standard treatment strategies for acute 
myocarditis besides standard heart failure therapy and physi-
cal rest. Myocarditis is often triggered by infections caused 
by common viruses, mostly enteroviruses like Coxsackievi-
rus B3 (CVB3), that have a predilection to entry into the 
myocardium. The pathophysiology of myocarditis in humans 
is not completely understood, but animal models of viral 
myocarditis predict a maladaptive post-viral immune-medi-
ated response, which leads to eventual myocardial cell dys-
function and compromised contractility [22]. Immunosup-
pressive and immunomodulatory therapies have been shown 
to be beneficial in several randomized controlled trials [42], 
however, the immune mechanisms underlying the develop-
ment of viral myocarditis need to be further investigated.

Pyroptosis is a form of necrotic and inflammatory pro-
grammed cell death, initiated by the canonical caspase-
1-dependent and noncanonical caspase-4/5/11-mediated 
(human caspase-4/5 and murine caspase-11) pyroptosis 
pathways [59], of which the canonical pathways are usually 
activated within an inflammasome. An inflammasome is a 
macromolecular protein complex composed of inflammas-
ome-initiating sensors (NLRP1, NLRP3, NLRC4, AIM2, or 
pyrin) and inflammatory caspases, in the presence or absence 
of the inflammasome adaptor protein apoptosis-associated 
speck-like protein (ASC) [33]. The NLR protein-3 (NLRP3) 
inflammasome is currently the most well-characterized 
inflammasome. Diverse stimuli, including pathogen-asso-
ciated molecular patterns and damage-associated molecular 
patterns (DAMPs), can activate the NLRP3 inflammasome, 
which consists of NLRP3, ASC, and pro-caspase-1. Once 
activated, the NLRP3 inflammasome can recruit pro-cas-
pase-1. Procaspase-1 activation leads to its auto-cleavage 
into its p20 and p10 subunits, which then cause cleavage of 
interleukin-1β (IL-1β) and interleukin-18 (IL-18), and cleav-
age of gasdermin D, generating an N-terminal fragment that 
oligomerizes to form pores on the host cell membrane, lead-
ing to the lytic demise of the cell and release of cytokines 
[18]. In recent years, the NLRP3 inflammasome has been 
shown to contribute to the development of many cardiovascu-
lar diseases, including diabetic cardiomyopathy, myocardial 
infarction, and MI/R injury [48], as well as myocarditis [55]. 
Inflammasome activation serves as a crucial innate immune 
mechanism that protects the host from a wide variety of viral 
infections. Previous studies reported that the NLRP3 inflam-
masome participates in coxsackievirus B3-induced myocar-
ditis, and modulation of inflammasome activation may be 
a promising therapeutic strategy for viral myocarditis [55]. 
However, the precise mechanisms of regulation of NLRP3 

inflammasome in the development of viral myocarditis 
remain largely unknown.

The calpains are a well-conserved family of calcium-
dependent cysteine proteases that are expressed ubiquitously 
in all cells [15]. Calpains operate by processing proteins via 
interacting with a limited number of motifs to alter their 
structure and function [25]. At least 16 calpains have been 
described, of which calpain-1 and calpain-2 are most well 
characterized. Calpain activity in vivo is tightly regulated by 
its natural endogenous inhibitor calpastatin [46]. In a previ-
ous study, we demonstrated that calpain inhibition prevented 
viral replication and myocardial injury in CVB3-induced 
myocarditis [3]; however, the specific roles of calpain sub-
types in myocarditis and whether calpain acts in specific 
organelles remain to be explored. Activated calpain has 
been shown to release a pool of caspase-1 sequestered by 
the cytoskeleton to regulate NLRP3 activation [62]. As a 
result, we hypothesized that calpain-mediated regulation of 
the NLRP3 inflammasome may be involved in the pathogen-
esis of CVB3-induced myocarditis.

Therefore, in this study, we aimed to unveil the regulatory 
mechanism of calpain in the development of CVB3-induced 
myocarditis and explore the specific target of calpain, which 
may offer insights into novel cardioprotective therapeutic 
approaches for myocarditis treatment.

Methods

Virus and reagents

CVB3 used in this study was derived from the infectious 
cDNA copy of the cardiotropic Nancy strain and maintained 
at the Key Laboratory of Viral Heart Diseases, Zhongshan 
Hospital, Shanghai Medical College of Fudan University. 
Virus titer was routinely determined prior to infection by a 
50% tissue culture infectious dose (TCID50) assay of Hela 
cell monolayer.

MCC950 (Catalog no.: HY-12815), Mito-TEMPO 
(Catalog no.: HY-112879), and PD151746 (Catalog 
no.: HY-19749) were purchased from MedChemExpress 
(America, New Jersey) and dissolved as per the manu-
facturer’s instructions. The concentrations of the drugs 
used in this study were as follows: MCC950, 10 mg/kg 
i.p. daily for 6 days; Mito-TEMPO, 0.7 mg/kg i.p. daily 
for 6 days; PD1517446, 20 μmol/L; Mito-TEMPO, 10 nM 
for cells.

The cell counting kit-8, enhanced ATP assay kit, and 
mitochondrial membrane potential assay kit with JC-1 were 
purchased from Biyotime (China). Cardiomyocytes isola-
tion kit, DHE (Dihydroethidium) assay kit, Lipofectamine™ 
RNAiMAX, and MitoSOX™ red mitochondrial superoxide 
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indicator were purchased from Invitrogen (America). Mito-
chondria isolation kit for tissue or cultured cells was pur-
chased from Abcam (America). ELISA kit for mouse cre-
atine kinase-MB (CK-MB), lactate dehydrogenase (LDH), 
cardiac troponin I (cTnI), IL-18, and IL-1β were purchased 
from MULTI SCIENCES (China).

Animals

The calpastatin transgenic mouse strain (Tg-CAST; 
C57BL/6 background) was introduced from the laboratory of 
Sidong Xiong (Soochow University, China) and was crossed 
with Balb/c background mice for at least eight generations 
to obtain transgenic mice with Balb/c background. All lit-
termates were genotyped following a previous protocol [4]. 
Male mice were used. To induce viral myocarditis, mice 
aged 4–5 weeks were intraperitoneally injected with CVB3 
(105 TCID50, 300 μL) as previously described [28], while 
mice in the sham group were injected with the same amount 
of phosphate-buffered saline (PBS). In mice co-treated with 
inhibitors, inhibitors were injected intraperitoneally, starting 
at 2 days before CVB3 infection. Mice were divided into the 
following three sets of groups:

1. Wild-type (WT) mice intraperitoneally injected 
with PBS (Sham group), or CVB3 (CVB3 group), or 
MCC950 followed by CVB3 (CVB3 + MCC950 group).

2. WT mice or Tg-CAST mice intraperitoneally injected 
with PBS (WT + sham group and Tg-CAST + sham 
group, respectively), or with CVB3 (WT + CVB3 group 
and Tg-CAST + CVB3 group, respectively).

