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Abstract
Emergency hematopoiesis is the driving force of the inflammatory response to myocardial infarction (MI). Increased prolif-
eration of hematopoietic stem and progenitor cells (LSK) after MI enhances cell production in the bone marrow (BM) and 
replenishes leukocyte supply for local cell recruitment to the infarct. Decoding the regulation of the inflammatory cascade 
after MI may provide new avenues to improve post-MI remodeling. In this study, we describe the influence of adenosine 
diphosphate (ADP)-dependent  P2Y12-mediated signaling on emergency hematopoiesis and cardiac remodeling after MI. 
Permanent coronary ligation was performed to induce MI in a murine model. BM activation, inflammatory cell composition 
and cardiac function were assessed using global and platelet-specific gene knockout and pharmacological inhibition models 
for  P2Y12. Complementary in vitro studies allowed for investigation of ADP-dependent effects on LSK cells. We found that 
ADP acts as a danger signal for the hematopoietic BM and fosters emergency hematopoiesis by promoting Akt phospho-
rylation and cell cycle progression. We were able to detect  P2Y12 in LSK, implicating a direct effect of ADP on LSK via 
 P2Y12 signaling.  P2Y12 knockout and  P2Y12 inhibitor treatment with prasugrel reduced emergency hematopoiesis and the 
excessive inflammatory response to MI, translating to lower numbers of downstream progeny and inflammatory cells in the 
blood and infarct. Ultimately,  P2Y12 inhibition preserved cardiac function and reduced chronic adverse cardiac remodeling 
after MI.  P2Y12-dependent signaling is involved in emergency hematopoiesis after MI and fuels post-ischemic inflamma-
tion, proposing a novel, non-canonical value for  P2Y12 antagonists beyond inhibition of platelet-mediated atherothrombosis.
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Introduction

Inflammation is an essential prerequisite for wound heal-
ing and cardiac remodeling after myocardial infarction 
(MI) [43]. Acute ischemic myocardial injury triggers a 
systemic inflammatory response including innate immune 
cell production and release, local recruitment, maturation 
and apoptosis [19, 36, 50]. The infiltrating immune cells 
orchestrate breakdown and removal of necrotic debris as 
well as lesion repair with collagen deposition and neovas-
cularization [44, 78]. These changes arise in the necrotic 
area but also stretch to the borders of the infarcted myo-
cardium and even remote zones [34]. However, excessive 
inflammation or inadequate resolution of the inflammatory 
response after MI may advocate adverse cardiac remod-
eling and accelerate heart failure [47, 58].

Injured cardiac cells secrete various chemoattract-
ants that have been appreciated to locally regulate post-
MI inflammation [5, 15]. In addition, activated platelets 
release a plethora of prothrombotic factors and immu-
noregulatory cytokines to promote endothelial activa-
tion and facilitate platelet-leukocyte-complex formation 
[9, 22, 70]. Following the resulting cytokine gradients, 
immune cells are recruited to the site of injury [5]. As 
a consequence of the high leukocyte turnover after MI, 
reservoirs of preformed innate immune cells in the bone 
marrow (BM), spleen and blood are rapidly depleted and 
rely on immediate resupply by emergency hematopoiesis 
to compensate for the excessive demand [36, 49].

Upstream in the hematopoietic hierarchy, hematopoi-
etic stem and progenitor cells, defined as LSK cells based 
on their characteristic surface expression pattern (Line-
age neg, Sca-1+, c-Kit+) [42], are activated and enter the 
cell cycle to increase the production of myeloid lineage 
progeny, predominately [11]. Multiple cascades have pre-
viously been described that transport information from 
the site of injury to the BM [65], involving blood borne 
factors, e.g. interleukin-1β (IL-1β) and interferons [3, 12, 
57] or extravascular sympathetic nervous signaling [6, 
10, 25]. IL-1β was shown to activate emergency hemat-
opoiesis both directly by acting on LSK and indirectly by 
downregulating retention factors in the hematopoietic BM 
niche that are necessary for HSC homeostasis [57]. Like-
wise, noradrenaline released by sympathetic nerve fibers 
decreases the retention factor CXCL12 in the BM niche, 
subsequently elevating LSK proliferation [25].

Importantly, extracellular nucleotides, e.g. adenosine 
5′-triphosphate (ATP), adenosine 5′-diphosphate (ADP) 
and uridine-5′-diphosphate (UDP), represent another sub-
set of soluble danger signals after myocardial injury that 
activate purinergic receptors [24, 29, 46]. In cardiovas-
cular disease, ADP is a key regulator of platelet activity 

and inhibition of the purinergic receptor  P2Y12 has thus 
emerged as an important therapeutic strategy to reduce 
recurrent cardiovascular events [72, 75].

Intriguingly, LSK cells have been reported to also 
express purinergic receptors [13, 56]. While purinergic 
P2X receptors on hematopoietic progenitors have recently 
been described to impact cell trafficking, the role of ADP-
sensitive P2Y receptors has not yet been characterized [1].

In this study, we show that ADP acts as danger signal 
for the hematopoietic BM after MI and fosters emergency 
hematopoiesis by promoting Akt phosphorylation and cell 
cycle progression in LSK via  P2Y12-dependent signaling. 
Using platelet-specific as well as global  P2Y12-deficiency 
models and treatment with the potent  P2Y12 inhibitor 
prasugrel, we demonstrate that  P2Y12 inhibition reduces 
emergency hematopoiesis and the excessive inflammatory 
response to MI, subsequently preserving cardiac function 
and preventing adverse cardiac remodeling after MI. Target-
ing the ADP-dependent,  P2Y12 receptor-mediated signaling 
pathway after MI may thus exert beneficial, non-canonical 
effects beyond inhibition of platelet activation.

Methods

Experimental animals

We used female C57BL/6 (WT), C57BL/6-P2Y12-deficient 
(global  P2Y12-KO) and C57BL/6-Tg (UBC-GFP) 30Scha/J 
mice aged 8–13 weeks (Charles River, Janvier) in our study. 
Age-matched mice were randomly assigned to treatment 
or control groups. The study was conducted according to 
GV-SOLAS guidelines and approved by the local ethics 
committee.

Bone marrow transplantation

Recipient C57BL/6-Tg (UBC-GFP) 30Scha/J mice were 
lethally irradiated with a cumulative dose of 9.5 Gy. 6 h 
after irradiation, bone marrow was reconstituted with 5 ×  106 
full bone marrow cells of B6.PF4cre/wt:P2Y12

fl/fl animals via 
tail vein [52]. Animals received antibiotic treatment with 
sulfadimidine 1 mg/ml and trimethoprim 0.2 mg/ml for 
4 weeks after transplantation and bone marrow was given 
16 weeks to engraft and return to homeostasis prior to fur-
ther experiments. As a result, bone marrow of reconstituted 
UBC-GFP mice was completely replaced by bone marrow of 
platelet-specific  P2Y12-deficient mice. Hence, only platelets 
and megakaryocytes of these mice lack the  P2Y12 receptor 
while  P2Y12 is still present in all other cell types. These chi-
meras will be called  P2Y12(plt)−/−GFP chimera throughout 
the manuscript.
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Prasugrel and ASA treatment

Treatment was induced one day prior to MI with an initial 
loading dose and continued once daily after MI. Using a 
gavage feeding needle, prasugrel (5 mg/kg body weight) [60] 
or acetylsalicylic acid (ASA) (10 mg/kg body weight) was 
applied in the treatment group, whereas the control group 
received the vehicle solution.

