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Abstract
Atherosclerotic plaques impair vascular function and can lead to arterial obstruction and tissue ischaemia. Rupture of an 
atherosclerotic plaque within a coronary artery can result in an acute myocardial infarction, which is responsible for signifi-
cant morbidity and mortality worldwide. Prompt reperfusion can salvage some of the ischaemic territory, but ischaemia and 
reperfusion (IR) still causes substantial injury and is, therefore, a therapeutic target for further infarct limitation. Numerous 
cardioprotective strategies have been identified that can limit IR injury in animal models, but none have yet been translated 
effectively to patients. This disconnect prompts an urgent re-examination of the experimental models used to study IR. Since 
coronary atherosclerosis is the most prevalent morbidity in this patient population, and impairs coronary vessel function, it 
is potentially a major confounder in cardioprotective studies. Surprisingly, most studies suggest that atherosclerosis does not 
have a major impact on cardioprotection in mouse models. However, a major limitation of atherosclerotic animal models is 
that the plaques usually manifest in the aorta and proximal great vessels, and rarely in the coronary vessels. In this review, we 
examine the commonly used mouse models of atherosclerosis and their effect on coronary artery function and infarct size. 
We conclude that none of the commonly used strains of mice are ideal for this purpose; however, more recently developed 
mouse models of atherosclerosis fulfil the requirement for coronary artery lesions, plaque rupture and lipoprotein patterns 
resembling the human profile, and may enable the identification of therapeutic interventions more applicable in the clinical 
setting.

Keywords  Atherosclerosis · Ischaemia · Reperfusion · Cardioprotection · Myocardial infarction · Mice · Coronary artery · 
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Introduction

Myocardial infarction and protection 
from ischaemia/reperfusion injury

Cardiovascular disease (CVD) is the leading cause of mor-
tality worldwide, accounting for an estimated 17.9 million 
deaths annually, representing 31% of all global deaths [149]. 
Four out of five CVD associated deaths are caused by myo-
cardial infarction (MI) and ischaemic stroke [149]. These 
figures show there is an immediate need for appropriate 
interventions to improve survival and prognosis for CVD 
patients.

MI is caused by obstruction of blood flow through one of 
the major coronary arteries supplying the myocardium, usu-
ally due to atherosclerotic plaque rupture and thrombosis. 
Prolonged ischaemia results in oncotic, necrotic, apoptotic 
and necroptotic death of heart muscle [31, 45, 96, 103]. The 
extent of cell death (infarct size) depends crucially on the 
duration of ischaemia, the size of the ischaemic area or area 
at risk (AAR), the degree of coronary collateral blood flow 
and the extent of coronary microvascular dysfunction [14, 
71]. In order to salvage the ischaemic myocardium at risk 
of death, the tissue must be reperfused as soon as possible. 
Current strategies of intervention for acute ST-segment–ele-
vation MI (STEMI) are based on opening occluded arteries 
using percutaneous coronary intervention or thrombolysis, 
or bypassing the occluded arteries by coronary artery bypass 
surgery (CABG). Nonetheless, reperfusion itself triggers 
several damaging processes leading to myocardial injury 
due to oxidative stress, cytosolic and mitochondrial calcium 
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overload, rapid restoration of intracellular pH, opening of 
the mitochondrial permeability transition pore (MPTP) lead-
ing to the release of cytochrome c and induction of apop-
tosis, gap junction changes and inflammation [71]. Mito-
chondrial outer membrane permeabilisation (MOMP) leads 
to the re-localisation of cytochrome c from mitochondria 
to the cytosol, where it initiates apoptosome formation and 
caspase activation [151]. In addition, reperfusion leads to 
vascular injury including impaired vasomotion and capillary 
destruction which contribute to microvascular obstruction 
(MVO) and lack of reflow [74]. Consequently, the attempt 
to salvage the myocardium can, itself, cause a degree of 
irreversible injury and cell death, which is referred to as 
reperfusion injury.

Extensive studies have been performed over the past 
30 + years to develop strategies to limit ischaemia and rep-
erfusion (IR) injury [68, 69]. Although many have been 
identified that are cardioprotective in animal models, none 
have yet been translated effectively to patients. One of the 
first cardioprotective drug cocktails investigated, glucose-
insulin-potassium therapy, was found to protect in animals 
studies, but in clinical trials of totalling over 27,000 patients 
with acute coronary syndrome, no convincing benefit was 
seen [92] (reviewed in [100]). A phase III trial of cariporide, 
an inhibitor of the sodium hydrogen exchanger isoform-1 
(NHE-1), in patients undergoing coronary artery bypass 
graft surgery, found a highly significant reduction in myocar-
dial injury, although this was unfortunately accompanied by 
a significant increase in cerebrovascular events and mortality 
[132]. More recently, remote ischaemic conditioning (RIC), 
which is clearly effective in animal models [22], had no ben-
efit on either myocardial infarct size or clinical outcomes at 
12 months in the multi-centre CONDI-2/ERIC-PPCI trial 
of 5401 STEMI patients treated with PPCI [70]. One class 
of agents that has shown some promise in clinical trials are 
the glucagon-like-peptide-1 analogues such as exenatide and 
liraglutide [26, 122, 222], although so far they have only 
been studied in small, proof-of-concept trials.

Possible reasons for the failures of translation described 
above have been extensively discussed [68, 69, 76]. One 
issue that has been widely discussed is the fact that most 
rodent studies of MI are performed in healthy, young ani-
mals, whereas the typical cardiac patient is elderly, and 
may exhibit complex multi-morbidity [19, 36, 176, 202]. 
Attempts have been made to overcome this issue by using 
models of hypertension, hyperlipidaemia, diabetes, age etc., 
and indeed, these have been seen to have an effect on the 
signalling pathways involved in cardioprotection [6, 43, 119, 
120, 162, 218]. This has led to the proposal that multitarget 
strategies will be required to effectively reduce IR injury in 
patients [32]. Clearly, however, the most prevalent morbidity 
in the STEMI patient population is coronary atherosclerosis. 
Angiographic studies find evidence of significant obstructive 

coronary artery disease in ~ 95% of MI patients [33, 34, 155]. 
Surprisingly few IR studies have been performed in animal 
models of atherosclerosis, and the results of these are highly 
divergent, finding that atherosclerosis increases, decreases 
or has no effect on infarct size (Table 1). One explanation 
for this may be that most rodent models of atherosclerosis 
do not completely mimic the pathophysiology of the ath-
erosclerotic coronary artery. For example, in mice, a major 
limitation is that atherosclerotic plaques tend to manifest 
most frequently in the aorta and proximal great vessels, and 
they are rarely, if ever, seen in the coronary vessels [206].

Mice are the most widely used species for reasons of cost, 
convenience, and their ability to be genetically manipulated. 
In this review, we examine the main mouse models of ath-
erosclerosis currently available, their method of creation, 
pathology, coronary arterial function and response to cardiac 
IR. The aim is to identify which, if any, mouse model of ath-
erosclerosis is suitable for investigating new cardioprotec-
tive drugs and strategies that will be clinically translatable 
to humans.

