Skip to main content
Log in

Cardioprotective kinase signaling to subsarcolemmal and interfibrillar mitochondria is mediated by caveolar structures

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The demonstration that caveolin-3 overexpression reduces myocardial ischemia/reperfusion injury and our own finding that multiprotein signaling complexes increase in mitochondria in association with caveolin-3 levels, led us to investigate the contribution of caveolae-driven extracellular signal-regulated kinases 1/2 (ERK1/2) on maintaining the function of cardiac mitochondrial subpopulations from reperfused hearts subjected to postconditioning (PostC). Rat hearts were isolated and subjected to ischemia/reperfusion and to PostC. Enhanced cardiac function, reduced infarct size and preserved ultrastructure of cardiomyocytes were associated with increased formation of caveolar structures, augmented levels of caveolin-3 and mitochondrial ERK1/2 activation in PostC hearts in both subsarcolemmal (SSM) and interfibrillar (IFM) subpopulations. Disruption of caveolae with methyl-β-cyclodextrin abolished cardioprotection in PostC hearts and diminished pho-ERK1/2 gold-labeling in both mitochondrial subpopulations in correlation with suppression of resistance to permeability transition pore opening. Also, differences between the mitochondrial subpopulations in the setting of PostC were evaluated. Caveolae disruption with methyl-β-cyclodextrin abolished the cardioprotective effect of postconditioning by inhibiting the interaction of ERK1/2 with mitochondria and promoted decline in mitochondrial function. SSM, which are particularly sensitive to reperfusion damage, take advantage of their location in cardiomyocyte boundary and benefit from the cardioprotective signaling driven by caveolae, avoiding injury propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aldakkak M, Stowe DF, Dash RK, Camara AKS (2013) Mitochondrial handling of excess Ca2+ is substrate-dependent with implications for reactive oxygen species generation. Free Radic Biol Med 56:193–203. doi:10.1016/j.freeradbiomed.2012.09.020

    Article  CAS  PubMed  Google Scholar 

  2. Alonso M, Melani M, Converso D, Jaitovich A, Paz C, Carreras MC, Medina JH, Poderoso JJ (2004) Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development. J Neurochem 89:248–256. doi:10.1111/j.1471-4159.2004.02323.x

    Article  CAS  PubMed  Google Scholar 

  3. Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P (2002) Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 90:390–397. doi:10.1161/01.RES.0000069215.36389.8D

    Article  CAS  PubMed  Google Scholar 

  4. Boengler K, Stahlhofen S, Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147. doi:10.1007/s00395-009-0007-5

    Article  CAS  PubMed  Google Scholar 

  5. Chang G, Zhang D, Yu H, Zhang P, Wang Y, Zheng A, Qin S (2013) Cardioprotective effects of exenatide against oxidative stress-induced injury. Int J Mol Med 32:1011–1020. doi:10.3892/ijmm.2013.1475

    Article  CAS  PubMed  Google Scholar 

  6. Chávez E, Briones R, Michel B, Bravo C, Jay D (1985) Evidence for the involvement of dithiol groups in mitochondrial calcium transport: studies with cadmium. Arch Biochem Biophys 242:493–497. doi:10.1016/0003-9861(85)90235-8

    Article  PubMed  Google Scholar 

  7. Chen Q, Ross T, Hu Y, Lesnefsky EJ (2012) Blockade of electron transport at the onset of reperfusion decreases cardiac injury in aged hearts by protecting the inner mitochondrial membrane. J Aging Res 2012:753949. doi:10.1155/2012/753949

    Article  PubMed  PubMed Central  Google Scholar 

  8. Correa F, García N, Gallardo-Pérez J, Carreño-Fuentes L, Rodríguez-Enríquez S, Marín-Hernández A, Zazueta C (2008) Post-conditioning preserves glycolytic ATP during early reperfusion: a survival mechanism for the reperfused heart. Cell Physiol Biochem 22:635–644. doi:10.1159/000185547

