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Abstract
Transcription factors play a fundamental role in cardiovascular adaptation to stress. Nuclear receptor subfamily 4 group 
A member 2 (NR4A2; NURR1) is an immediate-early gene and transcription factor with a versatile role throughout many 
organs. In the adult mammalian heart, and particularly in cardiac myocytes, NR4A2 is strongly up-regulated in response 
to beta-adrenergic stimulation. The physiologic implications of this increase remain unknown. In this study, we aimed to 
interrogate the consequences of cardiac NR4A2 up-regulation under normal conditions and in response to pressure overload. 
In mice, tamoxifen-dependent, cardiomyocyte-restricted overexpression of NR4A2 led to cardiomyocyte hypertrophy, left 
ventricular dilation, heart failure, and death within 40 days. Chronic NR4A2 induction also precipitated cardiac decompensa-
tion during transverse aortic constriction (TAC)-induced pressure overload. Mechanistically, NR4A2 caused adult cardiac 
myocytes to return to a fetal-like phenotype, with a switch to glycolytic metabolism and disassembly of sarcomeric struc-
tures. NR4A2 also re-activated cell cycle progression and stimulated DNA replication and karyokinesis but failed to induce 
cytokinesis, thereby promoting multinucleation of cardiac myocytes. Activation of cell cycle checkpoints led to induction of 
an apoptotic response which ultimately resulted in excessive loss of cardiac myocytes and impaired left ventricular contractile 
function. In summary, myocyte-specific overexpression of NR4A2 in the postnatal mammalian heart results in increased cell 
cycle re-entry and DNA replication but does not result in cardiac myocyte division. Our findings expose a novel function for 
the nuclear receptor as a critical regulator in the self-renewal of the cardiac myocyte and heart regeneration.
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TEM  Transmission electron microscopy
TUNEL  Terminal deoxynucleotidyl transferase 

dUTP nick end labeling
WGA   Wheat germ agglutinin

Introduction

In spite of multiple advances in the treatment of heart fail-
ure, prognosis remains poor with a 5-year mortality rate of 
75% [47]. In the United States, where the adult heart failure 
population exceeds 6 million, deaths linked to heart failure 
have steadily increased over the past decade [48, 52]. This 
situation has stalled the decline in deaths from cardiovas-
cular diseases and the increase in life expectancy [35, 48]. 
Dilated cardiomyopathy (DCM), one of the most common 
causes of heart failure, is defined by the presence of left ven-
tricular (LV) or biventricular dilatation and systolic dysfunc-
tion in the absence of abnormal loading conditions or severe 
coronary artery disease. While a wide array of genetic and 
non-genetic factors have been implicated in the pathogenesis 
of DCM, most cases are still classified as idiopathic [12, 41].

The nuclear receptors of the NR4A subfamily NUR77 
(NR4A1), NURR1 (NR4A2), and NOR1 (NR4A3) are 
encoded by immediate-early response genes and are involved 
in the regulation of a plethora of cellular processes. These 
receptors can function in a ligand-independent manner and 
their activity is regulated primarily through their expres-
sion levels, posttranslational modification events, and direct 
protein–protein interactions [26]. While acting principally 
via direct transcriptional activation or repression of target 
genes in the nucleus as monomers, homodimers or heter-
odimers with each other or the retinoid X receptor, NR4As 
also translocate to other cell compartments where they regu-
late protein stability and various biological processes such 
as autophagy, apoptosis and endoplasmic reticulum stress 
[39, 45]. In the mammalian heart, all three NR4A subfam-
ily members are strongly up-regulated in response to beta-
adrenergic stimulation, with cardiac myocytes representing a 
significant source of their expression [3, 33, 36]. The critical 
role of these nuclear receptors in defining cardiac adapta-
tion or maladaptation to stress emerged only recently with 
the demonstration that NR4A1 protects the heart from iso-
proterenol-induced hypertrophy and contractile dysfunction 
[34, 57]. The fact that NR4A1 exacerbates, while NR4A3 
protects from LV systolic dysfunction in ischemia also high-
lights the non-redundant functionality of these receptors in 
the heart [19, 61]. Interestingly, although cardiac NR4A2 
was initially reported to be both the most rapidly and the 
most strongly activated of the NR4A members following 
beta-adrenergic stimulation [36], the physiologic conse-
quences of this increase have remained largely unexplored.

Using isolated adult rat ventricular myocytes (ARVMs), 
we previously found that NR4A2 may act as potentially 
negative feedback regulator of beta-adrenergic medi-
ated cell hypertrophy [3]. In the present study, we set out 
to confirm this finding in vivo. Contrary to our expecta-
tions, young adult male and female mice with time- and 
cardiac myocyte-specific overexpression of NR4A2 rapidly 
succumbed to death. Transverse aortic constriction (TAC) 
accelerated cardiac decompensation in hearts overexpressing 
NR4A2. Cardiac transcriptome and targeted cell signaling 
pathways analyses complemented by microscopic observa-
tions revealed that NR4A2 reversed adult cardiac myocyte 
metabolic and structural features to an immature phenotype. 
In addition, NR4A2 overexpression stimulated cell cycle 
re-entry resulting in increased DNA synthesis and cellular 
multinucleation. The cellular alterations were accompanied 
by apoptotic loss of cardiac myocytes and severe impairment 
of contractile function, which ultimately caused DCM and 
death from heart failure. Our findings point to NR4A2 as a 
master regulator of cardiac myocyte homeostasis. Its chronic 
activation in the adult heart has a detrimental impact on 
pump function and overall survival.

Methods

An expanded methods section is available in the online Sup-
plementary Information.

