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Abstract
Current evidence indicates that coronary microcirculation is a key target for protecting against cardiac ischemia–reperfusion 
(I/R) injury. Mitochondrial calcium uniporter (MCU) complex activation and mitochondrial calcium  ([Ca2+]m) overload are 
underlying mechanisms involved in cardiovascular disease. Histidine triad nucleotide-binding 2 (HINT2) has been reported 
to modulate  [Ca2+]m via the MCU complex, and our previous work demonstrated that HINT2 improved cardiomyocyte 
survival and preserved heart function in mice with cardiac ischemia. This study aimed to explore the benefits of HINT2 on 
cardiac microcirculation in I/R injury with a focus on mitochondria, the MCU complex, and  [Ca2+]m overload in endothelial 
cells. The present work demonstrated that HINT2 overexpression significantly reduced the no-reflow area and improved 
microvascular perfusion in I/R-injured mouse hearts, potentially by promoting endothelial nitric oxide synthase (eNOS) 
expression and phosphorylation. Microvascular barrier function was compromised by reperfusion injury, but was repaired 
by HINT2 overexpression via inhibiting VE-Cadherin phosphorylation at  Tyr731 and enhancing the VE-Cadherin/β-Catenin 
interaction. In addition, HINT2 overexpression inhibited the inflammatory response by suppressing vascular cell adhesion 
molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Mitochondrial fission occurred in cardiac micro-
vascular endothelial cells (CMECs) subjected to oxygen–glucose deprivation/reoxygenation (OGD/R) injury and resulted 
in mitochondrial dysfunction and mitochondrion-dependent apoptosis, the effects of which were largely relieved by HINT2 
overexpression. Additional experiments confirmed that  [Ca2+]m overload was an initiating factor for mitochondrial fission 
and that HINT2 suppressed  [Ca2+]m overload via modulation of the MCU complex through directly interacting with MCU 
in CMECs. Regaining  [Ca2+]m overload by spermine, an MCU agonist, abolished all the protective effects of HINT2 on 
OGD/R-injured CMECs and I/R-injured cardiac microcirculation. In conclusion, the present report demonstrated that HINT2 
overexpression inhibited MCU complex-mitochondrial calcium overload-mitochondrial fission and apoptosis pathway, and 
thereby attenuated cardiac microvascular ischemia–reperfusion injury.

Keywords Cardiac ischemia–reperfusion injury · Cardiac microvascular injury · HINT2 · MCU complex · Mitochondrial 
calcium overload · Mitochondrial fission

Introduction

The reperfusion strategy is the most widely acknowledged 
treatment for acute myocardial infarction (MI) [22]. How-
ever, resupply blood with ischemic myocardium causes 
ischemia–reperfusion (I/R) injury, which is a clinical real-
ity and a problem that needs much more attention [22]. In 
recent years, the importance of microcirculation in the pro-
tection of cardiac function has become more apparent [18, 
19]. The mechanisms of I/R injury to coronary microvas-
cular impairment range from microembolization, impaired 
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vasomotion, capillary plugging and rupture, to leukocyte 
infiltration, which are partly different from those contrib-
uting to cardiomyocyte injury [18, 19]. Moreover, these 
pathological changes further progress to cardiac edema and 
even coronary no-reflow phenomena, thereby discounting 
the benefits of reperfusion therapy [18]. Considering that 
coronary microvascular dysfunction has been recognized as 
a determinant for patients’ adverse outcomes, it is highly 
necessary to better understand the underlying mechanisms 
and search for effective therapeutic targets [8, 22].

Mitochondria are dynamic organelles that perform self-
repair via mitochondrial fission and fusion, two distinctly 
opposite processes in which one separates the damaged 
fractions from the whole mitochondrial body and the other 
merges two fractions into a healthy mitochondrion [39]. The 
balance of fission and fusion is critical to maintain mito-
chondrial and endothelial function [7, 28]. However, mito-
chondrial fission in the coronary microcirculation is exces-
sively activated after reperfusion, which further accentuates 
mitochondrial reactive oxygen species (ROS) accumulation, 
mitochondrial permeability transition pore (mPTP) opening, 
and apoptosis activation, ultimately resulting in microvas-
cular dysfunction [51]. Additionally, reperfusion injury-
elicited mitochondrial dysfunction has been implicated in 
ROS bursts, inflammatory response activation, endothelial 
swelling, leukocyte aggregates, and altered vasomotion, all 
of which inevitably contribute to microthrombus formation 
and microvascular obstruction [13]. In contrast, treatments 
aimed at mitochondrial repair and ROS elimination allevi-
ated microvascular dysfunction under I/R injury and showed 
the potential to relieve the no-reflow phenomenon [48]. The 
above evidence strongly supports the targeting of mitochon-
drial fission and function as a promising approach for car-
diac and microvascular protection from I/R injury.

Calcium overload has been identified as an early sign of 
apoptosis in cardiomyocytes after I/R injury [41]. Persistent 
calcium oscillation triggers mitochondrial dysfunction, leads 
to oxidative stress and mPTP opening, and ultimately acti-
vates mitochondrion-dependent apoptosis [36]. This death 
pattern contributes to many types of cardiovascular diseases, 
including cardiac I/R injury and heart failure [10, 25]. How-
ever, the pathological role of calcium overload in micro-
vascular reperfusion injury is a neglected target for cardio-
protection. Limited evidence has proven that the restriction 
of endothelial mitochondrial calcium  ([Ca2+]m) influx 
exerted benefits on cardiac microcirculation, as evidenced 
by enhanced microvascular perfusion, reduced microvascu-
lar obstruction, inhibited inflammatory cell infiltration, and 
decreased infarction size in a mouse cardiac I/R model, and 
the potentially involved mechanisms were largely attributed 
to mitigated mitochondrial morphological and functional 
damage [27, 47].  [Ca2+]m influx is primarily mediated by 
the mitochondrial calcium uniporter (MCU) complex, which 

mainly consists of four MCU subunits and essential MCU 
regulators (EMREs) [2, 46]. The regulatory proteins that 
interact with MCU subunits include mitochondrial cal-
cium uptake 1/2 (MICU1/2) and MCU dominant-negative 
β-subunit (MCUb) [2, 46]. As its core component, the four 
MCU subunits were mainly in charge of mitochondrial cal-
cium uptake and were upregulated by I/R injury, resulting 
in  [Ca2+]m overload and mitochondrial dysfunction [49]. 
In contrast, the inhibition of MCU alleviated cardiomyo-
cyte apoptosis and myocardial reperfusion injury [15, 49]. 
The regulation and contribution of MCU activity was also 
highlighted in endothelial cells, and has been proven to be 
involved in ischemic microvascular diseases and atheroscle-
rotic vascular disease [1]. Previous work suggested that the 
inhibition of MCU in the endothelium restrained  [Ca2+]m 
uptake and thereby improved coronary microvascular func-
tion in the face of I/R injury [27]. However, the detailed 
mechanisms by which the MCU complex regulates mito-
chondrial function and microvascular protection have not 
been fully explored.