3. WT mice intraperitoneally injected with PBS (Sham 
group) or CVB3 (CVB3 group), or mito-TEMPO fol-
lowed by CVB3 (CVB3 + mito-TEMPO group).

All mice were bred in the Department of Laboratory Ani-
mal Science, Fudan University in a standard specific path-
ogen-free (SPF) environment, and all animal experiments 
were performed in accordance with the local institutional 
guidelines and regulations of the Ethical Committee of 
Fudan University and conformed to the Directive 2010/63/
EU of the European Parliament. Mice were euthanized 
by pentobarbital (150 mg/kg) overdose by intraperitoneal 
injection.

Cell isolation and culture

Neonatal rat cardiomyocytes (NRCMs) were isolated from 
1- to 3-day-old Sprague–Dawley rats using a cardiomyocyte 
isolation kit (Thermo Fisher Scientific, America) accord-
ing to the manufacturer’s instructions. Briefly, hearts were 
removed from the thorax after euthanizing mice by decapita-
tion, and the ventricles were finely minced and digested in 

the mixed enzyme solution from the kit for 30–35 min. To 
remove cardiac fibroblasts, dispersed cells were pre-plated 
for 1.5 h, and the supernatant containing cardiomyocytes 
was separated and cells were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 10% 
fetal bovine serum (LONSERA A511-001, ShuangRu Bio-
tech.), 1% penicillin/streptomycin, 10 μM cytosine 1-β-d-
arabinofuranoside (Ara C) at 37 °C in a 5% CO2 incuba-
tor. The NRCMs were seeded at a density of 1.2 ×  105/
cm2, except for immunofluorescence staining, in which the 
cell density was 0.8 ×  105/cm2. After 24 h, the media were 
replaced with culture media (M199 media supplemented 
with 1% ITS, 1% penicillin/streptomycin, and 10 μM Ara 
C). The human cardiomyocyte cell line AC16 was cultured 
in DMEM supplemented with 10% FBS and 1% penicillin/
streptomycin. For CVB3 infection, NRCMs or AC16 cells 
were incubated with CVB3 in serum-free media for 2 h at 
37 °C, following which they were washed with PBS and 
cultured in culture media.

Western blot analysis

After different treatments, the cells were incubated with 
RIPA lysis buffer containing a protease inhibitor cock-
tail on ice for 10 min. Cell lysates were then harvested by 
scraping, followed by brief sonication and centrifugation 
at 12,000 × g for 10 min at 4 °C. The protein concentra-
tion was determined via the BCA assay. Equal amounts of 
protein were separated by SDS/PAGE and the bands were 
electroblotted onto PVDF membranes. The membranes were 
blocked with 5% non-fat milk dissolved in TBST and then 
incubated with appropriate primary antibodies overnight 
at 4 °C. The following primary antibodies were used: anti-
NLRP3 (1:1000, Abcam), anti-Gasdermin D-N-terminal 
(1:1000, Invitrogen), anti-caspase-1 (1:1000, Invitrogen), 
anti-cleaved caspase-1 (1:1000, Invitrogen), anti-GAPDH 
(1:10000, Abcam), α-Fodrin (1:1000, Cell Signaling Tech-
nology), anti-ATP5A1 (1:1000, Invitrogen), Calpastatin 
(1:500, ABclonal), and Flag (1:1000, Abcam). The mem-
branes were then incubated with the following horseradish 
peroxidase-conjugated secondary antibodies: HRP-labeled 
goat anti-rabbit IgG and HRP-labeled goat anti-mouse IgG 
purchased from Proteintech (1:5000, America). The immu-
nofluorescent bands were then visualized and quantified 
using an ECL chemiluminescence kit (Absin, Shanghai, 
China) and a chemiluminescence–western blotting detec-
tion system (Tanon, Shanghai, China).

Immunofluorescence or immunohistochemistry 
staining

Paraffin-embedded heart tissues were cut into 3-µm-thick 
sections, deparaffinized, and rehydrated using xylol and a 
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graded alcohol series prior to staining, after which antigen 
retrieval was performed using antigen retrieval solution 
(Beyotime, China) for 20 min at 98 °C. The slides were 
then blocked with 1% BSA in PBS at room temperature 
for 30 min and incubated with a primary antibody at 4 °C 
overnight. For immunofluorescence staining, fluorescence-
labeled secondary antibodies were added and incubated at 
room temperature for 1 h. The cell nucleus was visualized 
using DAPI staining. For immunohistochemistry staining, 
endogenous tissue peroxidase activity was quenched with 
3%  H2O2 for 20 min. The slides were then treated with the 
Vectastain Elite ABC Kit (Avidin/Biotin/Horseradish Per-
oxidase-System (Vector Laboratories) after primary anti-
body incubation. The peroxidase reaction was visualized 
using 3,3′-diaminobenzidine tetrahydrochloride (DAB) and 
slides were counterstained with hematoxylin. For cell stain-
ing, cardiomyocytes were plated in 35-mm glass dishes and 
subjected to the designed treatments. The cells were then 
washed with PBS and fixed with 4% paraformaldehyde for 
20 min at room temperature, following which they were 
washed with PBS three times, incubated with 0.2% Triton 
X-100 for permeabilization for 15 min, and then blocked 
in 1% BSA for 1 h. The cells were subsequently incubated 
with specific primary antibodies overnight at 4 °C. The 
next day, the cells were washed with PBS, incubated with 
fluorescence-conjugated secondary antibodies (Beyotime, 
China), and subjected to DAPI (5 ug/mL, share-bio, China) 
staining. Images were captured using a fluorescence micro-
scope. The primary antibodies used with dilution factors 
are as follows: anti-NLRP3 (1:200, Abcam), anti-ASC 
(1:200, Abcam), anti-cleaved caspase-1 (1:200, Invitro-
gen), anti-calpain-1 (1:200, Invitrogen), anti-COX IV 
(1:200, Invitrogen), anti-CD4 (1:200, Abcam), and anti-
F4/80 (1:200, Abcam).

Transmission electron microscopy

Ventricular tissues were fixed in 2.5% glutaralde-
hyde/0.05 mol/L cacodylate solution, postfixed with 1% 
osmium tetroxide, and embedded in EmBed812. Ultrathin 
sections (70 nm) were poststained with uranyl acetate and 
lead citrate and examined using the Talos F200X FEG trans-
mission electron microscope (FEI, Hillsboro, OR) at 80 kV. 
Digital electron micrographs were recorded using the TIA 
software (FEI).

Hematoxylin–eosin (HE) and Masson’s trichrome 
staining

HE and Masson’s trichrome staining were performed as 
previously described [32]. Mice hearts were embedded in 

paraffin and then cut into 5-μm-thick serial sections. The 
sections were dyed with HE and Masson’s trichrome using 
standard protocols.