Experimental animals

All animal procedures were performed in compliance with 
the Guide for the Care and Use of Laboratory Animals 
and were approved by the Institutional Animal Care and 
Use Committees. The Nr4a2-reporter conditional knockin 
(EGE-GJ-095 ROSA26-KI) mouse model was generated 
by Biocytogen (Wakefield, MA, USA) using the CRISPR/
Cas9 based Extreme Genome Editing (EGE) technology. 
In brief, a bicistronic construct encoding the full-length 
murine NR4A2 and enhanced green fluorescent protein 
(GFP) reporter downstream of a CAG promoter and a floxed 
stop sequence was introduced at the Rosa26 locus (Fig. 1a). 
Presence of the Rosa26 mutated allele (Mut) was confirmed 
by PCR (Initial denaturation at 95 °C for 5 min, 30 cycles 
of denaturation-annealing-extension at 95 °C–62 °C–72 °C 
for 30 s each, and final extension at 72 °C for 10 min) using 
forward primer ROSA-GT-F (5′-AGT CGC TCT GAG TTG 
TTA TCAG-3′) and reverse primer ROSA26-Test(L)-R3 
(5′-GTC AAT GGA AAG TCC CTA TTG GCG T-3′) and sub-
sequent visualization of a 278-base-pair (bp) amplicon on 
agarose gel. Presence of a non-mutated Rosa26 allele (+) 
was simultaneously tested for using the same forward primer 
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paired with reverse primer ROSA-GT-R (5′-TGA GCA TGT 
CTT TAA TCT ACC TCG ATG-3′) and subsequent visualiza-
tion of a 469 bp amplicon (Fig. 1b).

Cardiac myocyte targeted MerCreMer transgenic mice 
expressing tamoxifen-inducible Cre recombinase driven 
by the α-myosin heavy chain promoter were purchased 
from the Jackson Laboratory (Bar Harbor, ME, USA). The 
αMHC-MerCreMer mice were crossed with EGE-GJ-095 
ROSA26-KI animals (Mut/Mut and Mut/+) to generate mice 
with inducible cardiac-specific overexpression of NR4A2 
(Nr4a2-icTg) and Cre expressing control animals (Fig. 1c). 
All animals were housed and bred on a 12-h light/12-h dark 
cycle at a temperature of 22 ± 2 °C and 40–60% humidity.

The expression of NR4A2 was induced in 8- to 9-week-
old mice through a single intraperitoneal injection of tamox-
ifen (40 mg/kg body weight; MilliporeSigma, Burlington, 
MA, USA). Mice were randomized to the tamoxifen or 
vehicle (corn oil; MilliporeSigma) treatment using an Excel-
generated spreadsheet. Tamoxifen-injected Cre control mice 
were also included to detect potential adverse cardiac effects 
induced by the Cre recombinase. Unless otherwise indicated, 
all cardiac functional and molecular analyses were carried 
out 3–4 weeks after NR4A2 transgene induction.

Transthoracic echocardiography and Doppler 
imaging

Echocardiographic exams were performed under isoflurane 
anesthesia using a Vevo 3100 Imaging System (FUJIFILM 
VisualSonics, Toronto, Ont) according to the guidelines 
established by Lindsey et al. [30]. The amount of isoflu-
rane dispensed (1–2% isoflurane in 100%  O2) was individu-
ally adjusted to maintain similar heart rate between mice. 
Body temperature was kept within the physiologic range 
(36–37.5 °C) throughout the procedure using a dedicated 
heating pad. Pulsed wave and color flow Doppler imaging 
of the ascending and descending aorta were used after TAC 
surgery to determine blood pressure gradients across the 
constriction site. Successful TAC surgery was defined by a 
peak pressure gradient > 30 mmHg. B-Mode and M-Mode 
images obtained in the parasternal short axis (PSAX) view 
were used to determine LV anterior wall thickness at end-
systole and end-diastole (LVAWs/d), LV internal diameter 
at end-systole and end-diastole (LVIDs/d), LV posterior wall 
thickness at end-systole and end-diastole (LVPWs/d), LV 
ejection fraction (LVEF), LV fractional shortening (LVFS), 
heart rate (bpm) and cardiac output (mL/min).

RNA sequencing and analysis

Samples were pooled into single library using TruSeq 
Stranded mRNA Library Prep and sequenced with the 

NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) on 
the Illumina NextSeq 500 platform (Illumina, San Diego, 
CA, USA). Sequenced reads were assessed for quality 
using the Illumina Basespace Cloud Computing Plat-
form and FASTQ sequence files were used to align reads 
to the mouse reference genome [Mus musculus/UCSC 
mm9] using RNA-Seq Alignment Application with STAR 
aligner. Fragments per kilobase of transcript per million 
mapped reads (FPKM) values of reference genes and 
transcripts were generated using Cufflinks 2. Differential 
expression was determined by univariate analysis and a 
full list of differentially regulated genes (DRG; P < 0.01) 
is provided in Dataset S1. The generation of adult rat ven-
tricular myocytes (ARVMs) overexpressing NR4A2 and 
RNA-Seq on those cells has previously been reported 
[3]. Molecular pathways differentially expressed between 
groups (P < 0.05) were identified and visualized using 
Reactome v76 (www. react ome. org).

Antibody array

Left ventricular total protein and phosphorylation changes 
in 16 cell signaling pathways, including notably phos-
phoinositide 3-kinase (PI3K)/AKT signaling, apoptosis, 
autophagy, cell cycle, ErbB, focal adhesion, mitogen-acti-
vated protein kinase (MAPK), p53, and vascular endothelial 
growth factor (VEGF) signaling pathway were interrogated 
using the Cell Signaling Phospho Antibody Array from Full 
Moon Biosystems (Sunnyvale, CA; Array No. PCS300). 
Frozen tissue samples were shipped to Full Moon Biosys-
tems for protein extraction and labeling, conjugation of bio-
tin labeled proteins to the antibody array, detection using 
Cy3-streptavidin, array scanning and data acquisition. Raw 
signals and signals normalized to β-tubulin are provided in 
Dataset S2. Signals normalized to that of β-tubulin were 
uploaded into the BRB-ArrayTools v4.6.1 Excel plugin 
(National Institutes of Health, Bethesda, MD, USA) for class 
comparison analysis using the two-sample t test. P < 0.05 
was considered statistically significant.