    Article  CAS  PubMed  Google Scholar 

  9. Correa F, García N, Robles C, Martínez-Abundis E, Zazueta C (2008) Relationship between oxidative stress and mitochondrial function in the post-conditioned heart. J Bioenerg Biomembr 40:599–606. doi:10.1007/s10863-008-9186-2

    Article  CAS  PubMed  Google Scholar 

  10. Correa F, Zazueta C (2005) Mitochondrial glycosidic residues contribute to the interaction between ruthenium amine complexes and the calcium uniporter. Mol Cell Biochem 272:55–62. doi:10.1007/s11010-005-6754-1

    Article  CAS  PubMed  Google Scholar 

  11. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. doi:10.1016/B978-0-12-394309-5.00006-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duarte A, Castillo AF, Podestá EJ, Poderoso C (2014) Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria. PLoS One 9:e100387. doi:10.1371/journal.pone.0100387

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernandez-Gomez FJ, Galindo MF, Gomez-Lazaro M, González-García C, Cẽna V, Aguirre N, Jordán J (2005) Involvement of mitochondrial potential and calcium buffering capacity in minocycline cytoprotective actions. Neuroscience 133:959–967. doi:10.1016/j.neuroscience.2005.03.019

    Article  CAS  PubMed  Google Scholar 

  14. Folino A, Sprio AE, Di Scipio F, Berta GN, Rastaldo R (2015) Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation. Food Funct 6:2231–2239. doi:10.1039/c5fo00034c

    Article  CAS  PubMed  Google Scholar 

  15. Fridolfsson HN, Kawaraguchi Y, Ali SS, Panneerselvam M, Niesman IR, Finley JC, Kellerhals SE, Migita MY, Okada H, Moreno AL, Jennings M, Kidd MW, Bonds JA, Balijepalli RC, Ross RS, Patel PM, Miyanohara A, Chen Q, Lesnefsky EJ, Head BP, Roth DM, Insel PA, Patel HH (2012) Mitochondria-localized caveolin in adaptation to cellular stress and injury. FASEB J 26:4637–4649. doi:10.1096/fj.12-215798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Galli S, Jahn O, Hitt R, Hesse D, Opitz L, Plessmann U, Urlaub H, Poderoso JJ, Jares-Erijman EA, Jovin TM (2009) A new paradigm for MAPK: structural interactions of hERK1 with mitochondria in HeLa cells 4:7541. doi:10.1371/journal.pone.0007541

    Google Scholar 

  17. García N, Zazueta C, Martínez-Abundis E, Pavón N, Chávez E (2009) Cyclosporin A is unable to inhibit carboxyatractyloside-induced permeability transition in aged mitochondria. Comp Biochem Physiol C Toxicol Pharmacol 149:374–381. doi:10.1016/j.cbpc.2008.09.006

    Article  PubMed  Google Scholar 

  18. García-Niño WR, Tapia E, Zazueta C, Zatarain-Barrón ZL, Hernández-Pando R, Vega-García CC, Pedraza-Chaverrí J (2013) Curcumin pretreatment prevents potassium dichromate-induced hepatotoxicity, oxidative stress, decreased respiratory complex I activity, and membrane permeability transition pore opening. Evid Based Complement Altern Med 2013:424692. doi:10.1155/2013/424692

    Article  Google Scholar 

  19. Graziani A, Bricko V, Carmignani M, Graier WF, Groschner K (2004) Cholesterol- and caveolin-rich membrane domains are essential for phospholipase A 2-dependent EDHF formation. Cardiovasc Res 64:234–242. doi:10.1016/j.cardiores.2004.06.026