TUNEL staining

Terminal deoxynucleotidyl transferase-mediated dexoxyur-
idine triphosphate nick-end labeling (TUNEL) staining was 
performed using the In Situ Cell Death Detection Kit (Roche, 
Switzerland) following the manufacturer’s instructions. 
Apoptotic nuclei were labeled with green fluorescein staining 
and total cardiomyocyte nuclei were stained with DAPI. The 
pictures of heart tissues were obtained using immunofluo-
rescence microscopy. The rate of apoptosis was calculated as 
the ratio of TUNEL-positive nuclei to DAPI-stained nuclei.

Echocardiography

Echocardiography was performed under anesthesia using 
the Vevo770 imaging system (VisualSonics Inc., Toronto, 
ON, Canada) with a 30-MHz high-frequency scan head, 
and the ejection fraction (EF) and fractional shortening 
(FS) were obtained.

Detection of reactive oxygen species (ROS)

Hearts were perfused with ice-cold PBS and removed 
quickly, following which the hearts were embedded in 
OCT and snap-frozen in liquid nitrogen. 5-µm-Thick 
sections were then stained with dihydroethidium (DHE, 
Invitrogen) for 15 min followed by DAPI staining (1 µg/
ml, Sigma). Pictures were captured using a fluorescence 
microscope. The percentage of DHE-positive nuclei was 
calculated as the indication of ROS levels.

Small interfere RNA transfection

Downregulation of rat ATP5A1 in NRCMs was achieved 
using the following siRNA from RIBOBIO: GAT CAT CTA 
TGA CGA CTT A. NRCM suspension was transfected with 
siRNA-ATP5A1 (siATP5A1) or siRNA-Scramble (siCT) 
when plated following Lipofectamine™ RNAiMAX as the 
reverse transfection protocol.

Adenoviral constructions and transfection

To overexpress calpain-1 in NRCMs, the full-length cDNA 
sequence of rat calpain-1 catalytic subunit (CAPN1) was 
inserted into the pADV-mCMV-MCS-3xFLAG adenoviral 
vector from OBiO Technology. NRCMs were infected with 
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adenovirus containing CAPN1 (Ad-CAPN1) and the con-
trol adenovirus (Ad-CT) in media without penicillin/strep-
tomycin or FBS for 6 h, and the media were then changed 
to culture media for 48 h before the next operation.

Measurement of oxygen consumption rate

XFe96 extracellular flux analyzer (Seahorse Bioscience) 
was used to measure the oxygen consumption rate (OCR) of 
NRCMs after indicated treatments as described previously 
[47]. Briefly, NRCMs were plated on a 1% gelatin-coated 
Seahorse 96-well plate at a density of 1.2 × 105/cm2. After the 
NRCMs were treated, metabolic profiles of OCR were detected 
by adding 1 µM oligomycin (Oligo), 1 µM FCCP, and a mix 
of 1 µM rotenone and 1 µM antimycin A (RAA). Oxidative 
phosphorylation indexes were calculated as follows:

Basal respiration = (average OCR pre-Oligo)—(average 
OCR post- RAA).

ATP-linked respiration = (average OCR pre-Oligo)—
(average OCR post-Oligo).

Maximal respiration = (average OCR post-FCCP)—(aver-
age OCR post-RAA).

Co‑immunoprecipitation

NRCMs were lysed using NP40 lysis buffer supplemented 
with protease inhibitor. The cell lysates were mixed with 
anti-IgG (cell signaling technology), anti-calpain-1 (Inv-
itrogen), anti-Flag (Abcam), and anti-ATP5A1 (Abcam) 
antibody that was preincubated with Protein A/G Magnetic 
Beads (MedChemExpress) overnight at 4 °C. Coprecipitates 
with primary antibody were separated by SDS-PAGE fol-
lowed by mass spectrometry or incubation with non-heavy 
chain IgG secondary antibody.

Statistical analysis

Data are presented as the means ± SEM. Statistical analysis 
between groups was performed using an unpaired Student’s 
t test. Differences among multiple groups were tested using 
one-way ANOVA or two-way ANOVA, followed by Bonfer-
roni’s post hoc test using GraphPad Prism (GraphPad Prism 
8 Software Inc, San Diego, CA). Differences were considered 
significant at P < 0.05, P < 0.01, P < 0.001, and P < 0.0001.

Results

MCC950 inhibited CVB3‑induced pyroptosis 
and inflammation and preserved cardiac function

Although NLRP3 inflammasome activation and pyropto-
sis have been reported in the pathology of CVB3-induced 

myocarditis, direct inhibition of NLRP3 inflammasome 
to investigate the role of NLRP3 in myocarditis has not 
been conducted. Administration of MCC950, a selective 
inhibitor of the NLRP3 inflammasome, before CVB3 
infection, led to decreased protein levels of NLRP3, 
N-terminal domain of Gasdermin D (Gasdermin D-NT), 
and cleaved caspase-1 (c-caspase-1) (Fig. 1A). Immuno-
fluorescence density of c-caspase-1 was decreased in the 
heart sections from mice treated with MCC950 and CVB3 
compared to that from CVB3 infection alone, consistent 
with the result from western blot (Fig. 1B). Importantly, 
co-localization of NLRP3 and ASC was inhibited sig-
nificantly with MCC950 administration, suggesting the 
reduced platform formation of NLRP3 inflammasome 
(Fig. 1C). Pyroptosis status was assessed using ELISA 
assay, and showed that levels of serum CK-MB, LDH, 
cTnI, IL-18, and IL-18β were increased after CVB3 stimu-
lation, but these effects were reversed by MCC950 treat-
ment (Fig. 1D, E, F, G, H). Furthermore, the infiltration 
of CD4-positive T lymphocytes and F4/80-positive mac-
rophages induced by CVB3 infection was less obvious in 
the CVB3 + MCC950 group (Fig. 1I). Furthermore, the 
CVB3 + MCC950 group showed significantly improved 
cardiac function by decreasing the ejection factor (EF) and 
fractional shortening (FS) compared with the CVB3 group 
(Fig. 1J). Moreover, cardiomyocyte viability was higher in 
the CVB3 + MCC950 than in the CVB3 group, suggesting 
that MCC950-mediated inhibition of NLRP3 inflamma-
some activation reduced CVB3-induced death (Fig. 1K).