In humans, the left anterior descending (LAD) artery 
supplies a large territory of the ventricular myocardium—
therefore, LAD occlusion tends to lead to larger infarcts 
and worse prognoses [40, 97]. As the main cause of MI 
in patients is plaque rupture, animal models would ideally 
include this event. However, since the timing of plaque rup-
ture, and the location and size of the ischaemic area that 
result are all unpredictable, this is not experimentally practi-
cal. In any case, in most rodent models of atherosclerosis, 
the plaques rarely rupture [15, 236]. Therefore, in rodent 
IR studies of MI, the left coronary artery (equivalent to the 
LAD in humans [18]) is ligated at a specific location for 
30–40 min, followed by reperfusion, which leads to infarc-
tion of ~ 40–60% of the AAR [18]. This degree of injury pro-
vides sufficient potential to detect salvage of the remaining 
viable tissue by cardioprotective interventions. In some stud-
ies, a model of permanent coronary artery ligation (CAL) is 
used, although this does not reflect the clinical scenario in 
which the occluded vessel is opened to reperfuse the ischae-
mic area as soon as possible. It is also important to note that 
after a certain duration of ischaemia (45–90 min in rodents 
and pigs, depending on the extent of coronary collateral ves-
sels), ~ 90% of the AAR will be infarcted, and therefore, no 
significant reduction in acute infarct size is possible [14, 
181]. Since only limited data is available, we will discuss 
both studies using either acute, reperfused (IR) or chronic 
ischaemic (CAL) models of MI.

How does atherosclerosis develop in humans?

Atherosclerosis is a progressive inflammatory disease 
characterised by the accumulation of oxidized lipids in the 
arterial wall leading to the development of atherosclerotic 
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lesions (Fig. 1). These lesions gradually harden and cause 
narrowing of the arterial lumen. They can remain stable 
for many years, but can eventually become large enough to 
impede the flow of blood through the vessel lumen to cause 
ischaemia. The major consequences of acute or chronic 
obstruction are MI, stroke, or peripheral artery disease, 
depending on the affected artery. Atherosclerotic plaques 
leading to acute coronary events tend to occur in the left 
anterior descending coronary artery, right coronary artery 
and the left circumflex arteries, and cluster within the proxi-
mal third of the vessel [54, 216]. Here, plaque rupture can 
initiate thrombosis formation, causing acute MI.

Several risk factors can modify the extent and rate of ath-
erosclerosis development, including hyperlipidaemia, smok-
ing, sex, diabetes and hypertension [230]. A key player in 
the development of atherosclerosis is an increase in plasma 

levels of cholesterol-rich lipoproteins such as low-density 
lipoprotein (LDL) [118, 146, 189]. Many studies have shown 
that oxidised LDL particles promote the progression of ath-
erosclerosis [134, 142]. Endothelial dysfunction in the artery 
causes modification of the APOB-containing LDL and trig-
gers the infiltration of monocytes into the artery wall. Due to 
the impaired function of the endothelium, LDL particles can 
deposit in the arterial wall and are retained by the extracel-
lular matrix [17, 116]. LDL particles accumulate and bind 
to intimal proteoglycans, forming aggregates. These can 
then enter smooth muscle cells via LDL receptors [121]. 
Activation of the vascular endothelial cells also leads to the 
expression of cell adhesion molecules, such as VCAM-1 
and ICAM-1, which facilitate the binding and adherence 
of immune cells such as monocytes to the arterial wall [82, 
147]. These monocytes differentiate into macrophages. As 

Fig. 1   Process of atherosclerotic lesion development. 1 Monocytes 
circulate in the circulation in a healthy vessel. 2 Endothelial dys-
function leads to the expression of cell adhesion molecules such as 
VCAM-1 by activated endothelial cells. These cell adhesion mol-
ecules allow monocytes to adhere to the wall and infiltrate to the 
tunica intima. 3 Monocytes differentiate into macrophages and engulf 

cholesterol-rich lipoproteins, becoming foam cells. 4 Smooth muscle 
cells (SMCs) infiltrate and stimulate the production of extracellular 
matrix components. 5 Foam cells and smooth muscle cells release 
matrix degrading matrix metalloproteinases (MMPs). 6 Degradation 
of the extracellular matrix (ECM) by MMPs increases plaque vulner-
ability to rupture and thrombus formation
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cholesterol levels rise, the expression of the high-affinity 
LDL receptor drops but expression of the high-affinity scav-
enger receptors for LDL particles does not. These scavenger 
receptors allow the loading of macrophages with the excess 
cholesterol, forming foam cells and triggering inflammation 
[13, 49, 50, 136]. Importantly, in terms of investigating car-
dioprotective strategies, myocardial-resident macrophages 
have been associated with both injury [229] and repair [35] 
in response to MI. Foam cells can induce further inflamma-
tion by releasing cytokines such as interleukin-1β (IL-1β) 
and tumour necrosis factor-α (TNF-α) [117, 131]. Activated 
smooth muscle cells release extracellular matrix proteins 
such as collagen and elastin, which promote the formation of 
the fibrous cap [144]. Foam cells and extracellular lipid par-
ticles build up under the fibrous cap generating the necrotic 
core. As the atherosclerotic plaque progresses, the fibrous 
cap becomes more prone to rupture and releases its contents 
into the blood. This triggers thrombus formation and can 
lead to MI or stroke [67].

High-density lipoprotein (HDL), APOE and APOA-I 
counteract lesion development by promoting cholesterol 
efflux from peripheral tissues and preventing inflamma-
tion [65, 165, 213]. Nonetheless, inflammatory cytokines 
facilitate the infiltration and proliferation of smooth muscle 
cells into the lesion, which produce the extracellular matrix 
(ECM) forming a fibrous layer. Foam cells, and to a lesser 
extent smooth muscle cells and endothelial cells, release 
matrix-degrading metalloproteinases (MMPs). These can 
degrade all components of the ECM [48, 72, 224]. The deg-
radation of the ECM increases the vulnerability of plaques 
to rupture. Plaque rupture leads to thrombus formation with 
aggregated platelets, blood coagulation and blockage of 
blood flow. The consequence of this occurring in a coronary 
artery is an acute MI.

Atherosclerosis is a chronic inflammatory disease, accom-
panied by innate and adaptive immune responses [221]. LDL 
and oxidised LDL act as self-antigens, stimulating CD4+ T 
cells, and driving an autoimmune response in atherosclerotic 
lesions fuelling plaque inflammation [98, 191]. CD4+ T cells 
can differentiate into T-helper cells that induce B cells to 
produce high-affinity IgG antibodies against LDL, oxidised 
LDL and APOB. These antibodies can either be atheropro-
tective or contribute to the progression of disease [221]. In 
patients with atherosclerosis, APOB-specific regulatory T 
cells appear to be atheroprotective by inhibiting atherogenic 
T-cell subsets and suppressing inflammation [5]. Nonethe-
less, as atheromas develop, this initial protective immune 
response promotes endothelial dysfunction, formation of 
foam cells and cell death via secretion of interferon-γ (IFN-
γ) [5]. Therefore, despite initial atheroprotective features, 
with its potential to be both pro- and anti-inflammatory, 
the adaptive immune system can become pathogenic. The 
balance between a pro-inflammatory or anti-inflammatory 

response is partially controlled by genetics, which is rel-
evant when considering the mouse models described below, 
which typically have low genetic diversity. Furthermore, dif-
ferences in the immune system of mice and humans renders 
the direction and amplitude of autoimmunity in humans dif-
ficult to predict from mouse models [221].