Statistical analysis

All data are expressed as means ± SEMs and statistically 
analyzed with the use of GraphPad Prism software version 
9 (GraphPad Software, San Diego, CA, USA). Comparisons 
between two groups were performed using a two-tailed Stu-
dent t test. Comparisons between more than two groups were 
performed by one-way ANOVA followed by Tukey test. 
Serial comparisons of echocardiography data between more 
than two groups were carried out using two-way ANOVA 
followed by the Bonferroni test. P < 0.05 was considered 
significant.

http://www.reactome.org
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Results

Validation of the tamoxifen‑dependent, 
cardiac‑restricted NR4A2 overexpression mouse 
model

Because all antibodies currently available to detect NR4A2 
lack specificity, co-expression of a GFP reporter was used 
to track activation of the transgene in mouse tissues. As 
expected, GFP was exclusively expressed in the heart follow-
ing treatment of Nr4a2-icTg mice with tamoxifen (Fig. 1d, 
e). Strong GFP signals were detected in all cardiac myo-
cytes throughout the right and left ventricles (Fig. 1d). Three 
weeks after tamoxifen induction, NR4A2 mRNA expression 
levels increased 486-fold on average (Fig. 1f), which is about 
5.5- to 7.5-fold higher than the activation of endogenous 
NR4A2 reported with isoproterenol treatment in cultured 
ARVMs and in mouse heart in vivo [3, 36]. Induction of 
NR4A2 did not affect cardiac NR4A1 expression but led to 
a 60% decrease in NR4A3 mRNA levels (Fig. 1f). Thus, the 
data confirmed successful time- and cardiac-specific induc-
tion of NR4A2 at near-physiological levels.

Sustained NR4A2 activation leads to cardiac 
contractile dysfunction and death

To gain insight into the impact of sustained NR4A2 acti-
vation for the adult heart, LV wall motion was evaluated 
serially by echocardiography before and after induction of 
the transgene. Mean heart rate values were similar between 

groups at each time point investigated (Fig. 2a). At 21 days 
after initiation of tamoxifen treatment, male and female 
Nr4a2-icTg mice displayed signs of contractile dysfunc-
tion, as evidenced by a decrease in LV walls thickening and 
greater LV internal diameter at end-systole, a 35% decrease 
in ejection fraction, and a ~ 40% decrease in fractional short-
ening (Fig. 2b–h).

LV contractile function worsened quickly thereafter with 
extremely poor LV wall motion detected at 28 days post 
tamoxifen injection (Fig. 3a). At this point, LV ejection frac-
tion and fractional shortening fell down to 20% and 10%, 
respectively, while mean cardiac output decreased by 33% 
(Fig. 3b–e). Death started to occur at 28 days after Nr4a2 
induction, with female mice dying on average 5 days ear-
lier than their male counterparts. All Nr4a2-icTg mice were 
dead within 40 days (Fig. 3f).

Sustained NR4A2 activation triggers dilated 
cardiomyopathy

Gross and histopathological examinations of the heart 
were performed between the third and fourth week fol-
lowing NR4A2 induction. At 21 days, hearts from male 
and female mice appeared significantly enlarged (Fig. 4a). 
This enlargement was accompanied by increased heart 
weight after normalization either to body weight or to 
tibia length, all in absence of a significant change in body 
weight (Fig. 4b, Fig. S1a and Fig. S1b). Consistent with 
the rapid onset of heart failure, histopathology revealed 
a biventricular enlargement associated with thinning of 
the LV walls (Fig. 4c). In accordance with the survival 
analysis, the relative increase in cardiac weight was more 
pronounced among females and correlated with an increase 
in the wet-to-dry lung weight ratio, thus suggesting faster 
progression toward congestive heart failure in females than 
in males (Fig. 4b, d). At 28 days, increased heart weight in 
male and female mice was associated with a decrease in LV 
wall thickness and a concomitant increase in LV internal 
diameter and volume at end diastole (Fig. S2a–d). Wheat 
germ agglutinin (WGA) staining revealed an increase in 
both the length (+ 12%) and cross-sectional area (+ 18%) 
of cardiac myocytes associated with disruption of normal 
myocardial architecture (Fig. 4e). Picrosirius red (PSR) 
staining demonstrated this was accompanied by the appear-
ance of interstitial fibrosis that was progressively comple-
mented by replacement fibrosis between 21 and 28 days 
after induction of NR4A2 (Fig. 4f). Increased heart weight 
caused by an overall increase in fibrosis and myocyte 
hypertrophy with progressive wall thinning is indicative 
of the development of dilated cardiomyopathy.

To further investigate the pathophysiological relevance of 
these findings, cardiac NR4A2 mRNA levels were quanti-
fied in patients diagnosed with end-stage idiopathic dilated 

Fig. 1  Validation of the tamoxifen-dependent, cardiac-restricted 
NR4A2 overexpression mouse model. a Schematic depicting the 
insertion of a bicistronic construct encoding the full-length murine 
NR4A2 cDNA sequence (EGE-GJ-095) and enhanced green fluo-
rescent protein (GFP) reporter downstream of a CAG promoter 
and a floxed stop sequence at the Rosa26 locus. b Presence of the 
Rosa26 mutated allele (Mut) is confirmed by PCR using forward 
primer ROSA-GT-F (5′-AGT CGC TCT GAG TTG TTA TCAG-3′) and 
reverse primer ROSA26-Test(L)-R3 (5′-GTC AAT GGA AAG TCC 
CTA TTG GCG T-3′) and subsequent visualization of a 278-base-pair 
(bp) amplicon on agarose gel. The non-mutated Rosa26 allele (+) is 
detected using the same forward primer paired with reverse primer 
ROSA-GT-R (5′-TGA GCA TGT CTT TAA TCT ACC TCG ATG-3′) 
and subsequent visualization of a 469  bp amplicon. c Schematic of 
breeding plan used to generate experimental animals used for the 
present study. d Representative images confirming expression of the 
transgene in all cardiac myocytes from Nr4a2-icTg mice after tamox-
ifen (tam) treatment. The nonuniform staining pattern of whole heart 
tissue sections is due to tissue autofluorescence. e Confirmation of the 
cardiac specificity of the transgene expression by Western blot quan-
tification of GFP expression in Nr4a2-icTg mouse tissues following 
tam treatment. f Real-time PCR quantification of mRNAs encoding 
all 3 NR4A members in the left ventricle of mice at 21 days after tam 
treatment. Data are mean ± SEM of n = 6 animals per group and are 
expressed in fold change from expression levels detected in the LV 
of Cre recombinase expressing control mice. Data were analyzed by 
two-tailed Student t test. *P < 0.05 vs. Cre control + tam