    Article  CAS  PubMed  Google Scholar 

  20. Hernández-Reséndiz S, Roldán FJ, Correa F, Martínez-Abundis E, Osorio-Valencia G, Ruíz-De-Jesús O, Alexánderson-Rosas E, Vigueras RM, Franco M, Zazueta C (2013) Postconditioning protects against reperfusion injury in hypertensive dilated cardiomyopathy by activating MEK/ERK1/2 signaling. J Card Fail 19:135–146. doi:10.1016/j.cardfail.2013.01.003

    Article  PubMed  Google Scholar 

  21. Hernández-Reséndiz S, Zazueta C (2014) PHO-ERK1/2 interaction with mitochondria regulates the permeability transition pore in cardioprotective signaling. Life Sci 108:13–21. doi:10.1016/j.lfs.2014.04.037

    Article  PubMed  Google Scholar 

  22. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi:10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  23. Horikawa YT, Patel HH, Tsutsumi YM, Jennings MM, Kidd WK, Hagiwara Y, Ishikawa Y, Insel PA, Roth DM (2008) Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury. J Mol Cell Cardiol 44:123–130. doi:10.1016/j.yjmcc.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Kulich SM, Horbinski C, Patel M, Chu CT (2007) 6-hydroxydopamine induces mitochondrial ERK activation. Free Radic Biol Med 43:372–383. doi:10.1016/j.biotechadv.2011.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kurian GA, Berenshtein E, Saada A, Chevion M (2012) Rat cardiac mitochondrial sub-populations show distinct features of oxidative phosphorylation during ischemia, reperfusion and ischemic preconditioning. Cell Physiol Biochem 30:83–94. doi:10.1159/000339043

    Article  CAS  PubMed  Google Scholar 

  26. Kuznetsov AV, Margreiter R (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 10:1911–1929. doi:10.3390/ijms10041911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lesnefsky EJ, Chen Q, Slabe TJ, Stoll MS, Minkler PE, Hassan MO, Tandler Bernard, Hoppel CL (2007) Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. Am J Physiol Heart Circ Physiol 287:H258–H267. doi:10.1152/ajpheart.00348.2003

    Article  Google Scholar 

  28. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Monick MM, Powers LS, Barrett CW, Hinde S, Ashare A, Groskreutz DJ, Nyunoya T, Coleman M, Spitz DR, Hunninghake GW (2008) Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity. J Immunol 180:7485–7496. doi:10.4049/jimmunol.180.11.7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paillard M, Gomez L, Augeul L, Loufouat J, Lesnefsky EJ, Ovize M (2009) Postconditioning inhibits mPTP opening independent of oxidative phosphorylation and membrane potential. J Mol Cell Cardiol 46:902–909. doi:10.1016/j.yjmcc.2009.02.017

    Article  CAS  PubMed  Google Scholar 

  31. Patel HH, Tsutsumi YM, Head BP, Niesman IR, Jennings M, Horikawa Y, Huang D, Moreno AL, Patel PM, Insel PA, Roth DM (2007) Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 21:1565–1574. doi:10.1096/fj.06-7719com

    Article  CAS  PubMed  Google Scholar 

  32. Penna C, Perrelli MG, Tullio F, Angotti C, Camporeale A, Poli V, Pagliaro P (2013) Diazoxide postconditioning induces mitochondrial protein S-Nitrosylation and a redox-sensitive mitochondrial phosphorylation/translocation of RISK elements: no role for SAFE. Basic Res Cardiol 108:371. doi:10.1007/s00395-013-0371-z

    Article  CAS  PubMed  Google Scholar 

  33. Quinlan CL, Costa ADT, Costa CL, Pierre SV, Dos Santos P, Garlid KD (2008) Conditioning the heart induces formation of signalosomes that interact with mitochondria to open mitoKATP channels. Am J Physiol Heart Circ Physiol 295:H953–H961. doi:10.1152/ajpheart.00520.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruiz-Meana M, Fernandez-Sanz C, Garcia-Dorado D (2010) The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc Res 88:30–39. doi:10.1093/cvr/cvq225