Calpastatin overexpression inhibited CVB3‑induced 
apoptosis, fibrosis, and inflammation, and improved 
cardiac dysfunction

To further uncover the mechanism underlying the effects of 
calpain in CVB3-induced myocarditis, we induced myocar-
ditis in Tg-CAST mice overexpressing the calpain inhibi-
tor calpastatin and their WT littermates by CVB3 injec-
tion. High expression of calpastatin in heart tissue from 
Tg-CAST mice was validated first (Fig. 2A). As α-Fodrin 
at 145/150 kDa is the degradation product of activated cal-
pain, the levels of α-Fodrin at 145/150 kDa were detected to 
confirm the activation of calpain. As shown in Fig. 2A, on 
day 7 post-CVB3 injection, α-Fodrin at 145/150 kDa was 
substantially increased in the WT + CVB3 group, while it 
was decreased in the Tg-CAST + CVB3 group, suggesting 
the inhibitory effect of calpastatin overexpression on calpain 
activation. TUNEL staining showed an increased number 
of TUNEL-positive cells in the WT + CVB3 group than in 
the Tg-CAST + CVB3 group (Fig. 2B). Results from HE 
staining indicated that calpastatin overexpression inhib-
ited CVB3-induced inflammatory responses presented by 
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less infiltrating inflammatory cells and necrosis foci in the 
Tg-CAST + CVB3 group than in the WT + CVB3 group 
(Fig. 2C). The infiltration of CD4-positive T lymphocytes 
and F4/80-positive macrophages after CVB3 infection was 
also decreased in heart tissues from Tg-CAST mice than 
in those from WT mice (Fig. 2D). Long-term CVB3 infec-
tion leads to cardiac fibrosis and cardiac dysfunction. Mas-
son staining of heart tissue sections (Fig. 2E) revealed that 
cardiac fibrosis increased remarkably 1 month post-CVB3 
infection in WT mice but not in Tg-CAST mice. Further 
assessment of cardiac function via echocardiography rein-
forced this finding. CVB3 infection led to obvious car-
diac dysfunction in WT mice, presented as decreased left 
ventricle EF and FS, whereas calpastatin overexpression 
in Tg-CAST mice remarkably improved cardiac function 
(Fig. 2F). Therefore, calpain inhibition in vivo not only 
protected mice hearts from CVB3 infection-induced cell 
apoptosis and inflammatory responses in the acute phase but 
also protected mice hearts from cardiac fibrosis and cardiac 
dysfunction in the long term.

Calpastatin overexpression inhibited NLRP3 
inflammasome and pyroptosis after CVB3 infection

Next, we determined whether calpain played a role in the 
activation of the NLRP3 inflammasome. Tg-CAST mice 
showed decreased levels of NLRP3, gasderminD-NT, 
and c-caspase-1 significantly, compared to WT mice after 
CVB3 infection (Fig. 3A). Immunofluorescence staining 
also showed that calpastatin overexpression in the Tg-
CAST + CVB3 group inhibited the expression of c-cas-
pase-1, ASC, NLRP3, and the co-localization of ASC and 
NLRP3 (Fig.  3B, C). Moreover, the Tg-CAST + CVB3 
group showed lower levels of serum CK-MB, LDH, cTnI, 
IL-18, and IL-1β, indicative of less pyroptosis (Fig. 3D, E, 
F, G, H). To validate our findings in vivo and determine if 

calpain-1 was the dominant calpain in CVB3-induced myo-
carditis, we treated neonatal rat cardiomyocytes with the 
calpain-1 selective inhibitor PD151746 after CVB3 infec-
tion. PD151746 treatment decreased the levels of α-Fodrin 
at 145/150 kDa, confirming that the activation of calpains 
was strikingly inhibited by PD151746 (Fig. 3I). Further-
more, PD151746 treatment decreased the levels of NLRP3, 
Gasdermin D-NT, and c-caspase-1 that were elevated in car-
diomyocytes after CVB3 infection (Fig. 3I). Additionally, 
PD151746 protected cardiomyocytes from CVB3-induced 
cell death (Fig. 3J). These findings confirmed that calpain-1 
is the main calpain in CVB3-induced myocarditis. Over-
all, the results of in vivo and in vitro experiments suggest 
that inhibition of the activation of calpains in the setting of 
CVB3 infection could block the activation of the NLRP3 
inflammasome and suppress pyroptosis.

Mitochondrial‑targeted antioxidant (mito‑TEMPO) 
prevented inflammation, inhibited the NLRP3 
inflammasome, and improved cardiac function

The heart is the most energy-consuming organ, and mito-
chondria are essential for the maintenance and development 
of the myocardium [39]. Mitochondria integrate diverse sig-
nals and relay this information to the NLRP3 inflammasome, 
leading to downstream inflammatory responses [18]. There-
fore, we further investigated the effects of CVB3 on mito-
chondria function during the development of viral myocardi-
tis. HE staining revealed that on day 3 post-CVB3 infection, 
infiltrating inflammatory cells and necrosis foci could hardly 
be found, but on day 7 post-CVB3 infection, the myocardium 
presented severe cardiac inflammation and injury (Fig. 4A). 
However, transmission electron microscopy revealed that 
the alteration of mitochondrial morphology started on day 
3 post-CVB3 infection. The mitochondria were swollen 
showing the irregular arrangement and contained irregu-
larly arranged cristae, abnormal cristae, and an increased 
number of vacuoles (Fig. 4A). Therefore, the appearance 
of abnormal mitochondria, indicative of mitochondrial 
dysfunction, ahead of the inflammatory response may lead 
to inflammation in CVB3-induced myocarditis. Mitochon-
drial reactive oxygen species (ROS) production occurs after 
mitochondrial dysfunction, and ROS may serve as signaling 
molecules triggering pro-inflammatory responses in cardio-
myocytes [63]. mito-TEMPO is a nitroxide conjugated with 
a triphenylphosphonium moiety and a superoxide dismutase-
mimetic and acts like a mitochondrial superoxide scavenger. 
mito-TEMPO is used as a mitochondria-targeted antioxidant 
in cardiovascular diseases [6]. Intraperitoneal treatment of 
mice with mito-TEMPO before CVB3 infection decreased 
CVB3-induced mitochondrial ROS levels (Fig. 4B). Infil-
tration of CD4-positive T lymphocytes and F4/80-positive 
macrophages induced by CVB3 infection was also blocked 

Fig. 1  Mouse models of myocarditis were established by intraperi-
toneally injecting mice with CVB3. To inhibit NLRP3 inflamma-
some activation in CVB3-infected mice, MCC950 was administrated 
intraperitoneally at a dose of 10  mg/kg daily starting at the 2 days 
before CVB3 treatment. Assays were carried out at 7  days after 
CVB3 infection. A Representative image of western blotting results 
and the quantitative analysis of NLRP3, Gasdermin D-NT, pro-cas-
pase 1, c-caspase 1 in heart tissues. B, C Representative images of 
immunofluorescence staining showing the expression of c-caspase-1, 
NLRP3, and ASC in heart sections. D, E, F, G, H Levels of serum 
CK-MB, LDH, cTnI, IL-18, and IL-1β in mice subject to the indi-
cated treatments. I Representative images of immunohistochemistry 
staining showing the cardiac infiltration of CD4-positive T lympho-
cytes and F4/80-positive macrophages. J Echocardiography images 
and quantitative statistics of ejection fraction (EF) and fractional 
shortening (FS). N = 6 mice in each group. K NRCMs were treated 
with MCC950 or CVB3 infection or both MCC950 and CVB3. After 
48  h, CCK8 was used to assess cell viability in each group. N = 16 
replicates from three independent experiments