◂
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Fig. 2  Cardiac myocyte-specific 
induction of NR4A2 in the adult 
heart leads to impaired left ven-
tricular systolic function. Eight- 
to 9-week-old male and female 
Nr4a2-icTg mice underwent 
transthoracic echocardiography 
analysis of left ventricular (LV) 
function prior to (Day 0) and 
21 days after transgene induc-
tion by tamoxifen (tam) injec-
tion. Left ventricular function 
of Cre recombinase expressing 
control mice and vehicle-treated 
Nr4a2-icTg mice was also 
recorded in parallel. Sex-
specific changes in heart rate 
(a), LV anterior wall thick-
ness at end-systole (LVAWs; 
b), LV anterior wall thickness 
at end-diastole (LVAWd; c), 
LV posterior wall thickness 
at end-systole (LVPWs; d), 
LV posterior wall thickness at 
end-diastole (LVPWd; e), LV 
internal diameter at end-systole 
(LVIDs; f), LV ejection fraction 
(LVEF; g), and LV fractional 
shortening (LVFS; h) are rep-
resented. Data are expressed as 
mean ± SEM of n = 10–12 mice 
per group. Data were analyzed 
by two-way repeated measures 
ANOVA with Bonferroni test. 
*P < 0.05 vs. Cre control + tam 
and †P < 0.05 vs. Nr4a2-
icTg + vehicle within same 
treatment day. ‡P < 0.05 vs. day 
0 within same group
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Fig. 3  Cardiac myocyte-specific induction of NR4A2 in the adult 
heart leads to heart failure and death. a Representative M-mode 
images of parasternal short axis view at papillary muscle level in 
Nr4a2-icTg mice at 21 and 28 days after tamoxifen (tam) or vehicle 
injection. LVAW, left ventricular anterior wall; LVEDD, left ventricu-
lar diameter at end-diastole; LVESD, left ventricular diameter at end-
systole; LVPW, left ventricular posterior wall. Comparison of heart 
rate (b), LV ejection fraction (LVEF; c), LV fractional shortening 
(LVFS; d), and cardiac output (e) between Nr4a2-icTg mice injected 

with tam (n = 2 males/3 females) or vehicle (n = 4 males/4 females) 
and Cre recombinase expressing control mice (n = 4 males/4 females) 
at 28 days following treatment. Data are expressed as mean ± SEM. 
Data were analyzed by one-way ANOVA with Tukey test. *P < 0.05 
vs. Cre control + tam and †P < 0.05 vs. Nr4a2-icTg + vehicle. f 
Kaplan–Meier curve comparing survival of male and female Nr4a2-
icTg mice to that of Cre recombinase expressing control mice follow-
ing tamoxifen injection
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cardiomyopathy, both at time of implantation and explanta-
tion of a left ventricular assist device (LVAD). Mechanical 
unloading was accompanied by a trend to decreased NR4A2 
expression in the left ventricle (Fig. S3).

Sustained NR4A2 induction accelerates cardiac 
decompensation in pressure overload

Next, we evaluated whether sustained NR4A2 activation 
aggravates myocardial remodeling induced by pressure over-
load. To do so, male Nr4a2-icTg mice were subjected to TAC 
surgery 6 days prior to tamoxifen injection and myocardial 
structure and function were assessed 12 days after induction 
of the transgene (Fig. 5a). At the time of treatment, the mean 
pressure gradient was similarly elevated between Nr4a2-icTg 
mice that were randomly selected to receive tamoxifen or vehi-
cle injection (Fig. 5b). At the end of the protocol, mean heart 
rate for all TAC-operated mice remained comparable to that 
of sham-operated Nr4a2-icTg animals (Fig. 5c). However, the 
TAC-mediated compensatory increase in LV anterior and pos-
terior walls thickness, as present in vehicle-treated mice, was 
abrogated for mice with cardiac-specific NR4A2 overexpression 
(Fig. 5d–e). This was accompanied by a greater increase in LV 
internal diameter at end of diastole and end of systole, and by a 
further decrease in LV ejection fraction and fractional shortening 
(Fig. 5f–i). Although the increase in heart weight to tibia length 
ratio was not different between vehicle- and tamoxifen-treated, 
TAC-operated animals, the exacerbation of contractile dys-
function associated with chronic NR4A2 induction correlated 
with an increase in the wet-to-dry lung weight ratio (Fig. 5j, k). 

Therefore, sustained NR4A2 activity inhibited compensatory 
hypertrophy and accelerated cardiac maladaptation to pressure 
overload.

Sustained NR4A2 activation reinstates an immature 
metabolic phenotype and leads to sarcomere 
disorganization in cardiomyocytes

To gain more insight into the molecular changes associated 
with the rapid maladaptation of the NR4A2 overexpressing 
hearts, we analyzed the global transcriptomic signature of 
the LV at 21 days after transgene induction, i.e. at a time 
when both structural and functional alterations became 
apparent (Figs. 2, 4). Out of the 13,356 genes that passed 
filtering criteria for analysis, 6313 genes (47%) were found 
to be differentially expressed with a p value of ≤ 0.01 (Data-
set S1). Main biological processes altered by NR4A2 induc-
tion included metabolism, muscle contraction, autophagy, 
the transport of small molecules (all down-regulated), and 
vesicle-mediated transport (up-regulated; Fig. 6a and Fig. 
S4a). Specifically, downregulation of oxidative phosphoryla-
tion, beta-oxidation of fatty acids, branched-chain amino 
acid catabolism and mitochondrial biogenesis were respon-
sible for decreased metabolism (Fig. 6b). Decreased oxida-
tive metabolism was compensated by a dramatic increase 
in anaerobic metabolism characterized by the concerted 
up-regulation of all but one glycolytic enzyme (Fig. S5 and 
Dataset S1). Although the expression of glucose transport-
ers GLUT1 and GLUT4 was unchanged, translocation of 
GLUT4 to the plasma membrane was among the up-regu-
lated vesicle-mediated transport processes (Fig. S4a, S4b). 
In accordance with the PSR staining, molecular pathways 
linked to collagen biosynthesis and extracellular matrix 
organization were also up-regulated (Fig. S4a). Real-time 
PCR quantification also confirmed activation of the cardiac 
fetal gene program (increased transcript amounts for Nppa 
and Nppb and decreased expression for Atp2a2 and Myh6). 
Besides the loss of alpha-myosin heavy chain (Myh6), gene 
expression for several other contractile proteins abundantly 
expressed in the adult heart including cardiac troponin T 
(Tnnt2), cardiac troponin I (Tnni3) and tropomyosin-1 
(Tpm1), was decreased (Fig. S4b).