The “response-to-injury” hypothesis of atherogenesis as 
defined by Ross proposes that “injury” to the endothelium 
is the initiating event in atherogenesis [175]. Furthermore, 
since the CANTOS trial, the involvement of inflammation 
in atherosclerosis is now firmly established [169]. Each of 
these aspects (lipids, endothelial function, chronic inflam-
mation) could potentially influence MI. Therefore, the ideal 
experimental model of atherosclerosis for use in investigat-
ing cardioprotective strategies would entail all three aspects.

Coronary endothelial dysfunction precedes 
atherosclerosis

Impaired endothelial function and arterial vasomotion can 
be observed prior to the arterial stiffening and remodelling 
that occurs as atherosclerosis proceeds. For example, epi-
cardial and microvascular coronary endothelial dysfunction 
independently predict acute cardiovascular events in patients 
with coronary artery disease (CAD) [66]. Whereas acetyl-
choline causes vasodilation of healthy arteries, it induces 
paradoxical vasoconstriction in atherosclerotic coronary 
arteries with advanced stenosis and even in many arteries 
with minimal disease [123]. In contrast, smooth muscle 
function is less affected by atherosclerosis [123].

Nitric oxide (NO) is a key mediator of vascular homeo-
stasis, modulating smooth muscle proliferation, inflamma-
tion, platelet activation, and vascular tone, each of which 
can impact the development of atherosclerosis. A major 
source of NO is nitric oxide synthase (NOS) in the endothe-
lium. In healthy vasculature, endothelial NO suppresses the 
development of atherosclerosis by inhibiting platelet aggre-
gation, inhibiting LDL oxidation, preventing infiltration 
of leukocytes into the vascular wall and inhibiting smooth 
muscle cell proliferation and constriction [46, 113, 114]. 
Importantly, however, endothelial NOS is impaired by ath-
erosclerosis, and it can even produce damaging superoxide 
instead. Therefore, as with the adaptive immune system, an 
increase in NO can be either protective or deleterious in the 
setting of atherosclerosis, depending on its levels and dura-
tion [60, 195].

In a substantial number of STEMI patients in whom epi-
cardial coronary artery reperfusion is achieved, reperfusion 
at the myocardial tissue level remains incomplete [145]. This 
is referred to as “no reflow” and is due to microvascular 
obstruction (MVO). As a consequence, despite apparent suc-
cessful epicardial recanalization, the myocardium remains 
ischaemic, and will become infarcted [14]. Although MVO 
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is independently associated with adverse ventricular remod-
elling and patient prognosis, MVO is not currently routinely 
measured or treated in patients. Contributing factors to MVO 
include coronary microvascular dysfunction and vasocon-
striction, and physical obstruction of the microvessels by 
damaged endothelial cells or micro-embolization of athero-
sclerotic debris [75]. This provides a strong rationale for the 
use of animal models with coronary artery atherosclerosis, 
as this may affect the outcome of IR and cardioprotection 
studies.

Atherosclerosis sufficient to cause stenosis and ischaemia 
gradually affects the entire structure of the coronary tree 
by stimulating the development of coronary collateral ves-
sels, such that they are detected in up to ~ 70% of patients 
with acute MI [183, 215]. This is important because residual 
blood flow carried by collaterals at the time of acute MI can 
limit infarct size.

In mouse studies, the aorta is commonly used to assess 
vascular function because its size makes it easier to study 
than other arteries [4, 9, 177]. This is not ideal for the 
study of atherosclerosis, however, since its first symptoms 
are not usually caused by plaques in the aorta, but rather 
the obstruction of flow through conduit arteries supplying 
major organs such as the heart or brain. Furthermore, both 
endothelium-dependent and -independent vasodilation differ 
significantly in magnitude between the aorta and other arte-
rial segments from carotid, femoral, mesenteric, renal and 
coronary arteries [99]. The aorta is, therefore, not a good 
surrogate to study vascular function in other arteries.

Mouse models of atherosclerosis

Most animal models of atherosclerosis are based either on 
feeding with a diet enriched in fat and cholesterol, or the 
introduction of genetic modifications known to alter cho-
lesterol metabolism.

Diet‑induced models of atherosclerosis

The first animal model of atherosclerosis was developed 
in rabbits by feeding them a diet enriched in animal pro-
teins (milk, meat and eggs), which resulted in lesions with a 
build-up of foam cells in the aorta [81]. Since that time, diets 
containing differing concentrations of fat, cholesterol and 
cholate have been widely used to induce atherosclerosis in 
animal models [53, 225]. Cholate, a bile acid that facilitates 
the digestion and absorption of lipids in the small intestine, 
has been used extensively to induce atherosclerosis, but is 
not ideal as it may cause nonspecific toxicity [47, 108, 109, 
210, 211].

Vesselinovitch et al. developed the first atherosclerotic 
mouse model using a diet consisting of 30% fat, 5% cho-
lesterol, and 2% cholic acid; however, this severe diet also 
resulted in weight loss and respiratory infections [211]. Paigen 
et al. found that when they reduced the fat content of the diet 
to 15%, C57BL/6 mice developed atherosclerosis more slowly, 
with lesions with fatty deposits and foam cells in the aorta 
appearing by 14 weeks [153]. Of note, the lesions were largely 
confined to the aortic root and did not develop further than 
a fatty streak [153]. To achieve plaques resembling human 
intermediate lesions and beyond, other models are required.

Infarct size

Two weeks of high fat and cholesterol diet prior to surgery 
had no impact on infarct size in C57BL/6 mice subject to 
30 min LAD ligation and 2 h reperfusion [55]. Surprisingly, 
however, after 12 weeks of high fat and cholesterol diet, 
infarct size after IR was significantly smaller than those on 
a normal diet [55]. In a separate study, a C57BL/6 J sub 
strain called C57BL/6JBomTac were fed an obesogenic diet 
containing 60% fat for 33 weeks and their hearts were iso-
lated and subject to 30 min of global ischaemia and 60 min 
of reperfusion in a Langendorff model [37]. Infarct size 
was reduced in mice that were on the obesogenic diet, com-
pared to those on a normal diet [37]. This could be due to 
an increase of the signalling substance sphingosine-1-phos-
phate (S1P) in obesogenic animals [74, 193]. S1P mediates 
endothelial barrier tightening [29, 180, 223] and may dimin-
ish the endothelial leakage with interstitial oedema forma-
tion, which is a major component of IR injury [74, 193].

Even though wild-type mice exhibit signs of dyslipidae-
mia upon a Western diet, their complicated phenotype must 
be considered when being used as a model of atherosclero-
sis. Besides hyperlipidaemia, these mice exhibit hypergly-
caemia, corresponding to a diabetes mellitus type II pheno-
type. Therefore, their cardiac function and response to I/R 
and cardioprotective strategies can be potentially affected 
by the multi-faceted metabolic syndrome they exhibit [6].

Limitations of the model

These early models helped to establish the role of cholesterol 
in atherogenesis, but are typically obesogenic, which is a 
potential confounding factor. Furthermore, the non-physi-
ological nature and potential toxicity of cholate-containing 
diets suggest that atherogenesis in these mice may not accu-
rately reflect the human disease [210].
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Transgenic mouse models of atherosclerosis

A number of genes with a critical role in the development 
and progression of atherosclerosis have been identified, and 
these have been exploited for the development of transgenic 
mouse models with enhanced atherogenesis. However, 
each model has its advantages and limitations which will 
be discussed.