Histidine triad (HIT) nucleotide-binding protein 2 
(HINT2) is located in mitochondria and belongs to the 
HINT branch of the HIT superfamily [5]. Genetic ablation 
of HINT2 in mice resulted in oxidative respiratory chain 
impairment and highly acetylated mitochondrial proteins, 
which resembled the pattern of mitochondrial injury after 
hypoxia [33]. Our previous work verified that HINT2 over-
expression preserved mouse heart function after MI, and 
maintained mitochondrial membrane potential (MMP) and 
mitochondrial respiration in cardiomyocytes exposed to 
hypoxia [11]. In addition, there is evidence that HINT2 can 
modulate intracellular calcium  ([Ca2+]i) and  [Ca2+]m dynam-
ics in hepatocytes and enhance apoptosis in pancreatic can-
cer cells by regulating the MCU complex [6, 35]. However, 
the exact role of HINT2 in I/R-induced cardiac microvas-
cular injury has not been reported, and whether HINT2 
can govern  [Ca2+]m fluctuation via the MCU complex and 
thereby improve mitochondrial dynamics and function in 
endothelial cells remains unknown. Therefore, the present 
study was designed to evaluate the effect of HINT2 overex-
pression on coronary microvascular protection in the setting 
of cardiac I/R injury and to explore the possible mechanisms 
with a focus on mitochondrial dynamics and MCU complex-
related  [Ca2+]m homeostasis.

Methods

Endothelial HINT2 overexpression strategies

Mouse HINT2-overexpressing adeno-associated virus-9 
(AAV9-HINT2) genome particles containing the TIE pro-
moter and Flag were obtained from Genomeditech (China, 
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Shanghai). To establish an endothelial cell (EC)-specific 
HINT2-overexpressing mouse model, 100 µl AAV9-HINT2 
particles or negative control (AAV9-NC) at a density of 
5 × 10^12 v.g./ml was injected into 6-week-old C57BL/6J 
mice via the caudal vein. Four weeks after transfection, car-
diac tissues were sectioned to measure transfection efficiency 
of AAV9 in the cardiac microcirculation via co-immunofluo-
rescence staining of Flag, cTnT, and CD31. Cardiac micro-
vascular endothelial cells (CMECs) were isolated to measure 
HINT2 overexpression efficiency by Western blot.

Adenoviruses (ADVs) containing the HINT2 gene (ADV-
HINT2) and a negative control (ADV-NC) were obtained 
from Hanbio (China, Shanghai). To establish HINT2-over-
expressing CMECs in vitro, CMECs were isolated from 6- 
to 8-week-old C57BL/6J mice and transfected with ADV-
HINT2 or ADV-NC at different multiplicities of infection 
(MOIs). HINT2 overexpression efficiency was determined 
using Western blot. Plasmids containing the  full-length 
HINT2, the HINT2 mutant and the negative control (NC) 
were obtained from Genomeditech (China, Shanghai) and 
transfected into CMECs with Lipofectamine 3000 (Thermo 
Fisher, USA).

Cardiac I/R injury model

Four weeks after AAV9-HINT2 transfection, male 
C57BL/6J mice (10 weeks of age) underwent surgical car-
diac I/R injury as described previously [12]. The left anterior 
descending coronary artery (LAD) was ligated via a slipknot 
using 6–0 silk for 45 min, and then, the slipknot was gen-
tly loosened to induce reperfusion injury. Mice in the sham 
group underwent the same procedures without tying the 
slipknot. To inhibit the MCU complex, 50 nmol/kg Ru360 
(MCE, USA) was injected intraperitoneally into AAV9-NC 
mice 1 h before I/R injury [15]. Spermine (5 mg/kg, MCE, 
USA) was injected intraperitoneally into AAV9-HINT2 mice 
1 h before I/R injury to activate the MCU complex [27].

CMECs isolation, oxygen–glucose deprivation/
reoxygenation (OGD/R) injury, and cell viability 
assays

CMECs were isolated from the left ventricle according to a 
previous method [24]. Briefly, after the left ventricle were 
sufficiently digested into single cell suspension with liberase 
(Roche, Switzerland), CMECs were gathered using CD31-
coupled microbeads (Thermo Fisher, USA) and further cul-
tured in endothelial culture medium (ECM, ScienCell, USA) 
containing endothelial cell growth supplements (ECGS), 5% 
fetal bovine serum (FBS), 100 U/ml penicillin, and 100 μg/
ml streptomycin. The purity of isolated CMECs was identi-
fied by immunofluorescence staining of CD31.

To induce OGD/R injury, CMECs were cultured in 
Eagle’s solution (Genom, China) and maintained in a 
hypoxia chamber (MGC, Japan) with a gas mixture of 5% 
 CO2 and 95%  N2 at 37 °C for 6 h to induce OGD injury. 
Reoxygenation injury was triggered by restoring the culture 
medium and atmosphere (5%  CO2 and 95% air). Cells trans-
fected with ADV-NC were pretreated with 10 μM Ru360 1 h 
before OGD/R injury to inhibit the MCU complex. Mdivi-1 
(5 μM, MCE, USA) was added to the ADV-NC group during 
OGD/R injury to inhibit mitochondrial fission. In contrast, 
1 μM FCCP (MCE, USA) or 10 μM spermine was applied 
to ADV-HINT2 cells for 2 h to reintroduce mitochondrial 
fission or reactivate the MCU complex, respectively. Cell 
viability was detected by a Cell Counting Kit-8 assay kit 
(EpiZymi, China).

Thioflavin S staining assays

Thioflavin S staining assay was used to measure the myo-
cardial no-reflow phenomenon [30, 44]. Briefly, 6% thiofla-
vin S (1 ml/kg, MCE, USA) was injected into mice via the 
tail vein and allowed to circulate for 1–2 min. The hearts 
were quickly harvested, fixed in 4% paraformaldehyde 
(PFA) overnight, cut into 1 mm sections, and then observed 
under a stereomicroscope (Leica, Germany). 359 nm exci-
tation light was used for imaging. The reflow area showed 
bright blue fluorescence, whereas the no-reflow area was 
dark. The no-reflow degree was indicated as the percentage 
of dark area to the left ventricle.

Triphenyltetrazolium chloride (TTC) staining

TTC staining was conducted to measure cardiac infarction 
size [4]. After the mice were anesthetized with 2% isoflu-
rane, the slipknot was tied again, and 1% Evans blue (w/v, 
Sigma, USA) was injected into the aortic root to perfuse the 
left ventricle. Then, the heart was rapidly excised, cut into 
1 mm slices, and incubated with 1% TTC solution (Sigma, 
USA) at 37 °C for 10 min. Consecutive slices in each sample 
were scanned by a white light scanner (Canon, Japan). Area 
at risk (AAR) was defined as tissues not perfused by Evans 
blue. Infarcted myocardium was white, whereas viable myo-
cardium was red. The infarction degree was calculated as the 
ratio of the infarction area to the AAR.

Modified Miles assays

Evans blue (1%, w/v, 100 μl) was injected into mice via the 
tail vein. The mice were sacrificed 30 min after injection, 
and the hearts were perfused with citrate buffer (pH 4.5) 
through the aorta to evacuate blood. Left ventricle samples 
were immersed in 1 ml formamide, homogenized, and incu-
bated at 60 °C overnight to elute Evans blue. The samples 
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were centrifuged at 10,000×g for 40 min to extract the 
supernatant containing Evans blue. Absorbance at 620 nm 
was read by a FlexStation 3 instrument (Molecular Devices, 
USA). The concentration of Evans blue was calculated from 
a standard curve and corrected by left ventricle weight.