To confirm our gene expression data, we assessed the 
ultrastructure of the cardiac myocytes by TEM. In com-
parison with hearts from Cre controls which displayed the 
well-organized microarchitecture typical of adult cardiac 
myocytes (with densely packed mitochondria between 
parallel-aligned myofibrils and regular t-tubules located 
at the level of the Z-lines), a large number of NR4A2-
overexpressing myocytes exhibited chaotic arrangements 
of myofibrils and mitochondria with loss of well-defined 
sarcomeres and no recognizable t-tubular structures akin to 
idiopathic hypertrophic cardiomyopathy (Fig. 6c). As further 

Fig. 4  Cardiac myocyte-specific induction of NR4A2 in the adult 
heart causes structural remodeling consistent with development of 
dilated cardiomyopathy. a Representative images of hearts from 
tamoxifen (tam)- and vehicle-treated Nr4a2-icTg mice at 21 days fol-
lowing treatment. b Comparison of heart weight normalized to tibia 
length between Nr4a2-icTg mice injected with tam (n = 26 males/18 
females) or vehicle (n = 29 males/19 females) and Cre recombinase 
expressing control mice (n = 34 males/21 females) at 21 days follow-
ing treatment. c Representative cross-sectional images of wheat germ 
agglutinin (WGA)-stained hearts at 21 days following tam or vehicle 
treatment. d Comparison of wet-to-dry lung weight ratios between 
Nr4a2-icTg mice injected with tam (n = 26 males/18 females) or vehi-
cle (n = 29 males/19 females) and Cre recombinase expressing con-
trol mice (n = 34 males/21 females) at 21 days following treatment. e 
Representative photomicrographs from hearts of male mice showing 
WGA- and DAPI-stained cardiac myocytes in cross-sectional and lon-
gitudinal orientations. Mean myocyte cross-sectional area and length 
were determined by averaging values from > 100 cells per animal 
(n = 3 animals per group). f Representative cross-sectional images 
and photomicrographs of Picrosirius red-stained hearts of male mice 
at 21 and 28  days after tamoxifen or vehicle treatment. Collagen 
quantification was performed on whole transverse cardiac sections 
from n = 4 animals per group. Data are expressed as mean ± SEM. 
Data were analyzed by one-way ANOVA with Tukey test. *P < 0.05 
vs. Cre control + tam at 21 days, †P < 0.05 vs. Nr4a2-icTg + vehicle at 
21 days, and ‡P < 0.05 vs. Nr4a2-icTg + tam at 21 days

◂
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evidence of disorganized sarcomeric structures, myosin fib-
ers were simultaneously visible in both longitudinal and 
transverse orientation in the same myocyte (Fig. 6d). Lastly, 
the densely arrayed lamellar cristae of control mitochondria 
were replaced by scarce cristae typical of immature mito-
chondria in hearts of Nr4a2-icTg mice (Fig. 6e). Altogether, 
these findings suggest increased cellular plasticity and return 
to an immature phenotype for adult cardiac myocytes follow-
ing chronic activation of NR4A2.

Cardiac myocyte‑specific induction of NR4A2 
activates growth, proliferation and apoptosis 
signaling pathways

To further investigate possible intracellular signals respon-
sible for the metabolic and structural remodeling of adult 
cardiac myocytes, we performed the unbiased quantifica-
tion of 304 proteins and phosphoproteins from 16 major 
cell signaling pathways. Compared to Cre control animals, 
the expression and/or phosphorylation levels of 34 proteins 
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Fig. 5  Chronic induction of NR4A2 in the adult heart accelerates 
cardiac decompensation during pressure overload. a Schematic of 
the experimental design. Eight- to 9-week-old male Nr4a2-icTg mice 
were subjected to transverse aortic constriction (TAC) or sham sur-
gery at day 0. Successful induction of pressure overload was verified 
by Doppler analysis 6  days after surgery, at which point mice were 
randomly injected with tamoxifen (tam) or vehicle before undergo-
ing transthoracic echocardiography and anthropometric analyses at 
day 18 post surgery. b Transaortic pressure gradients in TAC-oper-
ated Nr4a2-icTg mice compared to sham-operated Nr4a2-icTg mice. 
Echocardiographic determination of heart rate (c), left ventricular 

(LV) anterior wall thickness at end-diastole (LVAWd; d), LV pos-
terior wall thickness at end-diastole (LVPWd; e), LV internal diam-
eter at end-diastole (LVIDd; f), LV internal diameter at end-systole 
(LVIDs; g), LV ejection fraction (LVEF; h), and LV fractional short-
ening (LVFS; i) at end of the experiment. Comparison of heart weight 
normalized to tibia length (j) and wet-to-dry lung weight ratio (k) at 
end of the experiment. Data are expressed as mean ± SEM of n = 6 
animals per group. Data were analyzed by one-way ANOVA with 
Tukey test. *P < 0.05 vs. sham-operated + vehicle, †P < 0.05 vs. sham-
operated + tam, and ‡P < 0.05 vs. TAC-operated + vehicle



Basic Research in Cardiology (2022) 117:33 

1 3

Page 11 of 20 33

was differentially affected with a p value of ≤ 0.05 in the LV 
of Nr4a2-icTg mice following tamoxifen treatment (Fig. 7a 
and Dataset S2). More specifically, increased phosphoryla-
tion of retinoblastoma protein (Rb) at serine residues 608 
and 807 and increased expression of the cyclin-dependent 
kinase 1 (CDK1/CDC2) were overall indicative of increased 
progression through the G1 and G2/M checkpoints of the 
cell cycle, respectively. In addition, the activity of kinases 
known to be major positive regulators of cell growth and 
proliferation, including mitogen-activated protein kinase 
kinase 1 (MEK1), mechanistic target of rapamycin kinase 
(mTOR), phosphoinositide 3-kinase (PI3K), and the AKT 
kinase, was also increased (Fig. 7a). Increased activity of 
the AKT, extracellular signal-regulated kinase (ERK) and 
mTOR kinases and phosphorylation of their downstream tar-
gets were further confirmed by immunoblotting. In contrast, 
the antiproliferative AMP-activated protein kinase (AMPK) 
was inhibited (Fig. 7b).