Myocardial infarction surgery

Anesthesia was induced by intraperitoneal injection (i.p.) 
of 100 mg/kg ketamine (Zoetis) and 10 mg/kg xylazine 
(Bayer Vital). Analgesia was initiated approximately 30 min 
before surgery by subcutaneous (s.c.) injection of 0.1 mg/
kg buprenorphine. To compensate for perioperative dehy-
dration due to blood loss and perspiration, 20 ml/kg iso-
tonic 5% glucose solution (B. Braun) in 0.9% NaCl (9 mg/
ml) was applied i.p.. Ventilation was set to a positive end-
inspiratory pressure (PEEP) of 5 mbar, a respiratory rate of 
110/min and an inspiration/expiration ratio of 1/1.5 with a 
small animal respirator (TSE Systems). Oxygen saturation, 
heart rate, and respiratory rate were monitored throughout 
the procedure by a MouseOX system (Starr Life Sciences). 
Anesthesia was maintained by addition of 0.5–2% isoflurane 
(AbbVie) during surgery. After right lateral positioning of 
the animal and skin disinfection, left lateral thoracotomy 
was performed between the 3rd and 4th rib. Opening of the 
pericardium allowed for identification of the left anterior 
descending (LAD) coronary artery. Permanent LAD ligation 
was performed with one single suture in the proximal middle 
third of the LAD, using 8-0 prolene suture (Ethicon). After 
evacuating the pneumothorax, chest and skin wounds were 
closed using a 5-0 prolene suture (Ethicon).

Light transmission aggregometry

600 µl venous blood was acquired by tail vein puncture and 
added to 400 µl enoxaparin (0.3 mg/ml). Samples were spun 
down twice at 100 G for 5 min each at room temperature. 
The supernatant retrieved from the sample created platelet-
rich plasma (PRP). 190 µl PRP with a platelet concentration 
of 2.5 ×  105/µl was stimulated with 10 µl ADP (0.2 mM) and 
light transmission was assessed as function over time using 
a light transmission aggregometer (möLAB).

Assessment of bleeding time

Bleeding time was assessed upon 3 mm tail tip amputation 
under anesthesia and analgesia induced by i.p. 100 mg/kg 
ketamine (Zoetis) and 20 mg/kg xylazine (Bayer Vital). The 

remaining tail was immersed in saline at 37 °C and bleeding 
patterns were continuously monitored. Time was recorded 
until bleeding stopped.

Generating cell suspensions for flow cytometry

Organ and tissue processing: After drawing venous blood 
by tail vein puncture, mice were sacrificed to harvest femur, 
tibiae and pelvis for BM and the heart for the infarcted 
myocardium. Venous blood was collected in 5 mM EDTA 
(Sigma-Aldrich) and lysed in 1 × red blood cell lysis buffer 
(BioLegend) prior to staining. Flushed bone marrow was 
passed through a 40 µm cell strainer to obtain a single cell 
suspension and collected in phosphate-buffered saline (PBS) 
containing 0.5% bovine serum albumin and 1% fetal bovine 
serum (FACS buffer). Infarcted myocardium was excised 
using a microscope, minced with scissors and digested 
in collagenase I (450 U/ml), collagenase XI (125 U/ml), 
DNase I (26 U/ml) and hyaluronidase (60 U/ml) (all Sigma-
Aldrich). The mixture was incubated at 37 °C at 600 rpm 
for 1 h. The digestion reaction was stopped using 30 ml of 
FACS buffer.

ADP / IL‑1β / TNNI3 ELISA

Venous blood was acquired by tail vein puncture in potas-
sium-EDTA microtubes (Sarstedt) and spun down for 8 min 
at 3.000 G to retrieve plasma. 50 µl plasma was used to 
measure levels of ADP and IL-1β, using ADP assay kit 
(Abcam) and Quantikine ELISA Mouse IL-1β (R&D) 
according to the manufacturers’ protocols. For bone marrow 
(BM), femoral bones were flushed in 5 mM EDTA (Sigma-
Aldrich), spun down for 5 min at 4.000 G and supernatant 
was used for ADP ELISA (Abcam). For TNNI3-ELISA, 
blood was acquired by tail vein puncture in potassium-
EDTA microtubes (Sarstedt) and spun down for 15 min at 
1.000 G to retrieve plasma. 100 µl of 1:10 diluted plasma 
was used to measure protein levels of TNNI3, using Mouse 
TNNI3/Cardiac Troponin I kit (Life Span Biosciences) fol-
lowing the manufacturer’s protocol.

CFU‑assay with ADP stimulation

Colony forming unit (CFU) assays were performed accord-
ing to the manufacturer’s protocol using a semi-solid cell 
culture medium (Methocult M3434, Stem Cell Technolo-
gies). Bones were flushed with PBS, supplemented with 
0.5% bovine serum albumin and 2 mM EDTA. To deplete 
megakaryocytes and platelets, we used MACS depletion col-
umns (LD columns, Miltenyi Biotec) after incubation with 
anti-CD41 (FITC, clone MWReg30, BioLegend) antibody, 
followed by an incubation with anti-FITC-coated microbe-
ads (Miltenyi Biotec). 4.5 ×  105 BM cells were stimulated 
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with 45 µl ADP (0.2 mM) in 3 ml medium to a final ADP 
concentration of 2.5–3 µM before they were plated onto six 
well plates in duplicates (1.5 ×  105 stimulated BM cells per 
well) for whole BM CFU-assay, whereas FACS-sorted LSK 
cells were used for LSK-specific CFU-assay. After 7 days of 
incubation, colonies were counted and analyzed using a low 
magnification inverted microscope.

Quantitative real‑time PCR

Using RNeasy Mini or Micro Kit (Qiagen), mRNA was 
extracted from flushed BM cells, platelets from PRP and 
infarcted myocardium according to manufacturers’ proto-
cols. mRNA was then transcribed to cDNA using the High 
Capacity cDNA Reverse Transcription kit (Applied Bio-
systems). Using ARC TUR US pico pure RNA isolation kit 
(Applied Biosystems), mRNA was extracted from FACS-
sorted cells and was further amplified and transcribed to 
cDNA with Ovation Pico SL WTA-System (NuGEN) 
according to the following protocol: first strand cDNA syn-
thesis including primer annealing 65 °C for 2 min and first 
strand synthesis 4 °C for 2 min, 25 °C for 30 min, 42 °C for 
15 min and 70 °C for 15 min, second strand cDNA synthesis 
4 °C for 1 min, 25 °C for 10 min, 50 °C for 30 min and 80 °C 
for 20 min and single primer isothermal amplification 4 °C 
for 1 min, 47 °C for 75 min and 95 °C for 5 min.