Immunofluorescence staining

Frozen sections (6 μm) were fixed with cold acetone for 
10 min at – 20 °C, air dried for 15 min, and blocked with 5% 
bovine serum albumin (BSA) for 1 h at room temperature 
(RT). The sections were then incubated with primary anti-
bodies. After overnight incubation at 4 °C, the samples were 
washed with PBS and incubated with fluorescence-labeled 
secondary antibodies for 1 h at RT. To measure microvascu-
lar perfusion, 100 μl FITC-combined tomato lectin (1 mg/
ml, Sigma, USA) was injected into mice via the tail vein 
and allowed to circulate for 10 min [31, 42]. Then, heart 
samples were harvested, sectioned, and stained for CD31 to 
label vessels. The microvascular perfusion ratio was indi-
cated as the percentage of lectin-positive microvessels to 
CD31-positive microvessels. Immunofluorescence staining 
of cell samples was performed with the same procedures, 
except the samples were fixed with 4% PFA for 10 min and 
permeabilized with 0.5% Triton X-100 for 10 min. Detailed 
information of the primary and secondary antibodies used 
in immunofluorescence staining, including source, catalog 
number, and dilution, is listed in Table S1. All tissue sec-
tions and confocal dishes were observed under a confocal 
microscope (Olympus FV3000, Japan). At least five random 
fields were captured and quantitatively analyzed via ImageJ 
(version 1.53c, NIH, USA).

Cell fluorescence staining

Mitochondria were stained with  MitoTracker® Deep Red 
FM (200 nM, Invitrogen™, USA) for 30 min in the dark. 
Cellular ROS and mitochondrial ROS (mtROS) were meas-
ured by  CellROX® Deep Red Reagent (5 μM, Invitrogen™, 
USA) and MitoSOX™ Red Mitochondrial Superoxide Indi-
cator (5 μM, Invitrogen™, USA) for 30 min, respectively. 
To determine mitochondrial membrane potential (MMP), 
the cells were incubated with 2 µM JC-1 probe (Beyotime, 
China) for 30 min. MMP was calculated as the ratio of red-
to-green fluorescence intensity according to the instructions. 
Cells were fixed, permeabilized, and then incubated with 
TUNEL (Sigma-Aldrich, USA) reaction mixture buffer for 
60 min to detect apoptosis.  [Ca2+]i and  [Ca2+]m levels were 
measured with 5 μM Fluo-4 and 1 μM Rhod-2 (Thermo 
Fisher, USA), respectively, for 30 min at 37 °C. Nuclei were 
labeled by DAPI (Beyotime, China). All the above fluores-
cence images were captured with a laser confocal micro-
scope (Olympus FV3000, Japan). Fluorescence intensity was 

analyzed with ImageJ (Version 1.53c, NIH, USA). Mito-
chondrial length was measured by MiNA (https:// github. 
com/ Scien ceToo lkit/ MiNA), a plug-in in ImageJ.

Nitrite detection

The nitrite content in cardiac tissue and cell culture medium 
was measured by a Micro NO Content assay kit (Solarbio, 
China) according to the principle of detection. Cardiac 
nitrite content was standardized to the protein concentra-
tion of smashed cardiac tissue.

Migration, wound healing, and capillary tube 
formation assays

Migration assays were performed using Corning Transwell 
chambers (8 µm pores, 6.5 mm diameter, USA) that were 
precoated with 10 µg/ml fibronectin (ScienCell, USA). 
After OGD/R injury, cells were digested and seeded in the 
upper chambers containing FBS-free ECM. ECM containing 
10% FBS was then added to the lower chambers to stimu-
late migration. After 24 h of culture, cells that traversed 
through the membrane were fixed with 4% PFA for 30 min 
and stained with 0.05% crystal violet solution (Solarbio, 
China) for 20 min. A wound-healing assay was performed 
by scratching the cell monolayer with a 200 µl pipette tip 
in 6-well plates. Cells were washed with PBS twice and 
cultured in ECM without FBS. Images were collected at 
the beginning and 48 h after scratching. The wound-heal-
ing speed was calculated as the ratio of the healed areas at 
48 h to the original injured areas. A capillary tube forma-
tion assay was performed using the following procedures. 
Matrigel (50 µl, BD Bioscience) was added to each well of 
a 96-well plate and solidified at 37 °C for 30 min. CMECs 
were digested and resuspended in ECM. A total of 5 ×  104 
cells were seeded in each well and cultured at 37 °C for 3 h. 
Capillary-like tubes were imaged by an optical microscope 
(Leica DM3000, Germany), and the numbers of branch 
points were counted manually.

Endothelial monolayer permeability assays

CMECs (1 ×  105) were seeded in the upper chamber of a 
Corning Transwell (0.4 μm pore size, 6.5 mm diameter, 
USA) that was precoated with fibronectin. After OGD/R 
injury, 100 μl FITC-BSA (68 kDa, Sigma, USA) was added 
to the upper chamber at a concentration of 1 mg/ml. After 
1 h of free permeation, the fluorescence intensity of FITC-
BSA in the upper and lower chambers was quantified by a 
FlexStation 3 (Molecular Devices, USA).

https://github.com/ScienceToolkit/MiNA
https://github.com/ScienceToolkit/MiNA
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Protein sample preparation and Western blotting 
assay

Total proteins were extracted in RIPA lysis buffer (Bey-
otime, China) on ice, followed by centrifugation at 
12,000 rpm for 30 min to remove cell fragments. Mito-
chondria were extracted by lysing cells with Mitochondrial 
Separation Reagent (Beyotime, China) on ice for 15 min. 
After centrifugation, mitochondria were separated from 
cytoplasmic fragments and further lysed by Mitochon-
drial Lysis Buffer to extract mitochondrial protein. For 
immunoprecipitation (IP), cells were lysed with Cell Lysis 
Buffer for IP (Weiao Biological Company, China) on ice 
for 15 min and incubated with protein A/G-magnetic beads 
conjugated with antibodies against VE-Cadherin (Abcam, 
ab205336) and Flag (Abcam, ab205606) for 30 min at RT 
under constant rotation. Rabbit IgG (Abcam, ab172730) 
was used as a technical negative control to assess non-
specific binding. The immunocomplexes were mixed with 
loading buffer and boiled for 10 min to elute the target pro-
tein. Nondenatured protein samples were obtained by lys-
ing cells with Native Lysis Buffer and mixing with Native-
PAGE loading buffer (Solarbio, China) without heating. 
Carbonylated mitochondrial proteins were detected by a 
protein oxidation detection kit (Sigma, USA). After extrac-
tion, mitochondrial proteins were incubated with 2.4-dini-
trophenylhydrazine (DNPH) to conjugate carbonyl groups.

After quantified, protein  samples (10–20  μg) were 
loaded on SDS-polyacrylamide gels for electrophoresis 
and then transferred to PVDF membranes. After block-
ing with 5% BSA for 1 h, the membranes were incubated 
with primary antibodies overnight at 4 °C. Later, after 
rinsing with TBST for three times, the membranes were 
incubated with horseradish peroxidase (HRP)-conjugated 
secondary antibodies (Weiao Biological Company, China) 
at RT for 1 h. The blots were shown by Pierce™ enhanced 
chemiluminescence (ECL) Western blotting Substrate 
(Thermo Fisher, USA). The band intensities were analyzed 
by ImageJ (Version 1.53c, NIH, USA). Native-PAGE was 
performed for the detection of DRP1 oligomers according 
to the same procedure except nondenatured protein sam-
ples (10 μg) were loaded on polyacrylamide gels without 
denaturants (EpiZyme, China). Detailed information of 
the primary antibodies used in immunoblotting, including 
source, catalog number, and dilution, is listed in Table S2.

Structure‑based protein interaction interface 
analysis

The protein structures were predicted by Modeller (salilab.
org/modeller) using Protein Data Bank (PDB) structure 
6YI0 as template for HINT2 and 6o58 as template for 

MCU. Structures of proteins were submitted to the zdock 
tool (http:// zdock. umass med. edu/) to predict potential 
amino acid (AA) binding sites. Binding free energy (BFE) 
between proteins was calculated by MMGBSA analysis.