◂
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Fig. 2  CVB3-induced myocarditis models were constructed in cal-
pastatin overexpression mice (Tg-CAST) and their wild-type lit-
termates (WT). A Representative image of western blotting results 
and the quantitative analysis of calpastatin and α-Fodrin after 
CVB3 infection for 7 days. B Representative images and quantifica-
tion of TUNEL-positive cells in heart section after CVB3 infection 
for 7 days. Data were collected from 18 fields from six mice in each 
group. C HE staining of heart sections showing local changes in dif-

ferent mice after CVB3 infection for 7 days; bar = 100 µm. D Repre-
sentative images of immunohistochemistry staining showing cardiac 
infiltration of CD4 positive T lymphocytes and F4/80-positive mac-
rophages after CVB3 infection for 7 days; bar = 100 µm. E Masson’s 
trichrome staining of heart sections showing fibrosis after CVB3 
infection for 7 days.; bar = 500 mm. F Echocardiography images and 
quantitative statistics of EF and FS. N = 6 mice in each group
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by mito-TEMPO (Fig.  4C). Importantly, mito-TEMPO 
improved cardiac function, indicated by enhanced EF value 
and FS value (Fig. 4D). We then investigated if mitochon-
drial ROS was a causing factor of NLRP3 inflammasome 

activation. mito-TEMPO treatment decreased not only the 
CVB3-induced increase in the levels of gasdermin D-NT 
and c-caspase-1 (Fig. 4E) but also the increased levels of 
serum CK-MB, LDH, IL-18, and IL-1β (Fig. 4F, G, H, I, J). 

Fig. 3  NLRP3 inflammasome activation and pyroptosis in Tg-CAST 
and WT mice with or without CVB3 infection. A Representative 
image of western blotting results and the quantitative analysis of 
NLRP3, gasdermin D-NT, pro-caspase 1, and c-caspase 1 in heart 
tissues. B, C Representative images of immunofluorescence stain-
ing showing the expression of c-caspase-1, NLRP3, and ASC in each 
group. D, E, F, G, H Serum levels of CK-MB, LDH, cTnI, IL-18, 

and IL-1β. N = 6 mice in each group. NRCMs were treated with 
PD151746 or CVB3 or both PD151746 and CVB3 for 48 h. I Rep-
resentative image of western blotting results and the quantitative 
analysis of α-Fodrin, NLRP3, gasderminD-NT, pro-caspase-1, and 
c-caspase-1. N = 3 independent experiments. G CCK8 showing the 
viability of NRCMs after the indicated treatments. N = 24 from three 
independent experiments
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Fig. 4  To determine whether mitochondrial ROS participated in 
CVB3-induced myocarditis, mito-TEMPO at a dose of 0.7  mg/kg 
daily was administrated intraperitoneally starting at the 2 days before 
CVB3 treatment. Assays were conducted after CVB3 infection. A 
Representative images of HE staining and transmission electron 
microscopy showing changes in the histology and mitochondria of 
the heart on 3rd day or 7th day after CVB3 treatment. B DHE stain-
ing and quantification of positive DHE in nuclei. N = 4 mice from 

each group. C Representative images of immunohistochemistry stain-
ing showing cardiac infiltration of CD4-positive T lymphocytes and 
F4/80-positive macrophages. D Echocardiography images and quan-
titative analysis of EF and FS. E Representative image of western 
blotting results and quantitative analysis of gasdermin D-NT, pro-cas-
pase-1, and c-caspase-1. F, G, H, I, J Serum levels of CK-MB, LDH, 
cTnI, IL-18, and IL-1β in mice subjected to different treatments. 
N = 6 mice in each group
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In conclusion, these results suggest an association between 
mitochondrial ROS and NLRP3 inflammasome activation in 
CVB3-induced myocarditis.

Calpain‑1 regulated mitochondrial function 
and mito‑TEMPO reversed the calpain‑1‑mediated 
NLRP3 inflammasome activation

As our results suggested an association between mitochon-
dria dysfunction and inflammatory response in CVB3-
induced myocarditis, we examined the role of calpain 
in these processes. Transmission electron microscopy 
revealed that day 3 onwards, the Tg-CAST + CVB3 group 
overexpressing calpastatin showed alleviated mitochon-
dria structural damage, and well-organized mitochondria 
with more regularly arranged cristae and fewer vacuoles 
compared to the WT + CVB3 group (Fig. 5A). Moreover, 
as shown, CVB3 infection significantly decreased cardiac 
ATP production, while calpastatin overexpression reversed 
the impaired ATP production, although not significantly 
(Fig. 5B). Besides, cardiac ROS staining was less obvious 
in the Tg-CAST + CVB3 than in the WT + CVB3 group 
(Fig. 5C). The above results suggested a better mitochon-
drial function when calpain activity was inhibited in vivo. 
Furthermore, we also assessed mitochondrial function 
after CVB3 infection under the treatment of calpain-1 
inhibitor, PD151746. Mitochondrial membrane potential 
(Δψm) measurements by JC-1 staining showed that CVB3 
infection led to decreased Δψm indicated by a higher 
ratio of green/red fluorescence and the sole treatment 
of PD151746 did not affect Δψm, whereas PD151746 
treatment prevented Δψm loss under CVB3 infection 
(Fig. 5D). In addition, CVB3 infection decreased ATP 
production in cardiomyocytes, but PD151746 treatment 
reserved ATP production to a certain degree under CVB3 
infection (Fig. 5E). Next, we used MitoSOX Red probes to 
assay mitochondrial oxidative stress. As shown in Fig. 5F, 
CVB3 increased mitochondrial ROS production in car-
diomyocytes, which could be inhibited by PD151746. To 
detect the effects of Calapin-1 in cardiomyocytes more 
directly, we infected primary cardiomyocytes with ade-
novirus overexpressing calpain-1 conjugated with Flag 
(Ad-CAPN1). Ad-CAPN1 increased Flag expression dra-
matically, indicating high infection efficiency (Fig. 5G). 
Cardiomyocytes were treated with Ad-CAPN1 or control 
adenovirus (Ad-CT) for 48 h and were then infected with 
CVB3, or Ad-CT-infected cardiomyocytes were treated 
with CVB3 and PD151746, following which the oxygen 
consumption rate (OCR) was measured using the XFe96 
extracellular flux analyzer. Basal respiration, ATP-linked 
respiration, and the maximal respiration of mitochondria 

were inhibited under CVB3 treatment, while calpain-1 
overexpression with Ad-CAPN1 infection deteriorated 
these effects further. In contrast, PD151746 alleviated 
mitochondrial respiration impaired by CVB3 (Fig. 5H, 
I, J, K). Moreover, calpain-1 overexpression aggravated 
CVB3-induced cell death, whereas mito-TEMPO pre-
served cell viability (Fig. 5L). Similarly, the protein lev-
els of gasdermin D-NT and c-caspase-1 enhanced by cal-
pain-1 overexpression were decreased after mito-TEMPO 
incubation under CVB3 treatment (Fig. 5M). In conclu-
sion, calpain-1 regulated mitochondrial function under 
CVB3 treatment through mitochondrial ROS-mediated 
activation of the NLRP3 inflammasome.