Real-time PCR reactions used TaqMan Fast Advanced 
Master Mix (Applied Biosystems) and were run on a 
Thermal Cycler (BioRad). The following genes were ana-
lyzed with TaqMan Gene Expression Assays: GAPDH 
(Mm99999915_g1), GPIab (Mm00501677_g1), GPV 
(Mm00515021_s1), GPVI (Mm01332306_m1), ITGB 3 
(Mm00443980_m1), P2RY12 (Mm01950543_s1), Cxcl12 
(Mm00445553_m1), Kitl (Mm00442972_m1), Vcam1 
(Mm01320970_m1), Angpt1 (Mm00456503_m1), TNFα 
(Mm00443258_m1), IL-1β (Mm00434228_1), MMP9 
(Mm0044299_m1), TIMP1 (Mm01341361_m1) (all 
Applied Biosystems). Results were expressed as Ct values 
normalized to the housekeeping gene GAPDH (control was 
set as 1).

Flow cytometry

The cell suspensions were resuspended in 300 µl FACS 
buffer (5 ml tube, Falcon) for BM and blood samples, 400 µl 
FACS buffer for MI samples and stained with fluorochrome-
labelled antibodies as described below.

Hematopoietic stem and progenitor staining

We first incubated cells with PE-conjugated anti-mouse 
antibodies directed against CD11b (clone M1/70), CD19 
(clone 6D5), CD90.2 (clone 53-2.1), CD11c (clone N418), 

CD4 (clone GK1.5), CD8a (clone 53-6.7), CD127 (clone 
A7R34), CD49b (clone DX5), Ly-6G (clone 1A8), Ly-6C 
(clone HK1.4), TER-119 (clone TER-119) (all BioLegend). 
Then cells were stained with antibodies directed against 
c-kit (BioLegend, clone 2B8), sca-1 (BioLegend, clone D7), 
CD34 (BD Bioscience, clone RAM34), CD16/32 (BioLe-
gend, clone 93), CD115 (eBioscience, clone AFS98). The 
term LSK refers to hematopoietic stem and progenitor cells 
based on their characteristic surface expression pattern 
(Lineage neg, Sca-1+, c-Kit+) [42], specified as Lin (CD11b, 
CD19, CD90.2, CD11c, CD4, CD8a, CD127, CD49b, 
Ly-6G, Ly-6C, TER-119) low, sca-1 high, c-kit high and was 
used throughout the manuscript as it best describes the cell 
population investigated. Granulocyte–macrophage precur-
sors (GMP) were defined as Lin (CD11b, CD19, CD90.2, 
CD11c, CD4, CD8a, CD127, CD49b, Ly-6G, Ly-6C, TER-
119) low, c-kit high, sca-1 low, (CD34/CD16/32) high, CD115 int/

low. Monocyte-dendritic cell precursor (MDP) were defined 
as Lin (CD11b, CD19, CD90.2, CD11c, CD4, CD8a, 
CD127, CD49b, Ly-6G, Ly-6C, TER-119) low, c-kit int/high, 
sca-1 low, (CD34/CD16/32) high, CD115 high [25].

Blood leukocyte staining

Cells were stained with CD45.2 (clone 104), CD19 (clone 
6D5), CD3 (clone 17A2), CD11b (clone M1/70), CD115 
(clone AFS98), Ly-6G (clone 1A8), and Ly-6C (clone 
HK1.4) (all BioLegend). Leukocytes were identified as 
CD45 high. Myeloid cells were identified as CD45 high CD19 
low CD3 low CD11b high. Neutrophils were identified as CD45 
high CD19 low CD3 low CD11b high CD115 low Ly-6G high. 
Inflammatory monocytes were identified as CD45 high CD19 
low CD3 low CD11b high Ly-6G low CD115 high Ly-6C high. 
B-Lymphocytes were identified as CD45 high CD19 high CD3 
low.

Leukocyte staining in the infarcted myocardium

We first incubated cells with PE-conjugated anti-mouse anti-
bodies directed against CD19 (clone 6D5), CD90.2 (clone 
53-2.1), CD4 (clone GK1.5), CD8a (clone 53-6.7), NK1.1 
(clone PK136), TER-119 (clone TER-119), CD49b (clone 
DX5) (all BioLegend). Then cells were stained with anti-
bodies directed against CD45.2 (clone 104), CD11b (clone 
M1/70), Ly-6G (clone 1A8), Ly-6C (clone HK1.4) and F4/80 
(clone BM8) (all BioLegend). Leukocytes were identified as 
CD45 high. Myeloid cells were identified as CD45 high (CD19, 
CD90.2, CD4, CD8a, NK1.1, TER-119, CD49b) low CD11b 
high. Neutrophils were identified as CD45 high (CD19, CD90.2, 
CD4, CD8a, NK1.1, TER-119, CD49b) low CD11b high Ly-6G 
high. Inflammatory monocytes were identified as CD45 high 
(CD19, CD90.2, CD4, CD8a, NK1.1, TER-119, CD49b) low 
CD11b high Ly-6G low Ly-6C high F4/80 low. Macrophages were 



Basic Research in Cardiology (2022) 117:16 

1 3

Page 5 of 17 16

identified as CD45 high (CD19, CD90.2, CD4, CD8a, NK1.1, 
TER-119, CD49b) low CD11b high Ly-6G low Ly-6C low F4/80 
high.

Data were acquired using FACS Canto™ II, LSRFortessa™ 
and FACS Diva software (BD Pharmingen). Experimental 
data were analyzed using FlowJo software.

Intracellular staining

Cell cycle analysis was performed as previously described 
[25] using intranuclear Ki67 (eBioscience, clone SolA15) and 
DAPI (4,6-diamidino-2-phenyl-indole, FxCycle Violet Stain, 
Life Technologies) staining, or APC/FITC BrdU flow kits (BD 
Pharmingen). 1 mg BrdU was injected intraperitoneally 24 h 
prior to organ harvest. Ki67 / DAPI staining and BrdU staining 
were performed after staining of cell surface markers accord-
ing to the manufacturer’s protocol.

For Akt intracellular staining, we used anti-mouse antibod-
ies directed against phospho-Akt (S473) (monoclonal mouse 
 IgG1 clone # 545,007) and pan-Akt (monoclonal mouse  IgG2B 
clone # 281,046).

Cell sorting

For cell sorting of LSK cells and myeloid progenitors 
(GMP + MDP), BM cells were collected from individual mice 
by flushing bones from both femurs, tibias and the pelvis and 
stained as described above. For sorting myeloids and lympho-
cytes, blood leukocytes staining was performed as described 
above. Adding anti-CD61 antibody (clone 2C9.G2 (HMβ3-1)) 
to the lineage allowed platelet and megakaryocyte exclusion. 
FACS-sorting was performed by FACS Aria III and Fusion 
cell sorter (BD Pharmingen).