Statistical analysis

The data are expressed as the means ± SEMs. The Shap-
iro–Wilk test and Kolmogorov–Smirnov test were performed 
before parametric tests, and the results showed that all 
obtained data were normally distributed. Statistical analyses 
were performed with Student’s t test or one-way analysis of 
variance (ANOVA) followed by post hoc tests. P < 0.05 was 
considered statistically significant.

Results

Endothelial‑specific overexpression 
of HINT2 alleviated cardiac microvascular 
dysfunction after I/R injury

In our mouse model of cardiac I/R injury, HINT2 was signif-
icantly reduced in both cardiac tissues and primary CMECs 
in ischemic region after 45 min of ischemia and reached 
the lowest point after 6 h of reperfusion (Fig. 1a, b). There-
fore, mice suffering 6 h of reperfusion injury were selected 
as our following study subjects. To gain more insight into 
the role of HINT2 in microvascular protection, an AAV9-
mediated endothelial-specific HINT2 overexpression mouse 
model was established. Fluorescence staining of Flag indi-
cated the transfection efficiency of AAV9 was > 95% in the 
microcirculation (Fig. S1a), and HINT2 signal was higher in 
the Flag-positive area in AAV9-HINT2-infected hearts (Fig. 
S1b). Meanwhile, HINT2 expression in isolated CMECs 
was ~ 2.82-fold higher than that in mice transfected with 
AAV9-NC (Fig. S1c). Moreover, HINT2 was not transfected 
into cardiomyocytes, as no obvious colocalization between 
Flag and cTnT was observed (Fig. S1a), and the expression 
of HINT2 was equal in cardiomyocytes isolated from the 
AAV9-NC and AAV9-HINT2 groups (Fig. S1d).

To examine the impact of HINT2 on microvascular 
damage, the no-reflow phenomenon was measured. An 
obvious perfusion defect of thioflavin S was observed in 
the left ventricle after reperfusion, and HINT2 overexpres-
sion significantly reduced the area of no-reflow (Fig. 1c, d). 
The fundamental pathology of the no-reflow phenomenon 
was highly related to compromised microvascular perfu-
sion. In our mouse model, the microvasculature became 
sparse after reperfusion and was accompanied by a lower 
ratio of lectin-positive microvessels, suggesting decreased 
microvascular perfusion (Fig. 1e). In contrast, HINT2 over-
expression obviously relieved perfusion defects (Fig. 1e). 

http://zdock.umassmed.edu/
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Microvascular patency is highly dependent on endothelium-
controlled vasodilatation. Nitrite content, eNOS expression, 
and eNOS phosphorylation at  Ser1177, a biologically active 
site, were significantly downregulated in ischemic ventricles 
after I/R injury, and the vascular constriction factor ET-1 

was markedly increased (Fig. 1f, g). The above effects were 
obviously alleviated by HINT2 transfection (Fig. 1f, g). Fur-
ther works revealed that I/R injury led to microvascular bar-
rier collapse, as evidenced by higher Evans blue leakage in 
ischemic tissues (Fig. S1e). However, HINT2 overexpression 

a b c

d

f

g h

e
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significantly inhibited Evans blue permeation (Fig. S1e). 
Besides, VE-Cadherin were reduced in I/R injury, while a 
possible improvement of VE-Cadherin with HINT2 overex-
pression was observed, although the presented quantification 
still suggested a significant reduction compared to sham ani-
mals (Fig. S1f). Moreover, HINT2 overexpression reduced 
VE-Cadherin phosphorylation at  Tyr731, a binding site for 
β-Catenin, and, correspondingly, enhanced the interaction 
between VE-Cadherin and β-Catenin during I/R injury (Fig. 
S1f, g). Ultimately, endothelial-specific overexpression of 
HINT2 reduced the infarction size (Fig. 1h), indicating that 
HINT2-mediated microvascular improvement inhibited 
myocardial necrosis in the acute reperfusion phase.

HINT2 overexpression balanced mitochondrial 
dynamics in CMECs both in vivo and in vitro

To elucidate the potential mechanism by which HINT2 
protected the cardiac microvasculature against reperfusion 
injury, the present work focused on mitochondrial dynam-
ics, an important perspective in cardiac microvascular dis-
eases [7, 9]. Mitochondrial dynamics-related molecules 
were monitored in CMECs isolated from I/R models. After 
reperfusion injury, DRP1 and Fis1 were obviously upregu-
lated in isolated CMECs, whereas MFN1 and MFN2 was 
notably reduced, indicating that mitochondrial fission 
may be enhanced (Fig. S2a, b). In comparison, the above 
molecular changes were reversed by HINT2 overexpression 
(Fig. S2a, b). To further clarify the mechanisms underlying 
HINT2-mediated mitochondrial dynamics, in vitro stud-
ies were performed by challenging CMECs with OGD/R 
injury. HINT2 expression gradually decreased during the 
reoxygenation stage and reached its lowest point within 6 h 
(Fig. 2a). Therefore, 6 h of reoxygenation injury follow-
ing OGD was selected to simulate endothelial I/R injury 
in vitro. Fluorescence staining showed the mitochondrial 
net became short and fragmented after OGD/R injury, 
whereas ADV-HINT2 transfection at 10 and 30 MOI main-
tained mitochondrial length and morphology (Fig. 2b). 

Further works confirmed that HINT2 transfection at 30 
MOI modified dynamics-related molecules after OGD/R 
injury, as evidenced by reduced DRP1 and Fis1 expression, 
inhibited DRP1 oligomerization and DRP1 phosphoryla-
tion at  Ser616, increased MFN1 and MFN2 expression, and 
enhanced DRP1 phosphorylation at  Ser637 (Fig. 2c, d and 
Fig. S2c). Similar results were observed in the 10 MOI-
transfected cells, except the reduction in MFN1 and MFN2 
was not rescued (Fig. 2c, d and Fig. S2c), indicating that 
HINT2 overexpression was more prone to alleviate DRP1/
Fis1-regulated mitochondrial fission. Then, gain- and loss-
of-function assays of mitochondrial fission were conducted. 
Mdivi-1, a DRP1-specific inhibitor, increased mitochondrial 
length and cell viability, whereas FCCP, a fission enhancer, 
abolished the beneficial actions of HINT2 in sustaining the 
mitochondrial network and cell survival (Fig. S2d, e). Alto-
gether, the above data demonstrated that HINT2 is necessary 
for balancing mitochondrial dynamics in CMECs suffering 
reperfusion/reoxygenation injury.

HINT2‑mediated inhibition of mitochondrial fission 
protected CMECs against reoxygenation‑induced 
mitochondrial dysfunction

Attempts were then made to identify whether the inhibi-
tory effects of HINT2 on mitochondrial fission would pro-
tect mitochondrial function. Depolarized MMP is an early 
marker of mitochondrial dysfunction and apoptosis. MMP 
was significantly reduced after OGD/R injury, whereas 
HINT2 overexpression or Mdivi-1 treatment alleviated this 
reduction (Fig. 3a). However, regaining fission with FCCP 
antagonized the protective  effects of HINT2 on MMP 
collapse (Fig. 3a). OGD/R injury resulted in a mitochon-
drial ROS (mtROS) burst and cellular ROS accumulation, 
whereas ADV-HINT2 transfection or Mdivi-1 treatment 
suppressed the mtROS burst and cellular ROS accumula-
tion (Fig. 3b). Mn-SOD is one of the most forceful ROS 
scavengers in mitochondria. After OGD/R injury, the 
expression of Mn-SOD was significantly reduced, and this 
effect was alleviated by HINT2 overexpression or Mdivi-1 
treatment (Fig. 3c). In addition, HINT2 overexpression or 
Mdivi-1 treatment suppressed the carbonyl modification of 
mitochondrial proteins caused by ROS toxicity (Fig. 3d). 
It can be predicted that regaining fission abrogated the sup-
pressive effects of HINT2 on ROS accumulation, Mn-SOD 
down-regulation, and mitochondrial protein carbonylation 
(Fig. 3b–d). Taken together, these data confirmed that the 
enhanced mitochondrial function induced by HINT2 was 
highly associated with its role in inhibiting mitochondrial 
fission.