Calpain‑1 accumulated in mitochondria after CVB3 
stimulation

We demonstrated that calpain inhibition improved mitochon-
drial dysfunction both in vivo and in vitro, which mediated its 
regulatory effects on NLRP3 inflammasome activation under 
CVB3 infection; however, the specific target of calpain-1 in 
cardiomyocytes remains unknown. Previous studies have 
described the mitochondrial localization of calpain members 
[16]; therefore, we assessed the cytosolic and mitochondrial 
localization of calpain-1 in cardiomyocytes under CVB3 
infection. Cytosolic and mitochondrial fractions were sepa-
rated in heart tissue, and then, the protein level of calpain-1 
was detected. The purity of mitochondria was confirmed 
by the absence of GAPDH and the enrichment of VDAC1, 
and the ratio of mitochondrial calpain-1 to cytosolic cal-
pain-1 was significantly higher in the CVB3-infected hearts 
(Fig. 6A). Consistent with the in vivo findings, immunofluo-
rescence staining showed that CVB3 infection promoted the 
co-localization of calpain-1 and mitochondria in cultured car-
diomyocytes (Fig. 6B) and that the protein levels of calpain-1 
after CVB3 infection were higher in the mitochondria than in 
the cytosol (Fig. 6C). Thus, the redistribution of intracellular 
calpain-1 may contribute to its effects under CVB3 infec-
tion. Next, AC16 cells were transfected with pCMV/myc/
mito-CAPN1 containing mitochondrial targeting signal or 
pCMV/myc/mito as a control. Calpain-1 overexpression was 
restricted in mitochondria (Fig. 6D). The overexpression of 
calpain-1 in mitochondria led to decreased AC16 cell viabil-
ity, which could be blocked by mito-TEMPO (Fig. 6E). Fur-
thermore, protein levels of gasdermin D-NT and c-caspase-1 
were increased by mitochondrial calpain-1 overexpression 
but inhibited by mito-TEMPO (Fig. 6F). Taken together, our 
data indicated that the cytosolic-to-mitochondrial transloca-
tion of calpain-1 after CVB3 stimulation was responsible for 
its regulation on cell viability and NLRP3 inflammasome 
activation.
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ATP5A1 is the cleaving target of calpain‑1

To further explore the direct target of calpain-1 in cardio-
myocytes under CVB3 infection, we overexpressed cal-
pain-1 in neonatal rat cardiomyocytes with Ad-CAPN1, 
followed with or without CVB3 infection, and then, the 
extracted proteins were co-immunoprecipitated with 

anti-Flag antibody or control anti-IgG antibody and sub-
jected to mass spectrometry. False-positive proteins, that 
is, the overlapping proteins between anti-Flag antibody-
immunoprecipitated proteins and the corresponding con-
trols, were screened out and eight proteins were identified 
to be immunoprecipitated by anti-Flag antibody in Ad-
CAPN1-infected cells, with or without CVB3 treatment 
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(Fig. 7A). Of these eight, ATP synthase-α (ATP5A1) is 
reported to be linked to ATP production, participating 
in mitochondrial function [37]. Therefore, we detected 
the expression of ATP5A1 in the WT + CVB3 and Tg-
CAST + CVB3 groups. We found that CVB3 infection 
decreased ATP5A1 expression in WT mice but not in Tg-
CAST mice (Fig. 7B), suggesting that activated calpain in 
response to CVB3 infection likely cleaves ATP5A1, lead-
ing to lower levels of functional ATP5A1 protein. Results 
from the in vitro experiment also showed that CVB3 infec-
tion decreased the levels of ATP5A1, while PD151746 
co-treatment reversed this phenomenon (Fig. 7C). Fur-
thermore, after treating NRCMs with CVB3, detectable 
ATP5A1 expression in anti-calpain-1 antibody-immuno-
precipitated sample and detectable calpain-1 expression in 
anti-ATP5A1 antibody-immunoprecipitated sample cor-
roborated that calpain-1 interacts with ATP5A1 in NRCMs 
(Fig. 7D, E). siATP5A1 was transfected into NRCMs to 
knock down ATP5A1 expression (Fig.  7I) and subse-
quent JC-1 staining and MitoSOX staining revealed that 
siATP5A1 decreased mitochondrial Δψm and increased 
mitochondrial ROS (Fig. 7F). ATP production was also 
reduced by ATP5A1 downregulation (Fig. 7G). In addi-
tion, compared to control siRNA, siATP5A1 reduced the 
viability of NRCMs (Fig. 7H), and promoted the activa-
tion of the NLRP3 inflammasome, as determined by the 
increased levels of gasdermin D-NT, and c-caspase-1 
(Fig. 7I).

Discussion

In this study, we demonstrated that calpain inhibition in vivo 
and in vitro alleviated CVB3-induced myocardial injuries 
by restraining the activation of the NLRP3 inflammasome. 
Furthermore, we established that mitochondrial function was 
altered by the effects of calpain-1 under CVB3 treatment 
due to calpain-1 translocation to mitochondria and cleav-
age of ATP5A1, leading to ATP synthesis deficiency, mito-
chondrial ROS overproduction, mitochondrial dysfunction, 
and subsequent activation of the NLRP3 inflammasome and 
pyroptosis (Fig. 8).

Mitochondria are cell organelles producing the major-
ity of ATP by the means of oxidative phosphorylation; 
thus, mitochondria are not only a source of ATP energy 
but also generators of reactive oxygen species (ROS) that 
cause oxidative damage. Several studies propose a bidirec-
tional link between mitochondrial malfunction, ROS, and 
chronic inflammatory diseases [49]. For example, mito-
chondrial dysfunctions have been unraveled in various 
autoimmune diseases, such as RA, SLE, and diabetes [9], 
while the expression of pro-inflammatory cytokines such 
as TNF-α, IL-6, and IL-1β is upregulated in the adipose 
tissues of obese and diabetic subjects [17]. Impressively, 
mitochondrion-derived DAMPs, such as mtDNA, can 
directly induce inflammatory changes in microglial and 
neuronal cells [58]. In addition, mitochondrial DNA that 
escapes from autophagy cell autonomously leads to Toll-
like receptor (TLR) 9-mediated inflammatory responses 
in cardiomyocytes and can induce myocarditis and dilated 
cardiomyopathy [38], indicating that signals from mito-
chondria can modulate the inflammatory response. How-
ever, the causal relationship between mitochondrial dys-
function and disease induction or maintenance is still 
unclear. Implications of mitochondrial abnormity in viral 
myocarditis have also been reported. Previous studies 
showed that enterovirus replication in hearts induced mito-
chondrial apoptotic pathways in patients with acute myo-
carditis [54], and mitochondrial membrane phospholipid 
localization and mtDNA deletion rate were impaired in the 
myocardium after CVB3 infection [57]. Moreover, regulat-
ing mitochondrial function alleviated CVB3-induced myo-
carditis. Inhibiting mitochondrial permeability transition 
pore opening through cyclosporin A treatment reduced 
Abcc6-dependent cardiac necrosis and calcification fol-
lowing CVB3 infection in mice [35]. Furthermore, curtail-
ing excessive mitochondrial fission with Dynamin-related 
protein 1 inhibitor rescued myocardial injury induced by 
CVB3 [44]. However, the precise molecular mechanisms 
underlying the association between mitochondria and 
myocarditis development need to be investigated further. 
In this study, we showed that mitochondrial abnormity 