Histology

For immunohistochemistry, hearts were harvested and embed-
ded in O.C.T compound (Sakura Finetek). Embedded tissues 
were snap-frozen in dry ice. Sections of 5 µm thickness were 
then stained using antibodies directed against CD11b (clone 
M1/70) or CD31 (clone MEC 13.3) (all BioRad). Staining 
was followed with a biotinylated secondary antibody. We 
used the VECTASTAIN Elite ABC HRP kit and ImmPACT 
AMEC Red Peroxidase (HRP) substrate (Vector Laboratories, 
Inc.) for color development. For Masson’s trichrome staining, 
we used Weigert’s iron hematoxylin solution and Accustain 
Trichrome Stain Kit (both Sigma-Aldrich) according to the 
manufacturer’s protocol.

Echocardiography

Echocardiography was performed as previously described 
[40] to assess left ventricular ejection fraction, end-systolic 
and end-diastolic volume and stroke volume.

Statistics

Statistical analyses were carried out using GraphPad Prism 
software version 8 (GraphPad Software, Inc.). Results are 
displayed as mean ± standard error of mean (S. E. M.). First, 
values were tested for Gaussian distribution (D’Agostino-
Pearson omnibus normality test). For two-group com-
parisons, unpaired t-test was applied to parametric data, 
Mann–Whitney test to non-parametric data. For comparing 
more than two groups an ordinary one-way ANOVA test fol-
lowed by a Sidak’s test for multiple comparisons was applied 
to parametric data; the Kruskal–Wallis test was applied to 
non-parametric data. P values of < 0.05 indicated statistical 
significance.

Results

Increased ADP levels in the BM after MI stimulate 
hematopoiesis via  P2Y12 receptor dependent 
activation of the Akt signaling pathway in LSK cells

Screening for danger signals after acute ischemic myocardial 
injury induced by permanent coronary ligation, we found 
elevated ADP levels in the hematopoietic BM on day 2 after 
MI, whereas no change was observed in plasma when com-
pared to sham surgery (Fig. 1A). As the recorded peak of 
ADP in the BM coincided with the known time point for 
maximum post-ischemic activation of hematopoietic stem 
and progenitor cells, we investigated if ADP could serve as 
a direct messenger to the BM for emergency hematopoiesis. 
We performed in vitro colony forming unit (CFU) assays 
incubating BM cells of wildtype (WT) mice with ADP 
(2.5–3 µM) or PBS. Prior to stimulation,  CD41+ cells were 
depleted to avoid ADP-dependent release of secondary mes-
sengers by platelets. After 7 days, we found similar absolute 
numbers of CFUs on each plate, but most notably, signifi-
cantly larger colonies on plates with ADP-stimulated BM as 
compared to PBS-control (Fig. 1B).

In search of a plausible explanation for the responsive-
ness of the BM to the elevated post-ischemic ADP levels, 
we isolated an array of hematopoietic cell populations by 
flow cytometric sorting, i.e. LSK cells, downstream hemat-
opoietic progenitors (granulocyte macrophage progenitors, 
GMP) and differentiated immune cells (platelets, myeloid 
cells, lymphocytes) from the BM and peripheral blood to 
assess for the expression of the ADP receptor  P2Y12. Beyond 
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the well appreciated  P2Y12 expression on platelets, we 
found relevant mRNA expression of  P2Y12 on LSK cells 
(Fig. 1C), while mRNA of other platelet-specific mark-
ers, i.e. GPIab, GPV, GPVI and ITGB3, was not detectable 
(Fig. 1D). Performing CFU assays only with isolated LSK 
cells, we confirmed larger colonies on ADP (2.5–3 µM)-
stimulated plates compared to the PBS control (Fig. 1E). 
Since most current RNA sequencing databases of the hemat-
opoietic BM do not describe  P2Y12 receptor expression on 
LSK cells, we matched our findings with an existing RNA-
sequencing repository of enriched hematopoietic stem and 
progenitor cells [33]. Here, we were able to confirm detect-
able P2Y12 receptor expression on LSK cells in comparison 
to  Lineage− sca-1− c-kit+ progenitor cells (Supp. Fig. S1).

For further characterization and functional evidence of the 
 P2Y12 receptor on LSK cells, we analyzed the intracellular Akt 
signaling pathway, which is known to be activated downstream 
of  P2Y12 and to be involved in cell cycle progression. We 
found Akt phosphorylation, evaluated as the phospho-Akt to 
pan-Akt ratio, to increase in response to ADP and peak 60 min 
upon ADP (1 µM) stimulation in WT LSK cells (Fig. 1F), 
while no change was observed in LSK cells of  P2Y12 deficient 
mice (Fig. 1G).

Fig. 1  A Timeline of ADP levels in the bone marrow and plasma, 
assessed by ELISA on day 1, 2 and 3 after MI in comparison to 
sham-operated C57BL/6 mice (n = 12–40 per group; Kruskal–Wallis 
test for BM, one-way ANOVA for plasma). B CFU-assay performed 
with flushed bone marrow cells from C57BL/6 WT mice after CD41 
depletion. Bar graphs illustrate macroscopic colony count (n = 6–8 
per group; Mann–Whitney test) and microscopic colony area per 
field of view (FOV) in % (n = 60–77 per group; Mann–Whitney test). 
Scale bar indicates 500 µm. C Relative expression of the ADP recep-
tor  P2Y12 in different cell types, evaluated by qPCR from bone mar-
row cell populations sorted by FACS under CD41 exclusion (n = 6 
per group; Kruskal–Wallis test). D Platelet-specific markers GPIab, 
GPV, GPVI and ITGB3 from FACS-sorted LSK cells, evaluated by 
qPCR and shown as fold change (n = 4 per group; Mann–Whitney 

test). E CFU-assay performed with FACS-sorted LSK cells after 
exclusion of  CD41+ cells. The bar graph illustrates microscopic col-
ony area per FOV in % (n = 30 per group; student's t test). Scale bar 
indicates 500 µm. F Timeline of Akt signaling pathway activation in 
LSK cells in vitro, assessed by flow cytometry 0 min, 30 min, 60 min, 
120 min and 240 min after ADP (1 µM) stimulation compared to con-
trol (no ADP), shown as fold change of phospho-Akt to pan-Akt ratio 
(n = 2–3 per group). G Histograms illustrates Akt signaling pathway 
activation in LSK cells in vitro 60 min after ADP (1 µM) stimulation 
in C57BL/6 wildtype (WT) (left) and  P2Y12

−/− mice (right) in com-
parison to unstained control (light grey). Bar graphs show phospho-
Akt to pan-Akt ratio in LSK from WT and  P2Y12 −/− mice (n = 5 per 
group; Mann–Whitney test). Mean ± S.E.M., *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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P2Y12 receptor‑deficiency blocks ADP‑dependent 
cell expansion and reduces cell cycle progression 
of LSK cells in the BM after MI

Assuming that ADP stimulates the expansion of hematopoi-
etic BM after MI via  P2Y12 signaling, we hypothesized BM 
of  P2Y12-deficient (−/−) mice to remain unresponsive to 
ADP. In fact, in vitro CFU assays with BM of  P2Y12

−/− mice 
showed no significant difference in colony size after stim-
ulation with ADP (2.5–3 µM) compared to PBS-control 
(Fig. 2A). Finally, we compared the BM response of WT and 
 P2Y12

−/− mice in vivo on day 2 after MI. LSK populations 
were identified as shown in Fig. 2B. With similar numbers 
of total LSK cells in the BM, LSK cells of  P2Y12

−/− mice 
were significantly less activated and presented lower cell 
cycle activity and a higher fraction of LSK remaining in 
 G0-phase after MI compared to WT mice after MI (Fig. 2C).