Fig. 1  Endothelial-specific overexpression of HINT2  alleviated car-
diac microvascular injury and myocardial infarction after I/R injury. 
After 45 min of ischemia and 0–24 h of reperfusion, the expression of 
HINT2 in left ventricle and isolated CMECs was measured by West-
ern blot analysis (a, b). c–h Mice were transfected with AAV9-NC or 
AAV9-HINT2 and suffered from 45 min ischemia injury and 6 h rep-
erfusion injury. No reflow area was detected by thioflavin S staining 
and quantified (c, d). Cardiac microvascular perfusion was indicated 
by the ratio of lectin-positive microvessels (green) to CD31-positive 
microvessels (red). Scale bars: 15  μm (e). eNOS expression, eNOS 
phosphorylation at  Ser1177, and ET-1 expression in left ventricle were 
detected by Western blot analysis (f). Nitrite content in left ventricle 
(g). Infarcted area was detected by TTC staining and quantified (h). 
*P < 0.05, significantly different as indicated. ns Not significant. Bio-
logical replicates were performed for six times in the above studies

◂
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Overexpression of HINT2 suppressed 
mitochondrion‑dependent apoptosis after OGD/R 
injury

Enhanced mitochondrial fission resulted in cytochrome 
C release, which further activated the mitochondrion-
dependent apoptosis pathway. After OGD/R injury, 
cytochrome C was released from mitochondria to the 
cytoplasm in CMECs, as evidenced by the decreased 
colocalization of mitochondria and cytochrome C 
(Fig. 4a). Inhibition of fission with Mdivi-1 or HINT2 
overexpression restricted cytochrome C release (Fig. 4a). 
Following cytochrome C release, the expression of Bax 
was upregulated and Bcl-2 was downregulated (Fig. 4b), 

which was accompanied by enhanced expression cleaved-
caspase 3 and caspase 9 (Fig. 4c), indicating that mito-
chondrion-dependent apoptosis was completely activated. 
In contrast, Mdivi-1 treatment or HINT2 overexpression 
suppressed the activation of the mitochondrion-depend-
ent apoptosis pathway (Fig. 4b, c). Moreover, TUNEL-
positive CMECs were reduced by Mdivi-1 treatment or 
HINT2 overexpression, indicating that OGD/R injury-
induced apoptosis was suppressed (Fig. 4d and Fig. S2f). 
However, enhancing mitochondrial fission once more by 
FCCP abolished all the antiapoptotic effects of HINT2 
elaborated above (Fig. 4a–d and Fig. S2f).
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Fig. 2  HINT2 overexpression balanced mitochondrial dynamics in 
CMECs suffering from OGD/R injury. CMECs were isolated from 
6- to 8-week-old WT mice and subjected to 6 h of OGD injury and 
0–24 h of reoxygenation injury; the expression of HINT2 was meas-
ured by Western blot analysis (a). b–d Isolated CMECs were trans-
fected with ADV-NC or ADV-HINT2, and then subjected to 6 h of 
OGD injury and 6 h of reoxygenation injury. HINT2 expression and 
mitochondrial morphology were evaluated by immunofluorescence 

staining, and mitochondrial length was analyzed. Scale bars: 10 μm 
(b). DRP1 expression, DRP1 phosphorylation at  Ser616, and DRP1 
phosphorylation at  Ser637 were detected by Western blot analysis (c). 
Western blot analysis of the protein expression of Fis1, MFN1 and 
MFN2 (d). *P < 0.05, significantly different as indicated. ns Not sig-
nificant. Biological replicates were performed for six times in the 
above studies
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HINT2 inhibited mitochondrial calcium inflow 
by directly binding MCU in CMECs under OGD/R 
injury

Calcium overload is involved in I/R injury-induced mito-
chondrial fission/apoptosis, and HINT2 has been suggested 
to modulate  [Ca2+]m inflow. Therefore, we hypothesized 
that the suppressive effect of HINT2 on mitochondrial 

ADV- NC ADV- HINT2 ADV- NC ADV- NC+ Mdivi -1 ADV- HINT2

OGD / R injury

ADV- HINT2+ FCCP

A
gg

re
ga

te
M

on
om

er
M

er
ge

ADV- NC ADV- HINT2 ADV- NC ADV- NC+ Mdivi-1 ADV- HINT2

OGD / R injury 

ADV- HINT2+ FCCP

C
el

lR
O

X
M

ito
SO

X
M

er
ge

Mn-SOD

β-Actin 42

25

MV
(kDa)A

D
V-

N
C

A
D

V-
N

C

A
D

V-
H

IN
T

2

A
D

V-
H

IN
T

2

A
D

V-
N

C
+M

di
vi

-1

A
D

V-
H

IN
T

2
+F

C
C

P

CTL OGD/R injury

15

55

100

180

70

MV
(kDa)A

D
V-

N
C

A
D

V-
N

C

A
D

V-
H

IN
T

2

A
D

V-
H

IN
T

2

A
D

V-
N

C
+M

di
vi

-1

A
D

V-
H

IN
T

2
+F

C
C

P
CTL OGD/R injury

a

b

c d

D
N

PH

0

1

2

3

4

5

M
M

P
(R

ed
/G

re
en

 r
at

io
)

OGD/R injuryCTL

* *
* *

ns

0

1

2

3

4

C
el

lR
O

X
 m

ea
n 

in
te

ns
ity

(fo
ld

 c
ha

ng
e)

OGD/R injuryCTL

* *
* *

ns

0

1

2

3

4

M
ito

SO
X

 m
ea

n 
in

te
ns

ity
(fo

ld
 c

ha
ng

e)

OGD/R injuryCTL

* *
* *

ns

0

1

2

3

4

5
D

N
PH

 e
xp

re
ss

io
n

(fo
ld

 c
ha

ng
e)

OGD/R injuryCTL

* *
* *

ns

0.0

0.5

1.0

1.5

M
n-

SO
D

 e
xp

re
ss

io
n

(fo
ld

 c
ha

ng
e)

OGD/R injuryCTL

* *
* *

ns

ADV-HINT2+FCCP
ADV-NC
ADV-HINT2 (MOI 30)

ADV-NC+Mdivi-1

Fig. 3  HINT2 overexpression alleviated OGD/R injury-induced mito-
chondrial dysfunction by restraining mitochondrial fragmentation. 
CMECs were isolated from 6- to 8-week-old WT mice, transfected 
with ADV-NC or ADV-HINT2, and subjected to OGD/R injury. 
Mdivi-1 (5  μM) was added to the ADV-NC group during OGD/R 
injury to inhibit mitochondrial fission. FCCP (1  μM) was applied 
to ADV-HINT2 cells during OGD/R injury for 2  h to reintroduce 
mitochondrial fission. Mitochondrial membrane potential was meas-
ured using JC-1 fluorescence probe. Scale bars: 20 μm (a). Cellular 