ApoE knockout mice

Model

Apolipoprotein E (APOE) is involved in lipoprotein metab-
olism and lipoprotein-mediated lipid transport [7, 105]. It 
associates with plasma lipoproteins and plays a major role 
in their production, conversion and clearance from the blood 
[90, 105, 209]. The mouse APOE protein is ~ 70% homolo-
gous to the human protein [158, 161]. APOE is carried by 
chylomicrons and VLDL in plasma and acts as a ligand to 
mediate the uptake of these remnants by LDL receptor on 
the surface of hepatic cells, which remove them from the 
circulation [127, 205]. Knockout mice lacking APOE were 
developed in 1992, bringing the first mouse genetic model 
of atherosclerosis into existence [158, 161]. ApoE knockout 
mice (ApoE−/−) mice display delayed lipoprotein clearance 
and develop dyslipoproteinemia, hypercholesterolemia and 
atherosclerotic lesions even when fed normal chow [214].

Lipid profile and cardiac and peripheral atheromas

ApoE−/− mice on a normal chow diet have significantly 
increased levels of total plasma cholesterol in compari-
son to wild-type mice [140]. In humans, plasma choles-
terol levels less than 200 mg/dL are considered healthy, 
whereas > 240  mg/dL is considered high. In wild-type 
mice on a chow diet total plasma cholesterol levels are only 
75–110 mg/dL, but in ApoE−/− mice they are dramatically 
increased to 400–600 mg/dL [140]. Even if this level is much 
higher than in patients, the fact that hypercholesterolemia 
and lesions develop spontaneously on a normal chow diet 
makes ApoE−/− mice favourable to diet-induced models. In 
the plasma, APOE is associated with chylomicron remnants 
and VLDL. After binding to the LDL receptor with high 
affinity, APOE plays a key role in the clearance of VLDL 
and remnant proteins [166]. In comparison to wild-type 
mice, loss of APOE decreases levels of HDL and increases 
VLDL and LDL cholesterol levels [77, 87]. On a normal 
chow diet, lesions appear by 6 weeks of age. The presence of 
foam cells and smooth muscle cells in the lesion is observed 
at 8–10 weeks and fibrous plaques appear at 15 weeks. A 

Western-type diet can accelerate the growth and extent of 
the lesions depending on the requirements of the study. In 
ApoE−/− mice, the pattern of lesion distribution in the heart 
is very different from that of humans. The lesions in these 
mice tend to form throughout the vasculature including in 
the aortic root and branches, the carotid artery, mesenteric 
artery, renal and pulmonary arteries as well as the valve 
sinus [27, 140]. The major lesions are located in the valve 
sinus, including the origins of the coronary arteries, but 
the lesions extend only a short distance onto the arterial 
trunks [80, 148]. Consequently, unlike in humans, the first 
segment and first branch of all the major coronary arteries 
are protected from disease [80, 148]. Despite the lack of 
robust atherosclerosis in coronary arteries of these mice, 
the lesions are a good model for the developmental process 
of the human disease in non-cardiac arteries. Interestingly, 
it has recently been shown transverse aortic constriction 
(TAC) performed in in ApoE−/− mice leads to coronary 
plaque formation, progression, and myocardial events [129]. 
Furthermore, in several of the TAC-induced ApoE−/− mice, 
evidence of myocardial infarction caused by embolism was 
obtained [129], which suggests the model could be used for 
studying no reflow caused by microemboli.

In regards to peripheral atheromas in ApoE−/− mice, 
studies of the skeletal muscle of these mice demonstrate 
decreased capillary density from 12 weeks. Levels of nitric 
oxide, one of the key players in skeletal muscle function 
and metabolism [168], decline from the age of 20 weeks 
[187, 188]. Interestingly, isolated, Langendorff-perfused 
ApoE−/− hearts displayed reduced nitric oxide-depend-
ent vasodilation at the level of coronary resistance ves-
sels [56]. In addition to extensive plaque formation in the 
aorta, plaques were observed in the femoral arteries of 
ApoE−/− mice at the age of 65 weeks [11]. In ApoE−/− mice, 
an increase in inflammation and a higher level of hydrogen 
peroxide in skeletal muscle were observed when compared 
with wild-type mice suggesting a protective role for APOE 
in peripheral arteries [159].

Infarct size

In 12–16 week old ApoE−/− mice, there was no difference 
between the area at risk or infarct sizes following 30 min 
regional ischaemia of the myocardium followed by 2 h 
reperfusion, compared to wild-type mice [16] (Table 1). 
The impact of APOE deficiency on MI-induced heart 
failure was investigated by performing chronic LAD 
ligation in 6–8 week old ApoE−/− mice. One day follow-
ing permanent CAL, infarct size and myocardial injury 
were significantly greater in ApoE−/− mice compared to 
wild type, as assessed by TTC staining, cTnI and CK-MB 
[237]. In contrast, in a separate study in which mice were 
fed a Western diet from the 7th day following permanent 
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CAL, no effects of APOE deficiency were observed on 
infarct size, survival or the development of heart failure 
over the following 10 months [164]. Infarct size was also 
similar between wild type and ApoE−/− mice when using 
an IR model, which consisted of 30 min ischaemia and 2 h 
reperfusion [38]. Only one study has addressed whether 
cardioprotection remains effective in ApoE−/−. This 
showed that saffron aqueous extract reduces myocardial 
infarct size in both ApoE−/− and wild-type mice to a simi-
lar extent [38]. Though ApoE−/− mice have been exten-
sively studied, it is surprising to find only one study on 
cardioprotective strategies in this strain. Further research 
of cardioprotection in ApoE−/− mice would be informa-
tive and aid the translation of therapeutic strategies into 
patients with atherosclerosis.

Limitations of the model

There are several caveats to using this model for studies 
of MI. Thrombotic occlusion rarely occurs in the coro-
nary arteries of ApoE−/− mice, unlike in humans, making 
it more difficult to extrapolate findings into the clinic, 
as the effect of atherosclerosis on MI could be differ-
ent to that which occurs in humans. The low prevalence 
of plaque rupture in mice could potentially be due to 
the small diameter and the lower surface tension of the 
mouse vessel in comparison to humans [88]. Nonethe-
less, the plaques in the brachiocephalic artery of older 
(42–60 weeks) ApoE−/− mice are more similar to human 
plaques, involving intra plaque haemorrhage, an acellular 
necrotic core and erosion of the necrotic mass into the 
lumen [173]. In a study of ApoE−/− mice after 8 weeks 
of fat feeding, plaque rupture was observed in the bra-
chiocephalic arteries at high frequency [93]. Plaque rup-
ture has been extensively studied in ApoE−/− mice and it 
appears that brachiocephalic arteries and the aorta are 
the main arteries where plaque rupture occurs in this 
model [24, 93, 219]. Moreover, APOE has an impact on 
inflammation, oxidation, reverse cholesterol transport by 
macrophages and proliferation and migration of smooth 
muscle cells from tunica media in the vessel wall into the 
tunica intima, which could play a role in plaque develop-
ment in ApoE−/− mice regardless of changes in the lipid 
profile [52]. Following MI, Ly-6Chi monocytes digest 
damaged tissue in the first 4 days and Ly-6Clo monocytes 
facilitate angiogenesis and repair of the tissue from days 
5–10 [139]. Inflammatory gene expression and protease 
levels associated with the activity of Ly-6Chi monocytes, 
were more pronounced in ApoE−/− mice 5 days after MI 
[154]. APOE is a multifunctional protein with roles in 
inflammation, oxidation, smooth muscle proliferation 
and migration as well as reverse cholesterol transport 

by macrophages. Thus, changes in these functions may 
affect the development of atheromas in ApoE−/− mice, 
independent of their changes in lipoprotein profile [52]. 
Another limitation to be considered with ApoE−/− mice 
is the high levels of VLDL particles, which is not typical 
in human atherosclerosis [163].