While confirming the downregulation of genes linked to 
muscle contraction, Reactome analysis of our previously 
published transcriptomic data from ARVMs overexpress-
ing NR4A2 also revealed global up-regulation of RNA 
metabolism [3]. Biosynthesis of ribosomal RNA (rRNA) 
and protein translation, both tightly coupled to cell growth 
and proliferation, represented the most activated molecular 
processes in those cells (Fig. S6).

In parallel to the uptick in growth and proliferation path-
ways, a decrease in BCL2-associated X, apoptosis regulator 
(BAX) expression, concomitant with an increased phospho-
rylation and regulation of BAX, BCL2-associated agonist 
of cell death (BAD) and BCL2 apoptosis regulator (BCL2), 
were also indicative of the activation of apoptosis and sur-
vival signals (Fig. 7a). Consistent with this last finding, the 
TUNEL assay revealed an ~ sixfold increase in apoptotic 
cardiomyocyte death in heart tissue from Nr4a2-icTg mice 
(Fig. 7c). In summary, cardiac myocyte-specific activation 
of NR4A2 was not only associated with stimulation of the 
cell cycle, increased cell growth and proliferation, but also 
increased apoptosis in the adult mouse heart.

Sustained NR4A2 induction leads to multinucleation 
of adult cardiac myocytes

Consistent with the protein data, targeted analysis of the car-
diac transcriptome from Nr4a2-icTg mice revealed the dif-
ferential regulation of several markers of adult cardiac myo-
cytes proliferation following tamoxifen injection. Changes 
confirmed by real-time PCR quantification included the up-
regulation of growth and proliferation signaling agents Agrn, 
Nrg1, and Hif1a (Fig. 8a). Cell cycle regulators encoded 
by E2f8 and Ccna2 were also increased, while Ccnd2 was 
down-regulated. Expression of the genes encoding markers 
for proliferation (Ki67) and for midbody formation (Aurora 

kinase B; AURKB) were also increased (Fig. 8a). Fluores-
cence immunochemistry confirmed increased association of 
KI67 and AURKB with cardiac myocytes nuclei in Nr4a2-
icTg mouse hearts, as well as increased nuclear incorpora-
tion of the phase S marker BrdU when compared to control 
animals (Fig. 8b).

Besides confirming the presence of vacuolar degeneration 
caused by a loss of myofibers in cardiac myocytes, H&E 
staining also revealed the presence of enlarged nuclei and 
multinucleation of cardiac myocytes in hearts of tamoxifen-
treated Nr4a2-icTg mice (Fig. 8c). An increased number of 
cardiomyocyte nuclei stained for phosphorylated histone H3 
was also detected in hearts of Nr4a2-icTg mice, thus further 
supporting an increased occurrence of acytokinetic mitosis 
in response to NR4A2 overexpression (Fig. 8b). Increased 
frequency of multinucleation events was confirmed by 
direct quantitation of  DAPI+ nuclei in adult myocytes iso-
lated at time of death from heart failure (Fig. 8d). Thus, 
chronic NR4A2 activation leads to increased DNA synthesis 
which is, in turn, accompanied by multinucleation of adult 
cardiomyocytes.

Discussion

This study underscores the fundamental role of certain 
transcription factors in cardiovascular stress-response. We 
have shown that sustained expression of the nuclear receptor 
NR4A2 in the adult mouse heart leads to acute DCM and 
rapid death of the animals. The impairment of LV contractile 
function coincided with the reversal of cardiomyocytes to a 
fetal-like glycolytic metabolism and with the disorganiza-
tion of sarcomeres. Chronic NR4A2 activation also induced 
widespread transcriptional alterations and caused terminally 
differentiated cardiomyocytes to re-enter the cell cycle even 
in the absence of cardiac stress. This resulted in enhanced 
karyokinesis but failed to induce cytokinesis, thereby pro-
moting multinucleation of cardiac myocytes. Failure to 
progress through the cell cycle was accompanied by an 
increased number of cardiac myocytes undergoing apopto-
sis, which ultimately contributed to the etiology of DCM. 
There are several broad implications for these findings. First, 
they include a refined understanding of how environmental 
cues are integrated in the cardiac stress response. Second, 
they also include the potential for spatiotemporal modulation 
of NR4A2 activity as a way to stimulate heart regeneration.

While the roles of the NR4A nuclear receptors in the 
regulation of cardiac physiology are presently unknown, 
their functions in other organs and tissues, and particularly 
the liver, brain, skeletal muscle and the immune system 
have been fairly well established [17, 32]. As previously 
shown in those tissues, our findings demonstrate that cardiac 
NR4A2 simultaneously coordinates the regulation of a large 
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number of diverse molecular pathways linked to metabo-
lism, proliferation and apoptosis, all of which are known 
to play critical roles in the dedifferentiation, cell cycle re-
entry, and ultimately determination of adult cardiac myocyte 
fate plasticity [14, 17]. Although metabolic and structural 
remodeling of adult cardiomyocytes is a typical feature of 
the mammalian heart under pathological conditions, evi-
dence of increased cell cycle activity supports the notion 
that the observed cellular plasticity is linked to a genuine 
dedifferentiation process [64]. Our observations may have 
important implications for the development of cardiac regen-
erative strategies, because endogenous repair may occur pri-
marily through dedifferentiation and proliferation of existing 
cardiac myocytes. Indeed, although some of the regulatory 
genes and signals needed to re-activate cardiac cell cycle 
progression have been identified, many laboratories are still 
actively probing for the fundamental molecular pathways 
that govern or suppress myocyte turnover [49]. Considering 
the known role of NR4A2 as an immediate-early response 
gene and the sheer extent of the cellular remodeling initiated 
by its activation, we postulate that NR4A2 acts as a master 
regulator of stress-induced cardiac myocyte self-renewal.