Treatment with the  P2Y12 inhibitor prasugrel 
reduces cell cycle entry of LSK cells and numbers 
of downstream hematopoietic progenitors 
in the BM after MI

Genetic mouse models are susceptible to unknown intrinsic 
phenotypes due to gene editing. Therefore, we investigated 
emergency hematopoiesis after MI with therapeutic drug 
targeting of the  P2Y12 receptor using prasugrel as a potent, 
specific and irreversible  P2Y12 antagonist that is commonly 
used in patients with ST-segment elevation MI. The treat-
ment protocol was performed as illustrated in Fig. 3A. Effi-
cacy of the treatment regimen was confirmed by platelet 
reactivity tests to ADP-stimulation (Fig. 3B) and assessment 
of tail bleeding time (Fig. 3C). Notably, prasugrel treat-
ment did not influence ADP levels in the BM (Fig. 3D). As 

observed in  P2Y12
−/− mice, we found similar numbers of 

total LSK cells, but significantly reduced entry of LSK cells 
into the cell cycle in mice with prasugrel treatment in com-
parison to vehicle on day 2 after MI (Fig. 3E). These find-
ings were validated in a BrdU incorporation assay showing 
significantly reduced BrdU uptake in LSK cells of prasug-
rel-treated mice after MI (Suppl. Fig. S2). Furthermore, we 
observed reduced numbers of downstream myeloid precur-
sors, i.e. GMP and MDP, in the BM of mice treated with 
prasugrel as compared to vehicle on day 3 after MI (Fig. 3F).

P2Y12 receptor inhibition with prasugrel does 
not influence levels of pro‑inflammatory IL‑1β, 
expression of BM niche factors nor mobilization 
of hematopoietic progenitors after MI

To put the described ADP-dependent,  P2Y12-mediated sign-
aling pathway into the context of the multilayered inflamma-
tory response to MI, we examined established danger signals 
for the hematopoietic BM after MI. Prasugrel treatment did 
not affect the concentration of IL-1β in the blood on day 1 
after MI (Supp. Fig. 3A), the expression of regulatory BM 
retention factors, known to influence homeostasis and acti-
vation of the hematopoietic BM after MI (Supp. Figure 3B) 
nor release of hematopoietic stem and progenitor cells from 
the BM to the peripheral blood (Supp. Fig. 3C).

Cyclooxygenase (COX)‑mediated platelet inhibition 
by acetylsalicylic acid (ASA) does not influence LSK 
cell cycle activity nor cell numbers in the BM after MI

Since the observed effects of  P2Y12-deficiency or prasugrel 
treatment on emergency hematopoiesis could also be related 
to platelet inhibition, we analyzed the hematopoietic response 

Fig. 2  A CFU-assay performed with flushed bone marrow cells from 
C57BL/6  P2Y12

−/− mice after CD41 depletion. Bar graphs illustrate 
macroscopic colony count (n = 8 per group; student’s t test) and 
microscopic colony area per field of view (FOV) in % (n = 78–80 
per group; Mann–Whitney test). Scale bar indicates 500 µm. B Flow 

cytometric gating for LSK cells. C Cell cycle analysis performed with 
Ki67 / DAPI assay in C57BL/6 WT and  P2Y12

−/− mice on day 2 after 
MI. Bar graphs show absolute numbers of LSK cells per femur, LSK 
cycling and non  G0-phase rates in % on day 2 after MI (n = 7–12 per 
group; Mann–Whitney test). Mean ± S.E.M., *p < 0.05, **p < 0.01
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to ischemic myocardial injury by inhibiting another common 
pathway for platelet activation, the cyclooxygenase-thrombox-
ane pathway, using acetylsalicylic acid (ASA) (Supp. Fig. 4A). 
Platelet inhibition was confirmed by assessment of functional 
tail bleeding time after ASA treatment (Supp. Fig. 4B). On 
day 2 after MI, treatment with ASA did not change the rate of 
cycling LSK in the BM nor the fraction of cells in the  G0-phase 
of the cell cycle. Importantly, no difference in downstream 
myeloid progenitors was observed (Supp. Fig. 4C).

P2Y12 receptor inhibition reduces numbers 
of inflammatory leukocytes in the blood 
and the infarcted myocardium after MI

As emergency hematopoiesis in upstream hematopoietic 
progenitors is ultimately linked to leukocyte production, we 
evaluated the composition of the inflammatory response to 
injury under  P2Y12 receptor inhibition with prasugrel on day 
3 after MI. Blood leukocyte subpopulations were identified 

Fig. 3  A Schematic illustration of the experimental setup. After 
establishing  P2Y12 receptor inhibition by a loading dose of prasugrel, 
LAD was ligated for MI and analysis was performed on day 2 and 3 
after MI as shown. B Platelet reactivity after 2 days of oral prasug-
rel treatment in comparison to wildtype, measured by light transmis-
sion aggregometry (n = 4 per group; Mann–Whitney test). C Bleed-
ing time under prasugrel treatment versus vehicle control (n = 6 per 
group; Mann–Whitney test). D ADP levels in the BM on day 2 after 
MI in prasugrel-treated C57BL/6 mice compared to vehicle control, 
assessed by ELISA (n = 10 per group; unpaired t test). E Cell cycle 
analysis of LSK cells performed with Ki67/DAPI assay in prasugrel-

treated C57BL/6 mice in comparison to vehicle control. Bar graphs 
show LSK cell numbers per femur, LSK cycling rates and portion 
of LSK in  G2/S/M phase (non  G0) in % on day 2 after MI (n = 7–11 
per group; student’s t test for LSK cell numbers per femur and LSK 
cycling rates, Mann–Whitney test for LSK non  G0-phase). F Flow 
cytometric gating for downstream hematopoietic progenitor popu-
lations GMP and MDP. Bar graphs show GMP and MDP numbers 
per femur in prasugrel-treated C57BL/6 mice in comparison to vehi-
cle control on day 3 after MI (n = 16–19 per group; student’s t test). 
Mean ± S.E.M., *p < 0.05, **p < 0.01, ***p < 0.001
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as shown in Fig. 4A. Treatment with prasugrel significantly 
reduced numbers of innate immune cells, namely myeloids 
cells, neutrophils and inflammatory  Ly6Chigh monocytes and 
also B-lymphocytes in the blood (Fig. 4B). Furthermore, 
 P2Y12 inhibition with prasugrel also affected recruitment 
of inflammatory immune cells to the infarct, which is a 
known prognostic parameter for wound healing and cardiac 
remodeling. Leukocytes in the infarct and border zone were 
identified as shown in Fig. 4C. On day 7 after MI, prasug-
rel-treated mice showed significantly reduced infiltration of 
myeloid cells, including neutrophils, monocytes and mac-
rophages in comparison to vehicle (Fig. 4D).