ApoE*3‑Leiden mice

Model

In an uncommon disorder of lipoprotein metabolism called 
familial dysbetalipoproteinemia (FD), the ApoE gene is 
mutated, which results in reduced binding to receptors 
and decreased clearance of the remnants. The accumu-
lation of these particles results in hypercholesterolemia 
and hypertriglyceridemia, predisposing FD patients to 
coronary artery disease and peripheral artery disease. 
ApoE*3-Leiden, a mouse model of FD, contains the 
human APOE3Leiden and APOC1 genes [199]. APOC1 
inhibits lipoprotein lipase (LPL) which is involved in the 
lipolysis of triglyceride-rich lipoproteins [107]. As in the 
human disease, the mutation in the ApoE gene results in 
a dysfunctional protein with reduced binding to its recep-
tors impairing the clearance of chylomicron remnants and 
VLDL [128, 220]. Consequently, these mice are suscepti-
ble to atherosclerosis when fed a high-fat diet. In contrast 
to other mouse models of atherosclerosis, they respond 
to lipid-lowering treatments such as statins, fibrates, and 
niacin in a similar way to humans [8, 102, 198, 201], 
which has made them a useful experimental model for 
drug development.

Lipid profile and cardiac and peripheral atheromas

On several diets tested, ApoE*3-Leiden mice developed 
enhanced aortic atherosclerosis compared to wild-type 
mice [63]. Total plasma cholesterol levels were signifi-
cantly higher in ApoE*3-Leiden mice on both normal 
chow and high-fat diet [63]. The lipoprotein pattern on 
a high-fat diet was characterised by increased levels of 
VLDL and LDL and decreased levels of HDL (Fig. 2) 
[199]. Early lesions in ApoE*3-Leiden mice included 
those on aortic valves and the free aortic wall, which were 
superficial and contained one or two layers of lipid-loaded 
foam cells. Some of these lesions developed into more 
extensive plaques covering the entire arterial wall, and 
were rich in foam cells. With a more severe diet such as 
high fat and cholate for 3 months, more complex lesions 
developed, containing a lipid-laden core loaded with 
foam cells with calcification in certain sections [111]. 
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Lesions were present in the ascending aorta, aortic arch, 
and descending aorta, whereas wild-type mice showed no 
lesions when fed the same diet [63]. However, none of the 
animals had lesions in the proximal coronary arteries [63]. 
In another study in which ApoE*3-Leiden mice were fed 
a special high-fat and cholesterol diet (15% cacao butter, 
0.5% cholate, 1% cholesterol, 40.5% sucrose, 10% corn 
starch, 1% corn oil, and 4.7% cellulose), extensive athero-
sclerosis was observed [124]. After 4 months, advanced 
lesions were present in the aortic root, the aortic arch and 
its main branch points. Plaques were also present in the 
abdominal aorta and renal artery branch points [124]. 
Early lesions (fatty streaks) were observed in the proxi-
mal coronary arteries, and these had become advanced by 
6 months [124]. After 12 months, calcifications were seen 
in the coronary arteries of some mice.

The major differences between humans and ApoE*3-
Leiden mice are the lack of plaque rupture, thrombus for-
mation and haemorrhage in these mice [174]. The possible 
reasons for this could be due to the morphologically intact 
endothelial layer, which prevents rupture, and the low level 
of apoptosis in the fibrous cap.

Infarct size

There are few infarct studies in ApoE*3-Leiden mice to date, 
even though these mice appear to be a suitable animal model 
of atherosclerosis [199]. Nonetheless, one study has investi-
gated the effect of 4 week diet-induced hypercholesterolemia 
on left ventricle (LV) remodelling following IR in these 
mice in comparison to normocholesterolemic ApoE*3-Lei-
den mice. Surprisingly, 8 weeks following IR, a significant 

reduction in infarct size and an increase in wall thickness 
were observed in hypercholesterolemic mice, with less accu-
mulation of infiltrated inflammatory cells [162]. Paradoxi-
cally, LV contractile function was significantly impaired in 
hypercholesterolemic ApoE*3-Leiden mice, reflected by a 
reduction in LV ESP, dP/dtMAX, and dP/dtMIN, though no 
differences of LV dimensions were observed [162].

Limitations of the model

One limitation of the ApoE*3-Leiden model is similar to 
the other mouse models of atherosclerosis in that throm-
bosis does not occur. Therefore, it is difficult to relate the 
data obtained from this strain to the clinic. In addition, 
lesions are not observed in the coronary arteries [63], or 
are only observed after a relatively long time of 6 months 
of high fat and cholesterol diet [124].

LDLR knockout mice

Model

The LDL receptor (LDLR) is a glycoprotein expressed on 
the surface of hepatocytes, which plays a key role in the 
endocytosis and removal of circulating LDL cholesterol. 
Besides the widely used ApoE−/− mice, LDLR−/− mice are 
one of the most popular choices amongst mouse models 
of atherosclerosis. Mutations in the LDLR gene in humans 
cause familial hypercholesterolemia, with elevated plasma 
LDL cholesterol levels and deposition of cholesterol in 

Fig. 2   Lipid profile of different knockout mouse models of athero-
sclerosis. Unlike humans, wild-type mice carry cholesterol primarily 
in HDL particles. In comparison to human, ApoE−/− and ApoE3*-
Leiden mice have very high levels of VLDL cholesterol, higher levels 
of LDL cholesterol and similar levels of HDL cholesterol. LDLR−/− 

mice have higher levels of all cholesterol-loaded lipoproteins and 
SRBI−/−; LDLR−/− mice have higher levels of VLDL cholesterol, sim-
ilar levels of LDL cholesterol and much higher levels of HDL choles-
terol than humans [adapted from [28, 83, 163, 199]]



Basic Research in Cardiology (2020) 115:73	

1 3

Page 11 of 24  73

vessels leading to the formation of atherosclerotic plaques 
[23, 110]. Plasma cholesterol is moderately elevated in 
LDLR−/− mice fed normal chow and they develop athero-
sclerosis gradually, although this can be accelerated on a 
high-fat diet [101, 137, 182]. The lipoprotein profile in 
the LDLR−/− mice on chow diet is similar to humans, with 
high levels of LDL (Fig. 2) [84].