Fig. 5  A Transmission electron microscopy images showing the 
structure of cardiac mitochondria subjected to different treatments. 
B Relative ATP levels in the heart of WT or Tg-CAST mice with or 
without CVB3 infection for 7 days. N = 6 mice in each group. C Rep-
resentative images of DHE staining. After oxidization, DHE interca-
lates into DNA and stains the nuclei red. The percentages of DHE-
positive cells were quantified. N = 4 mice. D Representative images 
of JC-1 staining of NRCMs showing the mitochondrial membrane 
potential in each group. N = 3 independent experiments. E Relative 
ATP levels in NRCMs after treatment with CVB3 or PD151746. 
N = 3 independent experiments. F Representative images of mito-
chondrial ROS in NRCMs stained by mitoSOX indicator. N = 3 
independent experiments. G NRCMs were infected with CAPN1-
expressing adenovirus (Ad-CAPN1) or control adenovirus (Ad-CT) 
at an MOI (multiplicity of infection) of 50 for 48 h, and the Flag-tag 
was then detected by western blotting to show the effective infec-
tion of Ad-CAPN1. N = 3 independent experiments. H NRCMs were 
infected with Ad-CT or Ad-CAPN1 for 48 h with or without CVB3 
treatment. PD151746 was added to some cells to inhibit the activa-
tion of calpain-1. After treatment, oxygen consumption rate (OCR) 
was detected using the Seahorse platform. I Basal respiration; J 
ATP-linked respiration; K maximal respiration. N = 17 replicates 
in each group. L NRCMs were infected with Ad-CT or Ad-CAPN1 
for 48 h with or without CVB3 treatment. Mito-TEMPO was added 
to NRCMs treated with Ad-CAPN1 and CVB3. CCK8 shows cell 
viability. N = 16 replicates from three independent experiments. M 
Representative image of western blotting bands and the quantitative 
analysis of gasdermin D-NT, pro-caspase-1, and c-caspase-1 under 
different treatments. N = 3 independent experiments

◂



 Basic Research in Cardiology (2022) 117:40

1 3

40 Page 14 of 20

appeared ahead of the inflammatory response during early 
CVB3 infection, indicating a potential causal relationship 
between CVB3-induced mitochondrial dysfunction and 
cardiac inflammatory injuries and that mitochondria acts 
as a mediator between activated calpain and cardiac inju-
ries under CVB3 infection. Moreover, consistent with the 
previous conclusion that mitochondria integrate diverse 
signals and cause NLRP3 inflammasome activation lead-
ing to downstream inflammatory responses [53], the pre-
sent study suggested that mitochondria dysfunction was an 
upstream signal to NLRP3 inflammasome activation in the 
context of CVB3-induced myocarditis. Thus, manipulating 
mitochondrial function during myocarditis might serve as 
a therapeutic target to improve cardiac function and inhibit 
the development of myocarditis to DCM.

Calpains are cytosolic calcium-activated cysteine pro-
teases. Emerging data have suggested their participation in 
heart failure caused by hypertension, diabetes, atherosclero-
sis, ischemia reperfusion injury, atrial fibrillation, etc. The 
role of calpains in ventricular hypertrophy, inflammation, 
and fibrosis has also been demonstrated [27]. Thus, targeting 
the calpain pathway may be a novel therapeutic approach 
for patients with heart failure. Our previous studies showed 
that calpain activation induced by CVB3 infection facilitated 
virus replication, inflammation, and enhanced autophagy 
and apoptosis [29, 30], proposing that calpain may be a 
novel target for viral myocarditis treatment in clinical prac-
tice. However, as calpains function through cleaving a vari-
ety of substrates such as enzymes and structural and sign-
aling proteins, identification of the mechanism involved is 

Fig. 6  A Mitochondria was isolated from cytoplasm in CVB3-
infected hearts or control hearts, and then, protein levels of calpain-1 
were detected in each fraction. N = 6 mice in each group. B Immu-
nofluorescence staining showing the co-localization of calpain-1 and 
mitochondria in NRCMs infected with CVB3. C calpain-1 levels in 
mitochondria isolated from CVB3-infected NRCMs. N = 3 independ-
ent experiments. D Representative image of western blotting results 
and the quantitative analysis of calpain-1 in cytoplasm or mitochon-

dria in AC16 cells transfected with a plasmid expressing mitochon-
dria-targeted calpain-1 (mito-CAPN1) or control plasmid. N = 3 
independent experiments. E Viability of AC16 cells transfected with 
mito-CAPN1 and incubated with mito-TEMPO as determined by the 
CCK8 assay. N = 24 replicates from three independent experiments. F 
Representative image of western blotting results and the quantitative 
analysis of gasdermin D-NT, pro-caspase-1, and c-caspase-1. N = 3 
independent experiments
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Fig. 7  A Venn diagram showing eight proteins coexisting in NRCMs 
treated with Ad-CAPN1 or co-treated with Ad-CAPN1 and CVB3, as 
determined by co-immunoprecipitation using anti-IgG or anti-Flag 
antibody and subjected to mass spectrometry to determine calpain-
1-interacting proteins. B Representative image of western blotting 
results and the quantitative analysis of ATP synthase-α (ATP5A1) 
in mice. N = 6 mice in each group. C Representative image of west-
ern blotting results and the quantitative analysis of ATP synthase-α 
(ATP5A1) in NRCMs subjected to the indicated treatments. N = 3 
independent experiments. D Immunoprecipitation assay using anti-
calpain-1 antibody or anti-IgG antibody (negative control antibody). 
Calpain-1 and ATP5A1 levels in co-immunoprecipitated samples. E 
Immunoprecipitation assay using anti-ATP5A1 antibody or anti-IgG 

antibody (negative control antibody). Calpain-1 and ATP5A1 lev-
els in co-immunoprecipitated samples. F NRCMs were transfected 
with siRNA-Scramble (siCT) or siRNA-ATP5A1 (siATP5A1), and 
then, JC-1 staining indicated the mitochondrial membrane poten-
tial and mitoSOX indicated mitochondrial ROS. G ATP levels in 
NRCMs transfected with siCT or siATP5A1. N = 6 replicates from 
three independent experiments. H CCK8 assay showing the viability 
of NRCMs. N = 16 replicates from three independent experiments. 
I Representative image of western blotting results and the quantita-
tive analysis of ATP5A1, gasdermin D-NT, pro-caspase-1, and c-cas-
pase-1 in siCT- or siATP5A1-infected NRCMs. N = 3 independent 
experiments
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essential before using it as a therapeutic target. Although the 
mitochondria translocation of calpain-1 has been reported 
in other heart diseases, to the best of our knowledge, this 
is the first evidence showing that in myocarditis, calpain-1 
translocates to mitochondria and then led to deficiency of 
mitochondrial ATP synthesis and excess production of ROS. 
We further established that the cleaved target of calpain-1 in 
mitochondria is ATP5A1. ATP5A1 downregulation resulted 
in NLRP3 inflammasome activation and subsequent pyrop-
totic injuries in cardiomyocytes, reinforcing the previous 
findings that membrane potential- and calpain-dependent 
reversal of caspase-1 inhibition activated canonical NLRP3 
inflammasome [62].