The  P2Y12 receptor‑mediated effects on LSK cells 
after MI are independent from platelets

Platelets harbor immunoregulatory functions that may as 
well be targeted by ubiquitous  P2Y12 knockout or prasugrel 
treatment. We created platelet-specific  P2Y12-deficient GFP 
chimera  (P2Y12(plt)−/− GFP) to investigate the contribution 
of platelet-P2Y12 to the described effects on hematopoietic 
BM expansion and post-MI inflammation. The transplanta-
tion and treatment protocols were performed as illustrated 
in Fig. 5A.  P2Y12(plt)−/− GFP chimera showed no residual 
presence of  GFP+  P2Y12-competent platelets (Fig. 5B).

On day 3 after MI, treatment of with prasugrel sig-
nificantly reduced LSK cell cycling in the bone marrow 
(Fig. 5C), which translated to reduced numbers of leukocytes 

in circulation (Fig.  5D) and the infarcted myocardium 
(Fig. 5E) as compared to  P2Y12(plt)−/− GFP chimeras treated 
with vehicle control.

Inhibition of the  P2Y12 receptor ameliorates chronic 
adverse cardiac remodeling and preserves cardiac 
function 3 weeks after MI

Cardiac function and remodeling were recorded echocardio-
graphically on day 1 and day 21 following MI in mice treated 
with prasugrel or vehicle control. Comparable size of the 
induced myocardial injury was validated by similar troponin 
I levels and equally reduced cardiac function in both groups 
on day 1 after MI (Fig. 6A). On day 21 after MI, animals 
treated with prasugrel showed superior preserved cardiac 
function and limited left ventricular dilatation, recorded as 
reduction of end-systolic left ventricular volume increment, 
compared to the vehicle group (Fig. 6A). These findings 
were supported by immunohistochemistry, showing reduced 
staining for myeloid  CD11b+ cells (Fig. 6B).

Cardiac remodeling describes a delicately balanced pro-
cess of post-ischemic inflammation and reparative wound 
healing. We evaluated mRNA expression of selected key 
players of cardiac remodeling in the border zone of the 
infarct on day 7 after MI which were reduced after prasu-
grel treatment (Fig. 6C). Interestingly, neovascularization 
by means of staining for  CD31+ cells (Fig. 6D) and col-
lagen content in Masson’s trichrome staining (Fig. 6E) in 

Fig. 4  A Flow cytometric gating for B-lymphocytes, myeloids, neu-
trophils and Ly6C high monocytes in the blood. B Effects of  P2Y12 
receptor blocker prasugrel on blood leukocytes on day 3 after MI 
(n = 8–9 per group; unpaired t test). Bar graphs display cell counts per 
µl blood. C Flow cytometric gating for myeloids, neutrophils, mono-
cytes and macrophages in the infarcted myocardium. D Leukocytes 

and subsets in the infarcted myocardium on day 7 after MI in prasu-
grel-treated C57BL/6 mice compared to vehicle control, assessed by 
flow cytometry (n = 6–7 per group; Mann–Whitney test). Bar graphs 
show cell counts per g of infarcted myocardium. Mean ± S.E.M., 
*p < 0.05, **p < 0.01
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the border zone of the infarct were detected to be higher 
under  P2Y12 receptor inhibition with prasugrel compared 
to vehicle. 

Discussion

After MI, blood leukocyte counts correlate with in-hospital 
mortality and recurrent adverse cardiovascular events [21, 
23]. Modulating the inflammatory response to ischemic 
myocardial injury has therefore been a promising approach 
to improve patients’ outcome after MI and has recently been 
in focus of several clinical trials on secondary cardiovascu-
lar prevention [45, 54, 55, 67]. In this study, we describe 
that the ADP-dependent,  P2Y12 receptor-mediated signaling 
pathway is a key driving factor for emergency hematopoie-
sis after MI. We identified ADP as a danger signal for the 
hematopoietic BM since ADP levels increased after MI and 
promoted phosphorylation of Akt and cell cycle progression 
of hematopoietic stem and progenitor cells (LSK) in vitro. 
We detected  P2Y12 receptor expression on LSK cells which 
implicates that ADP acts directly on LSK cells via  P2Y12 
signaling, not mediated by  P2Y12 on platelets, which was 
confirmed in mice with platelet-specific  P2Y12-deficiency. 

Ubiquitous  P2Y12 knockout or treatment with the  P2Y12 
receptor antagonist prasugrel modulated emergency hemat-
opoiesis, subsequently reducing the excessive inflammatory 
response to MI, which translated into reduced expansion of 
downstream lineages and limited the numbers of leukocytes 
in circulation and in the infarct. Ultimately, this preserved 
cardiac function and prevented adverse cardiac remodeling 
after MI (Fig. 7).

Acute ischemic myocardial injury triggers a profound 
release of danger-associated molecular patterns (DAMPs) 
and cytokines from activated platelets, injured cardiomyo-
cytes and endothelial cells [51]. These danger signals then 
initiate a pro-inflammatory cascade that mediates local 
inflammation, steers leukocyte recruitment to the infarct 
[15, 20] and fosters emergency hematopoiesis in the bone 
marrow to meet the excessive demand for leukocytes [3, 6, 
10, 12, 25, 65]. Extracellular nucleotides such as ATP, ADP 
and UDP are among the prominent danger signals released 
upon vascular injury [7]. Whereas ATP is most abundant 
upon hypoxia or tissue acidosis and can activate several P2 
receptors [51, 74], ADP is primarily known to be secreted 
from platelets’ dense granula upon activation and to act as a 
ligand to the purinergic  P2Y12 receptor. Purinergic P2 recep-
tors are closely linked to the inflammatory cascade [24, 61]. 