Lipid profile and cardiac and peripheral atheromas

The types and locations of lesions in LDLR−/− mice are 
similar to ApoE−/− mice, and build up gradually with the 
earliest lesions seen in the proximal aorta. In general, the 
LDLR−/− model is a milder model of atherosclerosis than 
the ApoE−/− mice mainly due to the lower hyperlipidae-
mia observed [21, 184]. LDLR−/− mice develop mild or 
no lesions when on a normal chow diet. Nonetheless, on a 
Paigen diet, the development of atherosclerosis is acceler-
ated with significant increases in cholesterol levels and size 
of atherosclerotic plaques [85]. High-fat diet induced the 
development of atherosclerotic plaques with fatty streaks and 
accumulation of foam cells in the early lesions in the aortic 
root after 5 weeks [235]. Early lesions were also observed 
in the aortic arch and brachiocephalic artery and increased 
in size until they occupied most of the surface [125]. After 
one month on a high-fat diet, the tunica media had thickened 
significantly along with the appearance of lipid-laden mac-
rophages. After 9 months, advanced lesions caused narrow-
ing of the brachiocephalic artery. Surprisingly, lesions in the 
thoracic aorta were only visible after 6 months of high-fat 
diet, and abdominal aorta lesions were only detected after 
9 months, although they increased significantly after this 
time point [125]. These changes in the rate of development 
for lesions in different regions, results in variable sensitivity 
to treatments that alter atherosclerosis. In terms of its effect 
on the peripheral circulation, LDLR loss leads to a decrease 
in capillary density in the gastrocnemius muscle by the age 
of 22 weeks, and the ratio of wall to lumen in skeletal mus-
cle arterioles is elevated [187]. Importantly, no evidence of 
endothelial dysfunction was seen in functional studies of 
mesenteric artery, coronary artery or aorta of LDLR−/− fed 
either normal chow or Western diet for 8 weeks [39].

LDLR−/− mice have been crossed with ApoE−/− mice to 
generate ApoE−/−; LDLR−/− double knockout mice. These 
have a similar lipid profile to ApoE−/− mice, with a marked 
increase in VLDL and chylomicron remnants [86]. After 
6–8 months of a high-fat and cholesterol diet, the ApoE−/−; 
LDLR−/− develop extensive atherosclerotic lesions through-
out the coronary tree [112]. Interestingly, the vasoconstrictor 
response to endothelin-1 (ET-1) was enhanced in thoracic 
aortic rings of ApoE−/−; LDLR−/− mice in comparison to 
wild-type mice [91]. However, endothelial-dependent ace-
tylcholine-induced relaxation was significantly impaired 

[91]. The combined administration of L-arginine and 
BH(4) reversed the endothelial dysfunction of the ApoE−/−; 
LDLR−/− mice [91].

Infarct size

Interestingly, after 30 min LAD ligation and reperfusion 
for 2 h, infarct size in LDLR−/− mice was roughly half that 
seen in wild type [55]. After feeding LDLR−/− mice a high 
cholesterol diet for 12 weeks, infarct size following IR was 
further reduced to a significant degree, leading the authors 
to suggest that prolonged exposure to high levels of plasma 
cholesterol protects the myocardium from IR injury [55]. 
This is surprising since it contrasts with the majority of pre-
vious studies on hypercholesterolemia in other animal mod-
els [58, 150, 212]. However, the interpretation of this data 
is complicated since in the same study, a shorter, 2 week 
diet caused a dramatic doubling of infarct size following IR 
[55]. The authors suggested that this may be due in part to 
the extremely high levels (> 2000 mg/dL) of cholesterol that 
are obtained in LDLR−/− mice following the high-fat diet.

Hearts were isolated from ApoE−/−; LDLR−/− mice on 
a high-fat and cholesterol diet, and Langendorff perfused. 
Following 40 min global ischaemia and 60 min reperfusion, 
ApoE−/−; LDLR−/− hearts had larger infarcts, more troponin 
T release, and worse cardiac function than wild-type mice 
[112]. However, because the wild type mice were fed normal 
chow, the difference could be due either to hypercholester-
olemia or atherosclerosis. Interestingly, ischaemic precon-
ditioning (IPC) remained equally effective in both ApoE−/−; 
LDLR−/− and wild type hearts [112].

Limitations of the model

Although it is  a widely used model of atherosclerosis, 
LDLR−/− mice do not respond very well to lipid-lowering 
drugs used in patients, indicating possible pathophysiologi-
cal differences compared to human disease [8, 231]. In addi-
tion, the discrepancy between humans and mouse models 
in general such as the lack of plaque rupture applies to the 
LDLR−/− model. The combined ApoE−/−; LDLR−/− model 
may be closer to the cardiac patients with coronary 
atheromas.

SRBI knockout mice

Model

Scavenger receptor class B, type I (SRBI) is an HDL recep-
tor expressed on the surface of multiple cell types and medi-
ates the selective uptake of plasma HDL cholesterol by the 
liver. Hence, it regulates HDL cholesterol levels, particle 
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size, and metabolism of cholesterol by steroidogenic tis-
sues [2, 104, 179]. HDL cholesterol levels inversely cor-
relate with the risk of atherosclerosis, most probably due to 
the role SRBI plays in reverse cholesterol transport [59, 94, 
192]. Excess cholesterol from peripheral tissues is removed 
and delivered to the liver from where it is either redistributed 
to tissues in which it is required, or removed by the gall blad-
der. HDL cholesterol content is pivotal to the development 
of atherosclerosis as it also plays a role in inflammation [12, 
143].

The extracellular domain of human SRBI shares 80% 
sequence identity with the mouse protein. However, unlike 
mice, human hepatocytes express a second HDL-cholesterol 
receptor called cholesteryl ester transfer protein (CETP) [79, 
178, 208]. Human SRBI has a similar function to the mouse 
protein and a similar pattern of expression [1, 106, 138]. In 
endothelial cells, SRBI is functionally involved in NO pro-
duction resulting in the attenuation of monocyte adhesion 
[64]. In addition, HDL binding to SRBI on platelets inhibits 
aggregation and increases platelet survival [79, 178, 208]. 
One important point for studies involving SRBI−/− mice is 
that deficiency of SRBI in female mice can cause infertility 
due to defects in oocyte development [133].

SRBI is a key regulator of HDL cholesterol levels and 
its overexpression leads to an increase in biliary choles-
terol content in support of gene-targeting studies that sug-
gest SRBI plays a key role in reverse cholesterol transport 
[170, 207, 217]. Moreover, SRBI binds LDL and VLDL 
to promote the efflux of un-esterified cholesterol from cells 
to HDL [89, 186]. Inactivation of SRBI leads to decreased 
reverse cholesterol transport and increased plasma HDL cho-
lesterol levels [170, 207]. SRBI deficiency does not affect 
hepatic cholesterol levels or key regulators of hepatic cho-
lesterol homeostasis, such as HMG-CoA reductase, the low-
density lipoprotein receptor, or cholesterol 7α-hydroxylase 
(78).

Lipid profile and cardiac and peripheral atheromas

Several groups have used SRBI−/− mouse models to investi-
gate the function of SRBI. On a chow diet, SRBI deficiency 
caused an increase in total serum cholesterol levels as a 
result of higher levels free cholesterol and an increase in the 
cholesterol carried in the HDL particles (Fig. 2) [203]. On 
a high-cholesterol Western diet for 20 weeks, SRBI−/− mice 
developed more atherosclerotic lesions at the aortic root in 
comparison to wild-type controls [203].