    Article  CAS  PubMed  Google Scholar 

  35. See Hoe LE, Schilling JM, Tarbit E, Kiessling CJ, Busija AR, Niesman IR, Du Toit E, Ashton KJ, Roth DM, Headrick JP, Patel HH, Peart JN (2014) Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection. Am J Physiol Heart Circ Physiol 307:H895–H903. doi:10.1152/ajpheart.00081.2014

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schilling JM, Horikawa YT, Zemljic-Harpf AE, Vincent KP, Tyan L, Yu JK, McCulloch AD, Balijepalli RC, Patel HH, Roth DM (2016) Electrophysiology and metabolism of caveolin-3-overexpressing mice. Basic Res Cardiol 111:28. doi:10.1007/s00395-016-0542-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun J, Nguyen T, Aponte AM, Menazza S, Kohr MJ, Roth DM, Patel HH, Murphy E, Steenbergen C (2015) Ischemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovasc Res 106:227–236. doi:10.1093/cvr/cvv044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsutsumi YM, Tsutsumi R, Hamaguchi E, Sakai Y, Kasai A, Ishikawa Y, Yokoyama U, Tanaka K (2014) Exendin-4 ameliorates cardiac ischemia/reperfusion injury via caveolae and caveolins-3. Cardiovasc Diabetol 13:132. doi:10.1186/s12933-014-0132-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Villalta JI, Galli S, Iacaruso MF, Arciuch VGA, Poderoso JJ, Jares-Erijman EA, Pietrasanta LI (2011) New algorithm to determine true colocalization in combination with image restoration and time-lapse confocal microscopy to map Kinases in mitochondria. PLoS One 6:e19031. doi:10.1371/journal.pone.0019031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang J, Schilling JM, Niesman IR, Headrick JP, Finley JC, Kwan E, Patel PM, Head BP, Roth DM, Yue Y, Patel HH (2014) Cardioprotective trafficking of caveolin to mitochondria is Gi-protein dependent. Anesthesiology 121:538–548. doi:10.1097/ALN.0000000000000295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wortzel I, Seger R (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2:195–209. doi:10.1177/1947601911407328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang Y, Ma Z, Hu W, Wang D, Jiang S, Fan C, Di S, Sun Y (2016) Yi W (2016) Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Basic Res Cardiol 111:45. doi:10.1007/s00395-016-0561-6

    Article  PubMed  Google Scholar 

  43. Yu H, Yang Z, Pan S, Yang Y, Tian J, Wang L, Sun W (2015) Hypoxic preconditioning promotes the translocation of protein kinase C ε binding with caveolin-3 at cell membrane not mitochondrial in rat heart. Cell Cycle 14:3557–3565. doi:10.1080/15384101.2015.1084446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu J-H, Guo F, Shelburne J, Watkins S, Chu CT (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13:473–481. doi:10.1016/j.bbi.2008.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhuang S, Kinsey GR, Yan Y, Han J, Schnellmann RG (2008) Extracellular signal-regulated kinase activation mediates mitochondrial dysfunction and necrosis induced by hydrogen peroxide in renal proximal tubular cells. J Pharmacol Exp Ther 325:732–740. doi:10.1124/jpet.108.136358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Rocio Torrico-Lavayen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wylly Ramsés García-Niño or Cecilia Zazueta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All authors in this work gave their informed consent prior to their inclusion in the study. The manuscript does not contain clinical studies or patient data.

Funding

This work was supported by Grant 177527 to CZ, 181593 to FC and 220046 to JP-Ch from the National Council of Science and Technology (CONACYT), Mexico.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (PPTX 14075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Niño, W.R., Correa, F., Rodríguez-Barrena, J.I. et al. Cardioprotective kinase signaling to subsarcolemmal and interfibrillar mitochondria is mediated by caveolar structures. Basic Res Cardiol 112, 15 (2017). https://doi.org/10.1007/s00395-017-0607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0607-4

Keywords

Navigation