One of the most dramatic effects of NR4A2 overexpres-
sion consisted in the complete reshaping of cardiac metabo-
lism, which reversed back from the highly oxidative capacity 
of the adult heart to a primarily glycolytic biosynthetic phe-
notype which is a feature of the fetal and failing heart. This 
finding is consistent with the established role of NR4A2 in 
the stimulation of glucose metabolism in skeletal muscle 
[2]. This switch in metabolic activity is critical for myo-
cytes to re-enter the cell cycle, as recent studies performed 

in the adult zebrafish and postnatal mouse hearts demon-
strated that inhibition of fatty acid oxidation and stimulation 
of glycolysis both promote proliferation of cardiomyocytes 
after injury [7, 13]. Loss of oxidative capacity coincided 
with the decrease in mitochondrial biogenesis and alteration 
of mitochondrial structure, which also reverted to a fetal-
like appearance. This observation is also consistent with the 
known roles of mitochondrial biogenesis and expansion of 
cristae formation in reducing the proliferative capacity and 
driving the maturation of cardiac myocytes [27, 42, 43, 60]. 
Whether this metabolic remodeling is mediated by genomic 
regulation, non-genomic effects, or a combination of both 
remains to be determined. Indeed, direct stabilization of 
hypoxia-inducible factor-1α by NR4A2 may have contrib-
uted to the present phenotype [22].

In addition to muscle contraction being identified as 
another significantly down-regulated biological process, 
microscopic evidence confirmed the disorganization and loss 
of myofibrils in cardiac myocytes throughout the heart of 
tamoxifen-treated Nr4a2-icTg mice. Remodeling of the con-
tractile apparatus is required for successful cell replication to 
occur, as stiffness of the myofibrils would otherwise impede 
nuclear division and cell cleavage. The majority of Z-bands 
have to undergo degradation during prometaphase, leading 
to the isolation and scattering of sarcomeres over subsequent 
phases of mitosis prior to their proper restoration in daughter 
cells [1, 50]. Disassembly and subsequent reorganization of 
the contractile machinery is under the control of signaling 
molecules diffusing through the extracellular matrix such as 
agrin (Agrn) and neuregulin 1 (Nrg1), both of which were 
up-regulated following NR4A2 activation [5, 46]. The dis-
assembly and detachment of sarcomeric structures can be 
clearly observed during regeneration of the Zebrafish heart 
following ventricular resection [21]. However, while dedif-
ferentiation and proliferation of adult myocytes may have 
little impact on cardiac function when concentrated at the 
site of injury, such mechanism may result in loss of contrac-
tile function when occurring at the whole-heart scale [49]. 
Thus, widespread dedifferentiation of myocytes resulting in 
decreased cardiac bioenergetics and a loss of functional rigor 
likely contributed to the impairment of systolic function and 
development of heart failure in Nr4a2-icTg mice.

In spite of the presence of metabolic and structural signa-
tures typical of proliferating cells, enhanced cell cycle activ-
ity, and DNA replication in the heart, none of these markers 
represent a direct surrogate for new myocytes formation, and 
even increased detection of AURKB is not always indica-
tive of successful cytokinesis [11, 18]. Unlike during the 
embryonic and neonatal stages, energetic reliance on glyco-
lysis and activation of proliferation pathways including the 
ERK1/2, PI3K/AKT and mTOR pathways in the postnatally 
stressed heart are usually associated with hypertrophic rather 
than hyperplasic growth [9, 25, 31]. This results in increased 

Fig. 6  Chronic NR4A2 induction leads to metabolic and structural 
remodeling of adult cardiac myocytes in  vivo. a Voronoi view of 
RNA sequencing data revealing the main biological processes dif-
ferentially regulated in the left ventricle (LV) of male Nr4a2-icTg at 
21  days after tamoxifen injection when compared to the LV of Cre 
recombinase expressing control mice. b Top Reactome pathways 
linked to oxidative phosphorylation and mitochondrial biogenesis 
that are significantly altered in the LV of Nr4a2-icTg at 21 days after 
tamoxifen injection when compared to the LV of Cre recombinase 
expressing control mice. Results generated from RNA sequencing 
analysis of n = 6 male mice per group. c–e Transmission electron 
microscopy visualization of subcellular structures in adult cardiac 
myocytes at 21  days after tamoxifen injection. c Cardiac myocytes 
in hearts of Cre recombinase expressing control mice show a tightly 
organized sarcomeric structure with clearly visible Z-lines, while car-
diac myocytes in hearts of Nr4a2-icTg mice exhibit a more chaotic 
arrangement of myofibrils. d At higher magnification, myosin fibers 
are visible (arrows). However both longitudinal (upper arrow) and 
transverse (lower arrow) fibres are present within the same cardiac 
myocyte in hearts of Nr4a2-icTg mice which is indicative of disor-
ganized sarcomeric structures. e At higher magnification the densely 
arrayed lamellar cristae of electron-dense control mitochondria are 
visible. However, mitochondria from Nr4a2-icTg mice display scarce 
lamellar cristae typical of immature organelles. N, cardiac myocyte 
nucleus
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polyploidization and multinucleation of myocytes in the 
injured myocardial tissue, two nuclear events which are 
paradoxically known to contribute to the loss of proliferative 
capacity of those cells [16, 28, 53]. Although polyploidiza-
tion and multinucleation may promote cardiac adaptation to 
stress by making cardiomyocytes more resistant to injury 
[20, 28], this was clearly not the case for Nr4a2-icTg mice 
as increased NR4A2 activation accelerated cardiac decom-
pensation during chronic pressure overload.