SRBI−/− mice have been crossed with other knockout 
strains to exacerbate the phenotype. Knockout of SRBI in 
either ApoE−/− mice or LDLR−/− mice causes an increase 
in larger HDL particles, highlighting the role of SRBI 
in reverse cholesterol transport [28, 197, 203]. Absence 
of SRBI in LDLR−/− mice lead to a sixfold increase in 

diet-induced atherosclerosis [28]. No signs of coronary 
artery atheroma or ischaemic heart disease were identified 
when mice were fed a standard Western diet [115]. However, 
following 12 weeks on a modified Western diet containing 
higher (0.5%) cholesterol, coronary artery atherosclerosis 
was observed, being most severe at the aortic sinus level. 
The mice also developed spontaneous cardiac ischaemia/
infarction systolic dysfunction and LV dilatation and died 
by 20 weeks [115].

A study on the effects of different high-fat diets with and 
without cholate and cholesterol has reported an increase in 
aortic sinus plaque formation and size as well as reduced 
survival in SRBI−/−; LDLR−/− mice in comparison to 
LDLR−/− controls on all atherogenic diets tested [47]. Inter-
estingly, all SRBI−/−; LDLR−/− mice developed atheroscle-
rosis in their coronary arteries when on atherogenic diets, 
though this burden did not correlate with plaque sizes in the 
aortic sinus. In contrast, mice fed normal chow developed 
little atherosclerosis in their coronary arteries by 22 weeks 
of age. Uniquely, the double knockout mice showed signs of 
thromboses, which stained for the platelet marker, CD41, in 
the coronary arteries [47].

In SRBI−/−; ApoE−/− mice, substantial atherosclerotic 
plaques were observed in the aortic sinuses after 4–7-week-
old on a chow diet, compared to absence of plaques in 
ApoE−/− or SRBI−/− mice [197]. Coronary artery atheroscle-
rosis with complete coronary artery occlusion was observed 
in SRBI−/−; ApoE−/− mice, and these mice spontaneously 
developed multiple MIs, cardiac dysfunction and death at 
5–8 weeks when fed a chow diet [20]. Their coronary artery 
lesions were strikingly similar to human atherosclerotic 
plaques, with evidence of haemorrhage and clotting [20].

SRBI−/− crossed with mice harbouring the hypomorphic 
ApoE allele ApoER61h/h display features of hyperlipidaemia 
upon a high-fat diet leading to coronary plaques, partially 
occlusive coronary stenoses, spontaneous MI and reduced 
survival, closely resembling human coronary artery disease 
[156, 233]. Most thrombi were in medium and large coro-
nary arteries in the basal LV, which explains the septal loca-
tion of the thrombotic coronary arteries, as septal arteries are 
direct proximal branches of the right or left coronary artery 
or the aortic sinus [44]. SRBI−/−; ApoER61h/h mice display 
several of the previously identified features of human vulner-
able plaques [226], such as the presence of cholesterol-rich 
plaques in larger vessels and proximal segments of the coro-
nary tree, thrombi with a necrotic core, perivascular inflam-
mation, MIs and spontaneous deaths [73]. Interestingly, 
coronary vasodilator response was assessed in these mice 
by coronary angiogram, and an impairment of NO-mediated 
dilation of conductance and microvessels was seen [156].
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Infarct size

The involvement of SRBI in circulating cells in protection 
from atherosclerosis is demonstrated by studies in which 
restoration of SRBI expression in bone marrow-derived cells 
in knockout models results in attenuation of coronary artery 
atherosclerosis, MI and cardiac enlargement in SRBI−/−; 
ApoER61h/h mice [157]. All SRBI−/− mice in this study exhib-
ited coronary atherosclerosis, but increased heart weights 
and cardiac enlargement were observed only in a subset of 
mice. This suggests that the cardiac enlargement and fibrosis 
are the result of extensive coronary artery atherosclerosis in 
this model which appears to be reduced upon SRBI restora-
tion, potentially through reduced levels of monocyte recruit-
ment [157].

SRBI−/−; LDLR−/− mice develop spontaneous infarcts as 
early as 3.5 weeks depending on the atherogenic diet [47]. 
Nonetheless, surgically-induced MIs have not yet been stud-
ied in any of the SRBI−/− mice and whether the presence of 
coronary artery atheromas have an impact on cardioprotec-
tion is yet to be investigated.

Additional considerations

In any mouse experiment, it is important to consider the 
genetic background of the strain of wild-type mice being 
used, as this can significantly affect the results obtained. A 
study of 16 different inbred mouse strains fed the Paigen 
diet for 14 weeks, found major differences in the extent of 
atherosclerotic lesions that formed in the aorta [152]. The 
commonly used strain C57BL/6 was one of the most suscep-
tible, developing lesions by 7 weeks with large plaques in 
the aorta and coronary arteries, which continued to develop. 
Strain 129, a common background strain for transgenic stud-
ies, had smaller lesions, and other strains such as C3H, and 
CBA had no lesions at all after 14 weeks on the Paigen diet. 
Strains AKR and DBA/2 displayed fatty streaks or lesions 
by 7 weeks, but these did not grow in size [152]. Another 
point to consider is that the impact of co-morbidities such 
as atherosclerosis on endothelial function and myocardial 
infarction may be sex-specific [160, 196]. It is, therefore, 
important to use both male and female mice in studies.

Transgenic models of atherosclerosis can also be highly 
dependent on the background strain. For example, dele-
tion of ApoE causes an increase in HDL-cholesterol and 
triglycerides, which results in atherosclerotic lesions at the 
aortic arch, but these develop earlier in 129/SvEv mice than 
in C57BL/6 [126]. On the other hand, the atherosclerotic 
plaques in the aortic root develop faster in C57BL/6 mice 
[126], possibly reflecting anatomical differences between 
the two strains. In any case, these results highlight the 

contribution made by the genetics of the background strain 
to the development of atherosclerosis [126].

Several genes have been identified that can modify ath-
erosclerosis development, and mutation of these can improve 
the modelling of aspects of atherosclerosis lacking from 
standard models. For example, heterozygous mutation of 
fibrillin-1 (Fbn1) in ApoE−/− mice leads to fragmentation 
of the elastic fibres in the vessel wall, resulting in a mouse 
model more prone to the formation of vulnerable plaques 
and plaque rupture [200, 204]. These mice also manifested 
leaky plaque neo-vessels and intra plaque haemorrhage, 
resulting in plaque rupture, myocardial infarction, stroke, 
and sudden death [200]. Therefore, this model could serve 
as a highly translational model of atherosclerosis and ath-
eroma rupture, as observed in patients. Whether such a 
model would provide a practical advantage in experiments 
designed to investigate cardioprotection, where the duration 
and extent of ischaemic injury is typically carefully con-
trolled and reproducible, remains to be established.

A possible limitation of genetic models is that the major-
ity result in complete absence of the protein throughout the 
life of the mice, from embryogenesis to adulthood. Viral-
mediated models have the advantage of allowing the induc-
tion of atherosclerosis in adults, more closely reflecting the 
human situation. For example, proprotein convertase sub-
tilisin/kexin type 9 (PCSK9) is a serine protease with a key 
role in the degradation of LDLR in the liver [130, 232]. In 
humans, mutations in the PCSK9 gene have been associated 
with hypercholesterolemia and CVD [141]. Adenoviral over-
expression of PCSK9 in mice decreases LDLR levels, lead-
ing to increased plasma LDL levels [130]. Mice expressing a 
gain-of-function mutant of PCSK9 delivered by adeno-asso-
ciated virus (AAV) and fed a Western diet, develop sustained 
hyperlipidaemia with an increase in LDL and VLDL levels 
[172]. Atherosclerotic lesions with vascular calcification 
were observed in the aortas within 15–20 weeks, similar to 
plaques in LDLR−/− mice [57]. However, the phenotype, like 
in LDLR-/- mice, is a consequence of loss of LDLR expres-
sion, and so the model is similarly limited by the absence 
of plaque development in coronary arteries. Furthermore, 
the response appears to be highly strain dependent, with 
the strongest effect in C57BL/6, and PCSK9 may also have 
additional effects independent of the LDLR that may affect 
studies [30].