Myocarditis is identified as an inflammatory disease of 
the heart muscle cells [45]. Initial activation of immune 
response in myocarditis is beneficial to the host by limiting 
viral spread; however, a persistent and excessive immune 
response conveys harmful consequences, contributing to the 
progression of myocarditis and DCM [14]. Thus, regulat-
ing the immune response can help migrate the detrimental 
effects of the host immune response and inhibit myocarditis 
development [31]. NLRP3 inflammasome is a critical com-
ponent of the innate immune system. Aberrant activation 
of the NLRP3 inflammasome has been linked with several 
inflammatory disorders, such as cryopyrin-associated peri-
odic syndromes, Alzheimer’s disease, diabetes, and ath-
erosclerosis [23], as well as viral myocarditis, whereas the 
role of the NLRP3 inflammasome in viral myocarditis is 

controversial. Upon infection, various cardiac-resident cells, 
such as cardiomyocytes, endothelial cells, mast cells, phago-
cytes, and fibroblasts, secrete cytokines IL-1β, and IL-18 
[7, 10], contributing to acute inflammation, and treatment 
with IL-1β could break the resistance of C57Bl/6 (H‐2b) 
mice to viral infection [43]. Moreover, the previous studies 
have shown that CVB3-induced myocardial NLRP3 con-
tributed to the development of viral myocarditis [36, 55]. 
These results implicate the NLRP3 inflammasome in the 
development of myocarditis. However, another study showed 
that NLRP3 knockout mice manifested more severe cardiac 
and pancreatic lesions as well as worse cardiac dysfunc-
tion than WT control mice [56]. The discrepancy may be 
due to the different genetic backgrounds of mice. It must be 
noted that the knockout models were produced on a C57Bl/6 
genetic background; however, the WT C57Bl/6 mice are rel-
atively more resistant to CVB3 infection and fail to develop 
chronic disease. Moreover, in the NLRP3 knockout mice 
study, NLRP3 knockout was more associated with signifi-
cantly increased virus loads, although chronic and excess 
inflammatory responses constitute vital contributors in the 
development of myocarditis. In our study, we demonstrated 
that activated calpain in viral myocarditis promoted the acti-
vation of the NLRP3 inflammasome and then exacerbated 
viral myocarditis; therefore, inhibiting NLRP3 inflamma-
some activation may be beneficial in viral myocarditis. Our 
study provides new perspectives on the regulation of NLRP3 
inflammasome in myocarditis and suggests that calpain-1 

Fig. 8  Calpain-1 activated under CVB3 stimulation promoted NLRP3 inflammasome-dependent pyroptosis through ATP5A1 cleavage and ROS 
overproduction in mitochondria
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can affect not only the expression of NLRP3 but also the 
assembly of the inflammasome complex. Therefore, target-
ing the calpain-1 pathway is a novel therapeutic approach 
for repressing the activation of the NLRP3 inflammasome 
for the treatment of myocarditis and other inflammatory 
diseases.

Some immunomodulatory drugs, including high-dose 
intravenous immunoglobulin, azathioprine, steroids, and 
cyclosporine A, target abnormally active immune cells in 
myocarditis [19]. Due to the diverse roles of immune cells 
involved in the pathogenesis of myocarditis, further investi-
gation is required to identify accurate immunotherapies for 
special cell types. Targeting NLRP3 inflammasome with 
calpain-1 inhibitor has been shown to control myocarditis 
progression; however, the benefit of calpain inhibition has 
not been demonstrated in a clinical trial. There is a lack of 
approaches to inhibit the NLRP3 inflammasome, whereas 
IL-1β signaling can be blocked systematically using a com-
petitive inhibitor of the IL-1β receptor (canakinumab) or 
blocking antibodies against IL-1β (anakinra) [20]. In clinical 
trials, canakinumab has been shown to be beneficial in the 
avoidance of post-myocardial infarction heart failure and in 
lowering the rate of recurrent cardiovascular events in ath-
erosclerotic disease [1, 8, 41]. Anakinra has been considered 
standard care as a second-line treatment for patients with 
recurrent/refractory pericarditis as it improved outcomes in 
patients with pericarditis [2]. Importantly, anakinra treat-
ment improved heart function in one case of fulminant myo-
carditis [3], but more clinical studies are needed. In addition, 
SGLT2 inhibitors have been reported to benefit heart failure 
patients through IL-1β and/or NLRP3 inflammasome mech-
anisms [24, 61], and may be used for immune modulation.

Our experiments were based on male Balb/c mice. As 
reported extensively, viral infection-induced myocardi-
tis occurs more frequently in men than women, and male 
BALB/c mice infected with CVB3 develop more severe 
inflammatory heart disease compared to female mice [11]. 
Although the mechanisms are not fully elucidated, plenty 
of studies have reported the underlying factors contribut-
ing to this gender bias, including differences in pro-inflam-
matory cytokines, innate, and adaptive immune cells [12]. 
As a result, whether the function of calpain or activation of 
NLRP3 inflammasome or mitochondrial behavior is altered 
in different gender of mice, or whether they play roles in 
the biased susceptibility to CVB3 myocarditis needs to be 
determined further. It is known that the structural and func-
tional parameters of the immune system in BALB/c and 
C57Bl/6 mice differ under physiological conditions, like 
that the humoral immune reactions mediated by type 2T 
helper cells (Th2) prevails in BALB/c mice, while C57Bl/6 
mice are genetically predisposed to the predominance of 

cellular immunity (Th1) [60]. The baseline differences in 
immunological reactivity of BALB/c and C57Bl/6 mice 
contribute to various sensitivities of these animals to patho-
genic agents, tumor growth, and autoimmune diseases [51]. 
As reported, BALB/c mice are susceptible strain to CVB3-
induced myocarditis, whereas C57BL/6 mice showed the 
lowest susceptibility [5]. C57BL/6 mice possess hereditary 
resistance to viral cardiomyopathy, eliminating the virus fol-
lowing mild acute myocarditis, and no chronic inflammation 
would detect. Plenty of studies have investigated the under-
lying susceptibility factors that modulate the course of viral 
myocarditis [21, 26, 40]. Therefore, NLRP3 inflammasome 
or other receptor-mediated inflammasome might be affected 
by strain difference, which might contribute to the different 
morphofunctional characteristic of the immune system in 
BALB/c and C57Bl/6 mice.

In summary, our findings suggest the important role of 
calpain in the regulation of the NLRP3 inflammasome dur-
ing the development of viral myocarditis. Calpain may be 
considered a potential therapeutic target for myocarditis 
treatment via inhibition of NLRP3 inflammasome activa-
tion through the mitochondrial pathway.
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