Fig. 5  A Schematic illustration of the experimental setup. C57/BL/6-
Tg (UBC-GFP) mice were lethally irradiated and reconstituted with 
PF4(P2Y12

fl/fl) BM cells to create  P2Y12(plt)−/− GFP chimeras. After 
16  weeks, LAD was ligated for MI and analysis was performed on 
day 3 after MI as shown. B Residual  GFP+ platelets in  P2Y12(plt)−/− 
GFP chimeras compared to GFP WT recipients. C Proliferation 
analysis of LSK cells in prasugrel-treated  P2Y12(plt)−/− GFP chime-
ras in comparison to vehicle control. Bar graphs show the portion of 
LSK cells in  G1/G2/S/M phase (non  G0) in % and numbers of LSK 

cells in non  G0 phase per femur on day 3 after MI (n = 5–6 per group; 
Mann–Whitney test). D Effects of  P2Y12 receptor blocker prasugrel 
on blood leukocytes on day 3 after MI in  P2Y12(plt)−/− GFP chimeras 
(n = 6 per group; Mann–Whitney test). Bar graphs display cell count 
per µl blood. E Leukocytes and  Ly6Chigh monocytes in the infarcted 
myocardium on day 3 after MI in prasugrel-treated  P2Y12(plt)−/− GFP 
chimeras in comparison to vehicle control, assessed by flow cytom-
etry (n = 6 per group; Mann–Whitney test). Bar graphs show cell 
counts per g of infarcted myocardium. Mean ± S.E.M., *p < 0.05



Basic Research in Cardiology (2022) 117:16 

1 3

Page 11 of 17 16

Intriguingly, hematopoietic stem and progenitor cells have 
been reported to express P2X and P2Y receptors in mice 
and humans [13, 17, 35, 56, 73]. While  P2X7 has previously 
been linked to mobilization and homing of hematopoietic 
stem cells [1], the role of the P2Y receptors on hematopoi-
etic progenitors, especially the  P2Y12 receptor, has not yet 
been characterized.

Most DAMPs are released instantly in the course of 
injury. Yet, we found ADP levels in the BM to peak specifi-
cally on day 2 after MI. Interestingly, this increase in ADP 
concentrations coincided with the onset of hematopoietic 
stem cell activation following ischemic myocardial injury as 
previously reported [10, 11, 57], suggesting that ADP pos-
sibly serves as a messenger to the BM in favor of emergency 

hematopoiesis. Indeed, stimulating hematopoietic BM cells 
with ADP in cell culture increased BM cell proliferation. 
Importantly, platelets were excluded during the cell selection 
process for this experiment as ADP-dependent platelet acti-
vation in culture could have confounded data via cytokine 
release.

Looking for possible sources of ADP in the BM, we pri-
marily considered activated platelets as well-acknowledged 
origin of extracellular ADP in hemostasis. Platelet inhi-
bition, however, did not significantly decrease ADP con-
centrations in the BM or blood. As an alternative source, 
conversion of ATP to ADP and AMP, which occurs within 
hours after release, could be discussed as a delayed source 
of ADP as a secondary messenger [64]. However, detecting 

Fig. 6  A Evaluation of cardiac function and volumes by echocardi-
ography day 1 and day 21 after MI in C57BL/6 mice under prasugrel 
treatment compared to vehicle control until day 7 after MI. Depicted 
are end-systolic parasternal long axis views in B-mode. Scale bar 
indicates 1 mm. Bar graphs show troponin I levels in plasma on day 
1 after MI, evaluated by ELISA (n = 7–8 per group, Mann–Whitney 
test), left ventricular ejection fraction (LV-EF in %) on day 1 after 
MI (n = 7–8 per group, Mann–Whitney test) and delta changes in left 
ventricular ejection fraction, end-systolic and end-diastolic volumes 
(∆ LV-EF in %, ∆ ESV and EDV in µl) between day 1 and day 21 
after MI (n = 7−8 per group, Mann–Whitney test) in prasugrel-treated 
C57BL/6 mice compared to vehicle control. B Immunohistochemis-
try for CD11b of the infarcted myocardium (border zone) on day 7 
after MI. Scale bar indicates 50 µm. Bar graphs show percentages of 

the positive area for CD11b in the infarcted area per field of view in 
% (n = 6–8 per group; Mann–Whitney test). C TNF α, IL-1β, MMP9 
and TIMP in the infarcted myocardium (border zone) on day 7 after 
MI in C57BL/6 mice under prasugrel treatment compared to vehicle 
control, evaluated by qPCR (n = 4–16 per group; unpaired t test for 
TNF α, IL-1β, MMP9, Mann–Whitney test for TIMP). D Immuno-
histochemistry for CD31 of the infarcted myocardium (border zone) 
on day 7 after MI. Scale bar indicates 50 µm. Bar graphs show per-
centages of the positive area for CD31 in the infarcted area per field 
of view in % (n = 5–8 per group; Mann–Whitney test). E Masson’s 
Trichrome staining of the infarcted myocardium (border zone) on day 
21 after MI. Scale bar indicates 100 µm. Bar graphs show percentages 
of collagen in the infarcted area per  mm2 (n = 7–8 per group; Mann–
Whitney test). Mean ± S.E.M., *p < 0.05, **p < 0.01
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ATP conversion to ADP after ischemia has been impeded 
due to the short half-life of ADP and ample presence of 
ectonucleotidases in vivo [53, 77], leaving the designated 
origin of ADP in the hematopoietic BM after MI still to be 
elucidated.

To identify possible recipients to the elevated ADP lev-
els, we screened various hematopoietic cell populations for 
the expression of the most commonly known ADP receptor 
 P2Y12. Beyond the well appreciated  P2Y12 expression on 
platelets [28], several other cell types including microglia in 
the brain, osteoclasts, vascular smooth muscle cells, leuko-
cytes and hematopoietic progenitor cells have been reported 
to express  P2Y12 [8, 18, 63, 73]. However, the functional 
relevance of  P2Y12 expression beyond platelet aggregation is 
largely unknown [14]. Remarkably, after careful exclusion of 
platelet-complexes in the cell isolation process, we detected 
 P2Y12 receptor expression, specifically on hematopoietic 
stem and progenitor cells (LSK) in the murine BM. This 
finding could be validated interrogating an external RNA 
sequencing dataset of isolated LSK cells [33]. In line with 
previous studies, we were also able to detect  P2Y12 expres-
sion on differentiated leukocyte subsets at lower expression 
levels as compared to LSK cells. Therefore, direct  P2Y12 
dependent effects on leukocyte subsets have to be acknowl-
edged and remain to be investigated.

The phosphoinositide 3-kinase (PI3K)/Akt intracellular 
signaling pathway promotes cell survival, proliferation and 
growth by phosphorylation and inhibition of key transcrip-
tion factors and has been reported to forward Akt phos-
phorylation downstream of the  P2Y12 receptor in activated 

platelets and vascular smooth muscle cells [32, 48, 59]. 
Stimulating LSK cells with ADP, we detected increased 
Akt phosphorylation, which was absent in  P2Y12-deficient 
LSK cells. Furthermore, performing LSK-specific CFU 
assays confirmed LSK as a protagonist cell population. The 
 P2Y12 receptor was validated to primarily moderate the 
expansion of hematopoietic BM cells in response to ADP, 
as  P2Y12-deficiency depleted the pro-proliferative effect of 
ADP. This minimized possible pleiotropic effects due to 
dephosphorylation of ADP to AMP and adenosine to be 
responsible for the effect on hematopoietic BM proliferation. 
Taken together, our experiments implicate a close relation 
of ADP-dependent  P2Y12 signaling with Akt phosphoryla-
tion and cell cycle progression in LSK cells and appeared 
to be well in line with previous reports on Akt-dependent 
proliferation of LSK cells with primarily myeloid lineage 
differentiation [31].