A further consideration in the use of mouse models is the 
methods used for the identification of atherosclerotic lesions. 
Plaques are usually visualised by ex vivo staining with Oil-
Red Sudan IV or Van-Gilson staining [135]. Nonetheless, 
the ability of these techniques to identify small/early ath-
erosclerotic lesions is limited, and more advanced imaging 
modalities such as ultrasound, PET or microCT might be 
better suited to evaluating atheroma progression in carotid 
arteries, aorta and even coronary circulation in mouse hearts 
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[25, 190]. Therefore, the limitations in translational value 
of in vivo models could be overcome by using robust tech-
niques for plaque identification and localisation.

Other animal models

Given that few mouse models of atherosclerosis develop 
coronary artery plaques, it is worth asking the question of 
whether mice are the most suitable model for IR studies, 
or if other animal models are preferable. Rats have simi-
lar advantages to mice in terms of maintenance and cost. 
Nevertheless, due to the lack of a gall bladder, absorption 
of cholesterol is low in rats, and their lipid profile also dif-
fers substantially from that of humans (Fig. 3). In addition, 
it is difficult to induce plaque formation in rats by high-fat 
diet alone and most research in atherosclerotic rats combines 
the use of drugs and artificially induced endothelial injury 
[171, 228]. Genetic modification in rats became feasible only 
recently due to the optimisation of gene editing technologies 
[227, 234].

In contrast to rodent models, larger animals are more 
challenging to maintain, have higher associated costs, and 
take longer to develop atherosclerotic lesions. Nonetheless, 
rabbits have been a popular choice when it comes to models 
of atherosclerosis and have particular advantages. Their sen-
sitivity to high-fat diets, high rate of cholesterol absorption, 
the ease of converting exogenous cholesterol into plasma 
lipids and low cholesterol clearance levels make rabbit an 
attractive model to study atherosclerosis. However, their 
herbivorous diet leads to major differences in lipid metabo-
lism in comparison to humans and raises questions about 
the suitability. Plaques in rabbits have a typical lipid core 
covered by a fibrotic cap that can lead to MI, making them 
a relevant model of atherosclerosis [42]. Although anatomy 

of the heart and coronary circulation is similar to that of 
humans, atherosclerotic plaques mainly form in the thoracic 
aorta, and coronary lesions are usually restricted to the left 
coronary arterial trunks [78].

Pigs are susceptible to atherosclerosis upon hypercholes-
terolemia-induced by a high cholesterol diet, usually con-
taining cholate to prevent the production of bile from cho-
lesterol [3, 51]. A combination of high cholesterol diet and 
induced vascular injury is usually required to reduce the time 
for plaque development. Vascular injury can be achieved 
through methods such as percutaneous intramural injection 
of cholesteryl esters and human oxLDL, guidewire-induced 
injury, balloon inflation or partial vessel ligation [61, 62, 
194]. In addition, pigs are anatomically and phylogenetically 
closer to humans compared to other models, and similarly 
are omnivorous. Finally, the size of the heart and coronary 
arteries makes them adequately suited to study atherosclero-
sis. Indeed, thrombus formation, plaque ruptures, IR injury 
and the fact that atherosclerosis develops in older pigs, pro-
vides a comparable platform to study the human disease and 
test therapeutic interventions that can be used in the clinic 
[10, 167, 185].

Summary and conclusions

In the context of atherosclerosis, many studies utilize mouse 
models due to their small size, low associated costs and a 
plethora of available transgenic strains. Although several 
studies have investigated infarct size in these models, the 
efficacy of cardioprotective strategies have not yet been stud-
ied extensively. There are several factors to consider when 
choosing the ideal model as summarised in Table 1. The 
lack of coronary artery lesions impacting coronary artery 
function in most mouse models, make it difficult to be cer-
tain that therapeutic interventions can be translated into the 
clinic. In addition, the lipoprotein profiles and mechanisms 
of metabolism are an important aspect that affects disease 
progression and must also be considered in the chosen 
model. Of the most widely studied strains, ApoE−/− mice 
and LDLR−/− mice are popular choices for the study of ath-
erosclerosis due to their susceptibility to developing athero-
sclerotic lesions. However, the atherosclerotic plaques are 
mainly located in the aorta and the surrounding regions, and 
no evidence of coronary artery dysfunction in these models 
has been reported. Despite their limitations, the transgenic 
mouse models reviewed here contribute to the overall cor-
pus of knowledge on the effect that these genetic mutations 
have on cardioprotection in mouse models. Whether the 
effects observed are strictly due to atherosclerotic changes 
in the heart, or, as seems more likely, other functions of 
the proteins in the cardiovascular system, remains to be 
clearly determined. A better model for coronary artery 

Fig. 3   Lipid profile comparison across species. In contrast to human, 
most species carry cholesterol mainly in HDL particles. In mice 
and rats, LDL cholesterol is lower than HDL cholesterol. Rats have 
a strong overlap between both LDL and HDL particles. Pigs have a 
lipoprotein profile comparable to human characterized by high LDL 
cholesterol [adapted from [95]]
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atherosclerosis appears to involve SRBI. Though not without 
its caveats, SRBI−/−; LDLR−/− mice provide a platform where 
coronary artery plaque development occurs on a normal diet 
in a relatively short time. This enables the study of IR and 
cardioprotection in a model that, it is hoped, more accurately 
reflects the response of the cardiac patient.

In conclusion, the huge number of cardioprotective com-
pounds and treatments that have been shown over the past 
decades to be effective in mice, despite the lack of successful 
translation to animals, may be a sign of the bias inherent in 
the commonly used experimental model of mouse infarction. 
In order to discover cardioprotective strategies that are not 
only effective in mice but can be translated successfully to 
benefit STEMI patients, we suggest that it is important to 
use mouse models of atherosclerosis that exhibit lesions in 
the coronary arteries. Ideally, these lesions would result in 
vascular dysfunction, as is seen in patients, since this dys-
function is likely to have a major impact on the induction 
and effectiveness of certain cardioprotective modalities. In 
IR studies with infarct size as an endpoint, ischaemia is arti-
ficially induced by coronary ligation, so plaque vulnerabil-
ity and rupture are not technically essential for the model. 
Similarly, it may not be crucially important that plaque mor-
phology differs somewhat between mice and humans. On 
the other hand, if plaque rupture and micro-embolism do 
occur in the atherosclerotic mouse model, it might better 
mimic the contribution that MVO makes to IR injury. How-
ever, the level of spontaneous plaque rupture and myocar-
dial infarction should not be excessive, or it could interfere 
with the measurement of the experimentally induced infarct. 
Although the study of atherosclerosis and coronary function 
in mouse coronary arteries is challenging, we believe these 
studies are necessary for the future development of ideal IR 
models in mice.
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