ROS and mitochondrial ROS were stained with CellROX (green) 
and MitoSOX (red), respectively. Scale bars: 60  μm (b). Mn-SOD 
expression was detected by Western blot analysis (c). Protein lysates 
were incubated with DNPH to label carbonyl groups, and protein 
carbonylation was detected by Western blot analysis using anti-DNP 
antibodies (d). *P < 0.05, significantly different as indicated. ns Not 
significant. Biological replicates were performed for six times in the 
above studies
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fission/apoptosis in endothelial cells was associated with 
 [Ca2+]m overload. First, our data indicated that lowering 
 [Ca2+]m exerted inhibitory effects on mitochondrial fission. 
Restricting  [Ca2+]m influx by Ru360, a specific MCU inhibi-
tor, inhibited mitochondrial fission under OGD/R injury by 
suppressing DRP1 phosphorylation at  Ser616 and DRP1 oli-
gomerization (Fig. S3a–c). Then, further work demonstrated 
HINT2 overexpression significantly downregulated  [Ca2+]i 
and  [Ca2+]m levels under reoxygenation conditions (Fig. 5a). 
 [Ca2+]m homeostasis is largely dependent on the MCU com-
plex. MCU was increased after reoxygenation injury but was 
reduced by HINT2 overexpression (Fig. 5b). In contrast, 
MICU1 and MICU2 were decreased after reoxygenation 

and maintained by HINT2 overexpression (Fig. 5b). Moreo-
ver, MCUb was significantly increased after reoxygenation, 
and HINT2 further enhanced MCUb expression (Fig. 5b). 
Co-IP assay showed that HINT2 could directly bind to MCU 
(Fig. 5c), and 4 AAs in HINT2 were identified as potential 
binding sites by structure-based protein interaction inter-
face analysis (Fig. S3d). All AAs are within the domain of 
HINT2 but out of transit peptides that targeting mitochon-
dria. Leu76, Phe78, and Asp80 are adjacent, while Trp160 
is far from the other three AAs in spatial position. Based on 
the above results, Leu76, Phe78, and Asp80 were mutated 
into Ala in HINT2 mutant (Fig. S3e). MMGBSA analysis 
showed that HINT2 mutant had higher BFE with MCU 

ADV-HINT2+FCCP

ADV-NC
ADV-HINT2 (MOI 30)
ADV-NC+Mdivi-1

To
m

m
20

M
er

ge
E

nl
ar

ge
d

A
D

V-
N

C

A
D

V-
N

C

A
D

V-
H

IN
T

2

A
D

V-
H

IN
T

2

A
D

V-
N

C
+M

di
vi

-1

A
D

V-
H

IN
T

2
+F

C
C

P

CTL OGD/R injury

Bax

Bcl-2

β-Actin 42

27

17

MV
(kDa)

ADV- NC ADV- HINT2 ADV- NC ADV- NC+ Mdivi-1 ADV- HINT2

OGD/R injury

ADV- HINT2+ FCCP

CTL
C

yt
-C

A
D

V-
N

C

A
D

V-
N

C

A
D

V-
H

IN
T

2

A
D

V-
H

IN
T

2

A
D

V-
N

C
+M

di
vi

-1

A
D

V-
H

IN
T

2
+F

C
C

P

CTL OGD/R injury

Cleaved-Cas 3

Caspase 9

β-Actin 42

45

17

MV
(kDa)

a

b

c d

0

10

20

30

TU
N

EL
-p

os
iti

ve
 c

el
ls(

%
)

OGD/R injuryCTL

* *
* *

ns

0.0

0.4

0.8

1.2

M
an

de
rs

'C
oe

ffi
ci

en
ts

(f
ra

ct
io

n 
of

 G
re

en
 o

ve
rl

ap
pi

ng
 R

ed
)

OGD/R injuryCTL

* *
* *

ns

0

1

2

3

4

5

B
ax

 e
xp

re
ss

io
n

(fo
ld

 c
ha

ng
e)

OGD/R injuryCTL

* *
* *

ns

0

1

2

3

4

C
le

av
ed

-C
as

 3
 e

xp
re

ss
io

n
(fo

ld
 c

ha
ng

e)

OGD/R injuryCTL

* *
* *

ns

0

1

2

3

C
as

pa
se

 9
 e

xp
re

ss
io

n
(fo

ld
 c

ha
ng

e)

OGD/R injuryCTL

* *
* *

ns

0.0

0.5

1.0

1.5

B
cl

-2
 e

xp
re

ss
io

n
(fo

ld
 c

ha
ng

e)

OGD/R injuryCTL

* *
* *

ns

Fig. 4  HINT2 overexpression inhibited the mitochondrion-dependent 
apoptosis signaling pathway activated by OGD/R injury. CMECs 
were isolated from 6- to 8-week-old WT mice, transfected with 
ADV-NC or ADV-HINT2, and subjected to OGD/R injury. Mdivi-1 
(5  μM) was added to the ADV-NC group during OGD/R injury to 
inhibit mitochondrial fission. FCCP (1  μM) was applied to ADV-
HINT2 cells during OGD/R injury for 2 h to reintroduce mitochon-
drial fission. The analysis of colocalization between mitochondria and 

cytochrome  C was performed by immunostaining of cytochrome  C 
(green) and Tomm20 (red). Cyt-C: cytochrome C. Scale bars: 10 μm 
(a). Western blot analysis of the protein expression of Bax and Bcl-2 
(b). Western blot analysis of the protein expression of cleaved-
Caspase 3 and Caspase 9. Cleaved-Cas 3: cleaved-Caspase 3 (c). 
Cell apoptosis was detected by TUNEL staining and quantified (d). 
*P < 0.05, significantly different as indicated. ns Not significant. Bio-
logical replicates were performed for six times in the above studies
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than wild type (Fig. S3f). Therefore, a plasmid containing 
HINT2 mutant was constructed and transfected into CMECs. 
Although HINT2 mutant still colocalized with MCU in 
mitochondria (Fig. S3g), the direct interaction between 
HINT2 and MCU was interrupted, as shown by the Co-IP 
assay (Fig. S3h), suggesting that the binding site in HINT2 
was located within Leu76, Phe78, and Asp80. Additionally, 
overexpression of HINT2 mutant failed to inhibit calcium 

overload and mitochondrial fragmentation in CMECs under 
OGD/R injury (Fig. 5d and Fig. S3i). Taken together, these 
data established that HINT2 stabilizes  [Ca2+]m homeostasis 
by directly binding MCU and modulating the MCU com-
plex, thereby inhibiting excessive mitochondrial fission in 
CMECs suffering OGD/R injury.
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Fig. 5  HINT2 maintained mitochondrial calcium homeostasis by 
directly binding the MCU complex. CMECs were isolated from 6- 
to 8-week-old WT mice, transfected with ADV-NC or ADV-HINT2, 
and subjected to OGD/R injury.  [Ca2+]i and  [Ca2+]m were stained 
with Fluo-4 AM (green) and Rhod-2 (red), respectively. Scale bars: 
40 μm (a). Western blot analysis of the protein expression of MICU1, 
MICU2, MCU, and MCUb (b). Co-IP analysis of MCU and Flag-

tagged HINT2 in CMECs (c). CMECs were transfected with plas-
mids containing HINT2 mutant or the negative control, and subjected 
to OGD/R injury.  [Ca2+]i and  [Ca2+]m were stained with Fluo-4 AM 
(green) and Rhod-2 (red), respectively. Mut-HINT2: HINT2 mutant. 
NC: negative control. Scale bars: 40 μm (d). *P < 0.05, significantly 
different as indicated. ns Not significant. Biological replicates were 
performed for 3–6 times in the above studies
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Overexpressing HINT2‑alleviated CMEC functions 
after OGD/R injury by mitigating mitochondrial 
calcium overload