Several factors may have contributed to incomplete cell 
cycle progression in the present mouse Tg model. First, 
hypoxia-inducible factor (HIF)-1 α has a divergent role in 
cardiac proliferation and development, and its activation 
can promote cell cycle arrest through Myc antagonism [15, 
24]. Second, transcript levels for the cell cycle activator 
Cyclin D2 (Ccnd2), a protein critical for persisting cardiac 
myocytes cell cycle activity, were decreased [63]. Lastly, 
expression of the atypical E2 factor 8 (E2f8), a cell cycle 
regulator essential for polyploidization in mammalian cells, 
was increased [38]. Cell cycle regulation and programmed 
cell death share many signal transduction mechanisms [51], 
and we also found evidence of increased activation of both 
pro-survival and pro-apoptotic cellular pathways resulting in 
increased myocytes apoptosis in hearts of Nr4a2-icTg mice. 
Cardiac myocyte regeneration and death are so intimately 
linked that both processes are believed to occur simultane-
ously [37]. Although the exact series of molecular events 
that increased apoptosis remains to be determined, the dif-
fuse loss of cardiac myocytes likely played a critical role in 
the development of DCM and heart failure [37, 54, 56]. It 
is also unclear whether the concomitant downregulation of 
NR4A3 plays a role in the disease mechanism since activa-
tion of this particular NR4A member has been linked to 

the protection of cardiomyocytes from cellular stress and 
death [6].

It is noteworthy that female mice appeared to be more 
susceptible to the chronic effects of cardiac NR4A2 as they 
displayed more severe symptoms of heart failure at 21 days 
after transgene induction, and died 12.5% faster than male 
mice. There is some evidence that the regulation of the 
Nurr1 gene is controlled by gender-specific hormones, such 
as estrogen and testosterone, and that these regulatory mech-
anisms may account for phenotypical differences between 
male and female [40, 44]. Whether a sex difference exist in 
the regulation of cardiovascular physiology by endogenous 
NR4A2 remains to be determined.

Few studies have reported myocyte cell cycle re-entry 
as a direct contributor to heart failure in vivo. Similar to 
our results, murine cardiac myocytes lacking GSK-3 were 
also reported to undergo karyokinesis but had impaired 
mitotic capacity and failed to progress to cytokinesis, which 
resulted in mitotic catastrophe, widespread apoptosis, and 
rapid development of DCM [62]. In humans, DCM caused 
by excessive DNA replication in cardiac myocytes, a phe-
nomenon that has been termed mitogenic cardiomyopathy, 
has been rarely reported since such defects cause death in 
the early infancy [8, 59]. The expression of Myc, another 
early response gene activated as the adult heart remodels, 
also leads to cell cycle re-entry and increased DNA repli-
cation when induced in post-mitotic murine cardiac myo-
cytes. Interestingly, Myc re-activation has been associated 
either with adaptive hypertrophy, with atrophy, or with 
hypertrophic cardiomyopathy and heart failure in different 
reports [10, 29, 55]. This last finding highlights the impor-
tance of other factors such as timing and level of induc-
tion of cell cycle regulators in determination of the cardiac 
myocyte fate. The chronic high NR4A2 expression in the 
heart of Nr4a2-icTg mice is a critical parameter which most 
likely had a significant impact on the outcome of this study. 
Indeed, we previously reported that a both shorter and more 
physiological induction of NR4A2 inhibited ERK1/2 hyper-
trophic signaling in ARVMs, which is in contrast with the 
increased ERK1/2 activity observed in the present model 
[3]. Mechanical unloading of the failing human heart, a pro-
cess associated with normalization of cardiomyocyte func-
tion and size, also tended to decrease NR4A2 expression 
[4, 58]. Based on these observations, we postulate that a 
more transient and moderated activation aimed at recapitu-
lating the stimulation of NR4A2 by the adrenergic system 
as reported by Myers and colleagues, possibly by using one 
of the known small-molecule activators of NR4A2, may 
increase survival of myocytes and promote adaptation of 
the stressed heart [23, 36].

In summary, we report that myocyte-specific overexpres-
sion of NR4A2 in the postnatal mammalian heart results 
in increased cell cycle re-entry and DNA replication but 

Fig. 7  Cardiac myocyte-specific induction of NR4A2 activates 
growth, proliferation and apoptosis signaling pathways in the adult 
heart. a Heat map representation of the 34 proteins and phosphopro-
teins from 16 major cell signaling pathways that are differentially 
expressed in the left ventricle (LV) of Nr4a2-icTg mice when com-
pared to LV of Cre recombinase expressing control mice at 21 days 
after tamoxifen (tam) treatment. Data from n = 5 male mice per group 
were normalized to individual β-tubulin signals and analyzed by a 
two-tailed Student t test. b Comparison of expression levels for pro-
teins and phosphoproteins of the AKT, ERK1/2, AMPK, and mTOR 
related pathways in the LV of Nr4a2-icTg mice injected with tam or 
vehicle and Cre recombinase expressing control mice injected with 
tam at 21  days after treatment. Data are expressed as mean ± SEM 
of n = 8 animals per group. Data were analyzed by one-way ANOVA 
with Tukey test. *P < 0.05 vs. Cre control + tam and †P < 0.05 vs. 
Nr4a2-icTg + vehicle. c Representative photomicrographs of sarcom-
eric α-actinin, DAPI- and TUNEL-stained LV tissue. Total number 
of  TUNEL+ cardiomyocyte nuclei (white arrows) was determined by 
averaging values from > 1000 cardiomyocyte nuclei per animal (n = 5 
animals per group). Data are expressed as mean ± SEM and were ana-
lyzed by one-way ANOVA with Tukey test. *P < 0.05 vs. Cre con-
trol + tam and †P < 0.05 vs. Nr4a2-icTg + vehicle. n.d. not detectable
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does not result in cardiac myocyte division. Chronic NR4A2 
activation leads to activation of cell cycle checkpoints and 
induction of an apoptotic response resulting in loss of car-
diac myocytes, impairment of cardiac function and heart 
failure. While additional studies will be essential to deter-
mine the impact of physiological “bouts” of NR4A2 induc-
tion for cardiac adaptation to injury, our findings highlight 
a novel function for the nuclear receptor as a critical regu-
lator in the self-renewal of the cardiac myocyte and heart 
regeneration.
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