We performed permanent coronary ligation to induce 
acute ischemic myocardial injury in a murine model to 
analyze the inflammatory response to MI in the setting of 
selective  P2Y12 targeting, achieved by  P2Y12-deficiency or 
pharmacological  P2Y12 receptor inhibition. Permanent coro-
nary ligation was preferred over an ischemia / reperfusion 
model to reduce the effect of local, platelet-mediated reper-
fusion injury after MI. For  P2Y12 antagonist treatment, we 
chose the second generation thienopyridine prasugrel, which 
was reported to be more potent than clopidogrel in terms of 
more rapid and consistent  P2Y12 inhibition [75]. Despite 
its promising favorable effects on infarct size, cytokine 
release and cardiac remodeling [38, 69, 72] the competi-
tive  P2Y12 inhibitor ticagrelor was not used due to known 
pleiotropic effects beyond  P2Y12 receptor inhibition, i.e. 
inhibition of toll like receptors-1/2 (TLR1/2), the protease 
activated receptor (PAR)-pathway [71] and the equilibrative 
nucleoside transporter 1 (ENT1), which increases extracel-
lular concentrations of adenosine [2]. Ubiquitous  P2Y12 
knockout or prasugrel treatment both attenuated hematopoi-
etic BM activation after MI, reflected in reduced cell cycle 
activity of LSK cells, which transferred to lower numbers 
of downstream progenitors and leukocytes of myeloid and 
lymphocyte origin in the blood. Intriguingly, neutropenia has 
been described as an adverse drug reaction in some patients 
treated with  P2Y12 inhibitors and, vice versa, a small but 
significant rise in blood neutrophil counts after terminating 
 P2Y12 antagonist therapy has been recorded [62, 75]. Next 
to myeloid cells, lymphocytes are further key players in the 
remodeling of cardiac lesion [26, 27]. Hence,  P2Y12 inhibi-
tion seems to not only modulate innate but also adaptive 
immunity after MI.

Scaled down emergency hematopoiesis and reduced leu-
kocytosis after MI by  P2Y12 inhibition with prasugrel trans-
lated to limited leukocyte infiltration of primarily myeloid 
origin to the infarct, ameliorated adverse cardiac remodeling 

Fig. 7  Summary
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and preserved cardiac function after MI. Notably,  P2Y12 
receptor inhibition resulted in higher collagen content in 
the infarct border zone. While exaggerated post-MI cardiac 
fibrosis especially outside the infarct zone has been associ-
ated with reduced cardiac compliance [66], locally restricted 
increase of the collagen portion in the border zone may also 
indicate a well-balanced wound healing with increased 
tissue stability. Supported by signs of neovascularization, 
 P2Y12 inhibition post-MI preserved cardiac function and 
reduced adverse cardiac remodeling.

Crosstalk between the injured myocardium and hemat-
opoietic BM uses multiple channels, moderated by soluble 
danger signals such as pro-inflammatory interleukin-1β 
and the sympathetic nerve system (SNS). [6, 25, 57] BM 
retention factors, namely CXCL12, VCAM1, SCF and 
angiopoietin, are secreted by regulatory BM niche cells 
and modulate LSK homeostasis [42]. Both IL-1β and SNS 
induce downregulation of BM retention factors to activate 
LSK cells [10, 57]. Putting our findings in the context of 
the appreciated signaling pathways that promote emer-
gency hematopoiesis after MI, we evaluated cornerstones 
of IL-1β-mediated and sympathetic nervous signaling under 
the treatment with  P2Y12 antagonist prasugrel. Plasma levels 
of IL-1β after MI as well as expression of BM niche factors 
were not affected by  P2Y12 inhibition with prasugrel. Also, 
the release of LSK and progenitor cells from the BM into 
circulation, previously described to play an essential role 
for IL-1β-dependent extramedullary hematopoiesis after MI 
[57], remained unchanged by prasugrel treatment and sup-
ports the hypothesis of a direct ADP-dependent and  P2Y12 
receptor-mediated effect on LSK cells.

In the setting of ischemic myocardial injury and pres-
sure overload [39, 76],  P2Y12 receptor inhibition alleviates 
adverse cardiac remodeling and preserves cardiac function 
via platelets’ immunoregulation, closely linked to leukocyte 
recruitment with platelet-leukocyte, platelet-endothelial and 
enhanced leukocyte-endothelial interactions [16, 39]. In this 
context,  P2Y12 inhibition was shown to limit platelet-leu-
kocyte-conjugation by reducing platelet p-selectin expres-
sion [39], preventing leukocyte rolling for transendothelial 
migration [70]. To distinguish our findings from platelet-
P2Y12, we analyzed emergency hematopoiesis in the acute 
phase after MI in platelet-specific  P2Y12-deficient GFP chi-
mera. The UBC-GFP reporter allowed us to rule out residual 
presence of  P2Y12-competent platelets in recipient mice. As 
before, prasugrel treatment still reduced LSK cycling in the 
bone marrow and leukocyte numbers in circulation and the 
infarcted myocardium in the acute phase after MI, indicat-
ing a significant role of  P2Y12 signaling in inflammation 
beyond platelet-induced immunoregulation. Furthermore, 
acetylsalicylic acid (ASA) which inhibits p-selectin expres-
sion on platelets, exerted no additional effect on emergency 
hematopoiesis [30, 41].

Translational investigation of  P2Y12 signaling in emer-
gency hematopoiesis after MI is limited by the otherwise 
widely appreciated benefits of  P2Y12 inhibitors in cardiovas-
cular disease [68]. Yet, there are intriguing observations in 
support of enhanced anti-inflammatory properties of  P2Y12 
inhibitors. Adding  P2Y12 antagonists to ASA, considered 
as dual antiplatelet therapy (DAPT), proved to be superior 
to any other combination in stable and unstable coronary 
disease [37, 68]. This benefit was not limited to the expected 
prevention of target vessel failure but also reduced reoccur-
ring adverse cardiac events [4].

Conclusion

In our study, we describe a novel pathway in the crosstalk 
of injured myocardium and the hematopoietic BM after MI, 
fostering emergency hematopoiesis via ADP-dependent 
 P2Y12 receptor-mediated stimulation of upstream hemat-
opoietic stem and progenitor (LSK) cells. Inhibition of the 
 P2Y12 receptor modulated the inflammatory response to 
injury, preserved cardiac function and prevented adverse 
cardiac remodeling after MI. Given the high demand and 
turnover of leukocytes following MI [36], the modulation 
of emergency hematopoiesis may thus be an intriguing 
approach to target inflammation at its root, prevent excessive 
secondary myocardial damage and sustain cardiac function.
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