Attempts were then made to determine whether HINT2 
improves CMEC functions via MCU and  [Ca2+]m inhibi-
tion. After OGD/R injury, CMEC migration and tube for-
mation ability were obviously impaired, the effects of which 
were largely rectified by HINT2 overexpression or Ru360 
(Fig. S4a–c). Endothelial migration and angiogenesis are 
mediated mainly by the VEGF pathway. Ru360 treatment 
or HINT2 overexpression enhanced VEGFR2 expression 
and further upregulated VEGF signaling in OGD/R-injured 
CMECs (Fig. S4d). However, these contributions of HINT2 
to facilitate cell migration, angiogenesis, and VEGF path-
way activation were largely abolished after enhancing 

 [Ca2+]m entry by spermine, an MCU activator (Fig. S4a–d). 
In addition, Ru360 treatment or HINT2 overexpression 
restrained the leakage of FITC-BSA from the impaired 
endothelial monolayer after OGD/R injury by enhancing 
VE-Cadherin junctions and VE-Cadherin/β-Catenin inter-
action (Fig. 6a, b and Fig. S4e). However, these beneficial 
effects of HINT2 on maintaining endothelial barrier function 
were completely negated after the reintroduction of exces-
sive  [Ca2+]m (Fig. 6a, b and Fig. S4e). After OGD/R injury, 
eNOS expression, eNOS phosphorylation and nitrite con-
tent were decreased, indicating the potential for less NO to 
be released from CMECs (Fig. 6c, d). Ru360 treatment or 
HINT2 overexpression significantly increased nitrite content 
in culture medium, along with increased eNOS expression 
and eNOS phosphorylation (Fig. 6c, d). However, the ben-
eficial effects of HINT2 on nitrite levels, eNOS expression, 
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Fig. 6  Enhancing mitochondrial calcium influx negated the protec-
tive effects of HINT2 on CMECs in  vitro. CMECs were isolated 
from 6- to 8-week-old WT mice, transfected with ADV-NC or ADV-
HINT2, and subjected to OGD/R injury. Cells transfected with ADV-
NC were pretreated with Ru360 (10  μM) 1  h before OGD/R injury 
to inhibit the MCU complex. Spermine (10 μM) was added to ADV-
HINT2-infected cells during OGD/R injury for 2 h to reactivate the 
MCU complex. Endothelial junction was shown by immunofluores-

cence staining of VE-Cadherin (red). Scale bars: 20 μm (a). Endothe-
lial monolayer permeability was evaluated by FITC-BSA leakage 
assay (b). eNOS expression, eNOS phosphorylation at  Ser1177, and 
ET-1 expression were detected by Western blot analysis (c). Nitrite 
content in culture medium (d). Western blot analysis of the protein 
expression of ICAM-1 and VCAM-1 (e). *P < 0.05, significantly dif-
ferent as indicated. ns Not significant. Biological replicates were per-
formed for six times in the above studies
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and eNOS phosphorylation were completely suppressed 
after spermine treatment (Fig. 6c, d). Moreover, spermine 
offset the inhibitory effects of HINT2 on ET-1 upregula-
tion (Fig. 6c). Hypoxia plays a permissive role in motivating 
inflammatory response. Ru360 treatment or HINT2 over-
expression decreased ICAM-1 and VCAM-1 expression 
in OGD/R-injured cells (Fig. 6e). It could be expected that 
the above anti-inflammatory actions of HINT2 were com-
pletely abolished after regaining  [Ca2+]m overload (Fig. 6e). 
In summary, the above results confirmed that HINT2 pre-
served angiogenic potential, strengthened endothelial barrier 
function, stimulated eNOS activation, and inhibited inflam-
matory response in CMECs exposed to reperfusion injury 
in vitro, at least in part due to its role in maintaining calcium 
homeostasis.

Reactivation of the MCU complex abolished 
the protective effects of HINT2 overexpression 
on cardiac microvascular functions in I/R mice

To gain more convincing evidence that the MCU complex 
was a downstream target of HINT2 in cardiac microvas-
cular protection, the effects of Ru360 and spermine were 
investigated in mice. Similar to HINT2 overexpression, 
Ru360 treatment alleviated the no-reflow phenomenon and 
maintained microvascular perfusion in ischemia hearts, as 
evidenced by increased thioflavin S perfusion, more FITC-
perfused microvessels, enhanced eNOS phosphorylation, 
suppressed ET-1 expression, and higher nitrite content 
(Fig. 7a–d). However, in the presence of spermine treatment, 
HINT2 overexpression failed to alleviate the no-reflow phe-
nomenon and enhance microvascular perfusion (Fig. 7a–d). 
As we have shown previously, HINT2 overexpression 
reduced VE-Cadherin phosphorylation and strengthened 
the VE-Cadherin/β-Catenin interaction, thereby inhibit-
ing Evans blue leakage from cardiac microcirculation (Fig. 
S5a–c). However, these improvements were not observed in 
the AAV-HINT2 group pretreated with spermine (Fig. S65-
c). Moreover, spermine-mediated MCU complex activation 
abrogated the suppressive effects of HINT2 on VCAM-1 and 
ICAM-1 expression (Fig. S5d). Importantly, blocking the 
MCU complex with Ru360 limited the myocardial infarction 
size, whereas activating the MCU complex nullified the pro-
tective effects of HINT2 on infarction expansion (Fig. 7e). In 
conclusion, the above in vivo data further explicitly showed 
that the protective effects of HINT2 relied on the inhibition 
of the MCU complex and  [Ca2+]m overload.

Discussion

The cardiac microcirculation is particularly vulnerable to the 
detrimental effects of reperfusion and has been recognized 
as a therapeutic target for cardiac I/R injury. The present 
data demonstrated that HINT2 overexpression protected 
the cardiac microcirculation against I/R injury by enhanc-
ing blood perfusion, barrier function, and anti-inflamma-
tory action. The protection from HINT2 was attributed to 
its role in regulating MCU complex function and maintain-
ing  [Ca2+]m homeostasis in CMECs. HINT2 overexpres-
sion inhibited  [Ca2+]m overload-evoked mitochondrial fis-
sion and, thereby, maintained mitochondrial function, and 
inhibited the mitochondrion-dependent apoptotic pathway, 
ultimately improving endothelial survival and function in 
response to reoxygenation injury (Scheme 1).

It is widely acknowledged that a timely reperfusion rem-
edy is necessary for rescuing ischemic myocardium [22]. 
In contrast, after reperfusion, superabundant reactive spe-
cies and inflammatory cascades burst rapidly and assault 
the cardiac microcirculation [29]. The most immediate con-
sequence is cardiac edema and, if severe, slow-reflow and 
no-reflow phenomena, which discounted the benefits of 
coronary reperfusion strategies in MI patients [17]. The pre-
sent study identified that HINT2 overexpression enhanced 
CMEC migration and angiogenesis by mediating the VEGF 
signaling pathway, which sustained CMEC survival in the 
setting of reoxygenation. In addition, HINT2 overexpres-
sion increased nitrite content, eNOS expression, and phos-
phorylation in the myocardium and CMECs, along with 
decreased ET-1 expression, indicating a protective role for 
HINT2 in the cardiac vasodilator response. Through the 
above mechanisms, HINT2 maintains microvascular den-
sity and increases blood reperfusion in the ischemic region. 
During the reperfusion stage, increased microvascular per-
meability and inflammatory exudation are the major con-
tributors to cardiac edema. HINT2 overexpression strength-
ened VE-Cadherin/β-Catenin interaction and suppressed 
VCAM-1 and ICAM-1 to enhance endothelial barrier func-
tion and prevent inflammatory response in both I/R-injured 
myocardium and OGD/R-injured CMECs. In combination 
with our previous study, these newly obtained data further 
support the beneficial role of HINT2 in cardioprotection, 
especially in microvascular structure and function during 
the reperfusion stage.

Long-term and substantially elevated  [Ca2+]m triggered 
MMP collapse, ROS overproduction, mPTP opening, and, 
most importantly, apoptosis in cardiomyocytes, which 
was identified as a core mechanism underlying cardiac I/R 
injury [40]. However, the pathological role of  [Ca2+]m in 
mitochondrial fission and endothelial functions in I/R injury 
was not explored in detail. The present study revealed that 
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the restoration of  [Ca2+]m by Ru360 inhibited mitochondrial 
fission caused by OGD/R injury via inhibition of DRP1 
phosphorylation and oligomers in CMECs. Moreover, 

fission inhibition favored the recovery of mitochondrial 
dysfunction and the suppression of the mitochondrial apop-
tosis pathway in OGD/R-injured CMECs. A few studies 
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Fig. 7  Endothelial-specific overexpression of HINT2 protected the 
cardiac microcirculation against I/R injury by modulating the MCU 
complex. Mice were transfected with AAV9-NC or AAV9-HINT2 
and suffered from 45 min ischemia and 6 h reperfusion injury. Ru360 
(50 nmol/kg) was injected intraperitoneally into AAV9-NC mice 1 h 
before I/R injury to inhibit the MCU complex. Spermine (5 mg/kg) 
was injected intraperitoneally into AAV9-HINT2 mice 1 h before I/R 
injury to activate the MCU complex. No reflow area after reperfu-
sion was detected by thioflavin S staining and quantified (a). Cardiac 

microvascular perfusion was indicated by the ratio of lectin-positive 
microvessels (green) to CD31-positive microvessels (red). Scale bars: 
20 μm (b). ET-1 expression, eNOS expression, and eNOS phospho-
rylation at  Ser1177 in left ventricle were detected by Western blot 
analysis (c). Nitrite content in left ventricle (d). Infarcted area was 
detected by TTC staining and quantified (e). *P < 0.05, significantly 
different as indicated. ns Not significant. Biological replicates were 
performed for six times in the above studies
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have been performed and proposed that the suppression of 
 [Ca2+]m overload maintains endothelial functions under I/R 
injury, hyperuricemia, and diabetes [20, 37, 45]. The present 
study demonstrated that the inhibition of  [Ca2+]m overload 
via HINT2 overexpression or Ru360 treatment protected 
CMECs from reoxygenation injury in terms of endothelial 
barrier collapse, eNOS reduction, inflammatory reaction, 
and angiogenic disorder. Additionally, our further attempts 
confirmed that the maintenance of  [Ca2+]m homeostasis 
relieved cardiac microvascular dysfunction induced by I/R 
injury, as evidenced by decreased no-reflow area, increased 
reperfusion, enhanced barrier function, and reduced expres-
sion of adhesion molecules, all of which indispensably con-
tributed to limiting infarction expansion.

[Ca2+]m influx is principally mediated by the MCU 
complex, which is critical for mPTP opening in response 
to increased  [Ca2+]I [2]. The identification of subunits in 
the MCU complex paves the way to determine the different 
roles of each subunit in cardiac I/R injury [24]. Four MCU 
subunits constitute the basic components of MCU com-
plexes. Cardiomyocyte-specific deletion of MCU subunits 
or Ru360 treatment protected cardiomyocytes from  [Ca2+]m 
overload and mPTP opening and, therefore, decreased infarct 
size and preserved cardiac function in I/R hearts [15, 43]. 
Importantly, MCU inhibition in CMECs has been sug-
gested to improve cardiac microcirculation after I/R injury 
[27]. MICU1 and MICU2 form heterodimers and act as 
MCU gatekeepers to keep the channel closed by sensing 
the  [Ca2+]i concentration [38]. Restraining  [Ca2+]m influx 
via the upregulation of MICU1 protected the heart from 
I/R injury [3, 50]. MCUb was not expressed at baseline, 

but was upregulated when sensing calcium elevation in the 
cytoplasm [21]. MCUb overexpression reduced mPTP open-
ing and decreased infarct size following IR injury [21, 26]. 
Although the function of MCU in the cardiac microcircula-
tion was investigated before, other subunits were ignored in 
this research field. HINT2 was introduced only to modulate 
the MCU complex in pancreatic cancer, sensitizing tumor 
cells to apoptosis by enhancing  [Ca2+]m uptake [6]. The cur-
rent work showed that HINT2 overexpression inhibited the 
upregulation of MCU, reversed the reduction in MICU1 and 
MICU2, and further increased MCUb expression in CMECs 
under OGD/R injury. A protein–protein interaction study 
identified Leu76, Phe78, and Asp80 as sites for HINT2 to 
directly combine with MCU in CMECs. The above results 
indicated that HINT2 exerted protective benefits on endothe-
lial cells by directly binding MCU and thereby regulating 
the MCU complex and  [Ca2+]m homeostasis in the setting 
of reoxygenation injury.

Several potential biases or imprecisions should be con-
sidered. Unspecific transfection of AAV9-HINT2 had only 
been excluded in cardiomyocytes but not in other cell types, 
such as fibroblasts and smooth muscle cells. Smooth muscle 
cells are major components of arterioles and are in charge 
of vasodilatation. Based on the presented data, a role of 
HINT2 in vascular physiology is sensible, but the contribu-
tion from other cell types cannot be excluded. The present 
study used the FITC-lectin perfusion method as a surro-
gate parameter to estimate microvascular blood flow [31, 
42]. More direct methods to determine coronary flow and 
reactive hyperemia of the coronary arteries during reperfu-
sion would provide more precise conclusions [16, 23]. The 

Scheme 1  Diagram of potential 
mechanism for HINT2 in 
repairing I/R-induced cardiac 
microvascular injury
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short half-life of NO makes it difficult to directly detect NO 
content in the myocardium [32]. The present study detected 
nitrite by a commercial kit to indirectly reflect NO levels. 
It should be pointed out that nitrite is both a NO metabolite 
and a reserve for NO synthesis [34]. Therefore, it is hard 
to explain whether the increased nitrite by HINT2 overex-
pression could be interpreted as enhanced NO synthesis. 
However, increased nitrite has been reported to improve 
endothelial dysfunction and attenuate infarct size in myo-
cardial IR injury [14], still supporting a protective role of 
HINT2 in cardiac microcirculation. Under normoxia, with-
out affecting MCU protein levels, the expression of MICU1 
and MICU2, as well as  [Ca2+]m level, was increased after 
HINT2 overexpression. Whether MICU1 and MICU2 could 
be directly bound by HINT2 and thereby modulate  [Ca2+]m 
influx was not identified. Future studies are warranted to test 
this hypothesis.

In conclusion, the present study determined that HINT2 
acted as a protective factor in the cardiac microvasculature. 
HINT2 protected cardiac microvascular structure and func-
tion against I/R injury and maintained mitochondrial dynam-
ics and function by modulating  [Ca2+]m through the MCU 
complex in CMECs. These findings elucidate a new role 
of HINT2 in cardioprotection and suggest that the MCU 
complex/[Ca2+]m overload/mitochondrial fission/apoptosis 
signaling pathway is potentially one of the pathological 
mechanisms underlying microvascular I/R injury.
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