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Abstract Immunoadsorption with subsequent immun-

oglobulin substitution (IA/IgG) represents a therapeutic

approach for patients with dilated cardiomyopathy (DCM).

Here, we studied which molecular cardiac alterations are

initiated after this treatment. Transcription profiling of

endomyocardial biopsies with Affymetrix whole genome

arrays was performed on 33 paired samples of DCM

patients collected before and 6 months after IA/IgG.

Therapy-related effects on myocardial protein levels were

analysed by label-free proteome profiling for a subset of 23

DCM patients. Data were analysed regarding therapy-as-

sociated differences in gene expression and protein levels

by comparing responders (defined by improvement of left

ventricular ejection fraction C20 % relative and C5 %

absolute) and non-responders. Responders to IA/IgG

showed a decrease in serum N-terminal proBNP levels in

comparison with baseline which was accompanied by a

decreased expression of heart failure markers, such as an-

giotensin converting enzyme 2 or periostin. However,

despite clinical improvement even in responders, IA/IgG

did not trigger general inversion of DCM-associated

molecular alterations in myocardial tissue. Transcriptome

profiling revealed reduced gene expression for connective

tissue growth factor, fibronectin, and collagen type I in

responders. In contrast, in non-responders after IA/IgG,

fibrosis-associated genes and proteins showed elevated

levels, whereas values were reduced or maintained in

responders. Thus, improvement of LV function after IA/

IgG seems to be related to a reduced gene expression of

heart failure markers and pro-fibrotic molecules as well as

reduced fibrosis progression.
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Introduction

Dilated cardiomyopathy (DCM) is characterised by ven-

tricular chamber enlargement and impaired myocardial

function and is one of the leading indications for heart

transplantation [40]. Besides genetic predisposition, car-

diac viral infections and inflammation play a causal role in

the disease process [25, 34, 40]. Furthermore, autoimmune

disorders resulting in activation of the cellular and humoral

immune response have been implicated in the development

of DCM [11, 29]. Antibodies against numerous cardiac

proteins have been identified in these patients, indicating

an active role in the pathogenesis by virtue of triggering the

disease process or by aggravating myocardial contractile

dysfunction [28, 45]. Furthermore, in asymptomatic rela-

tives of patients with DCM, detection of cardiac autoanti-

bodies predicts disease development [8, 9]. The pathogenic

potential of autoantibodies has been proved in animal

models by active immunisation as well as by transfer of

antibodies directed against the corresponding epitopes,

both leading to dilation and dysfunction of the ventricle

[21, 27]. Supporting the functional role of cardiac

autoantibodies in DCM, pilot studies showed that the

depletion of immunoglobulins from the plasma of patients

by immunoadsorption with subsequent immunoglobulin G

substitution (IA/IgG) resulted in significant haemodynamic

improvements, such as an increase in cardiac index, left

ventricular ejection fraction (LVEF) as well as relief of

symptoms [16, 17, 49, 50], and improvement of endothelial

function [6]. Furthermore, a decrease in activated T-cells

and an increase in regulatory T-cells have been shown to be

associated with haemodynamic improvement after IA/IgG,

revealing a link between cellular and humoral immunity

[7]. Recently, cardiac autoantibodies were also detected in

a subgroup of peripartum cardiomyopathy patients and

may point to similarities in some of the pathophysiological

processes, thus also indicating that removal of these anti-

bodies might be a therapeutic option not only in DCM but

also in peripartum cardiomyopathy [22].

However, response rates to this therapeutic intervention

are characterised by considerable inter-individual vari-

ability [1, 48]. Hence, the molecular effects triggered by

therapies are of particular interest to understand the

underlying mechanisms of haemodynamic improvements.

Changes in therapy-related myocardial gene expression

patterns have been investigated in patients with heart

failure (HF) treated with left ventricular assist device

(LVAD) [23, 39] and cardiac resynchronization therapy

(CRT) [42, 53]. Improvement of ventricular function was

associated with significant expression changes in a set of

myocardial genes involved in maintenance of contractility

for CRT [53, 54] and remodelling for LVAD [19]. With

respect to medical treatment, another study [37] demon-

strated that in patients suffering from idiopathic DCM,

improvement in LVEF after treatment with beta-blockers

was associated with favourable expression changes of

genes encoding sarcoplasmic-reticulum calcium ATPase2a
(SERCA2a) and the a and b isoforms of myosin heavy

chain.

Although beneficial effects of IA/IgG have been descri-

bed [16, 17, 49, 50], the potential underlying mechanisms

have still to be elucidated on molecular level. Therefore, in

this study comparative profiling of biopsies of DCM

patients before (baseline, BL) and 6 months after (follow

up, FU), IA/IgG therapy was performed and effects on gene

expression and protein levels were explored to gain new

information on therapy-associated molecular events.

Materials and methods

Study design

This pilot study comprises 33 DCM patients with LV sys-

tolic dysfunction (LVEF\45 %) and symptoms of chronic

HF according to New York Heart Association (NYHA)

functional classes II and III which underwent IA/IgG in the

University Hospital Greifswald between 2004 and 2008.

Patients had not suffered from active infectious diseases,

cancer, chronic alcoholism, postpartum cardiomyopathy, or

HF due to known origins (e.g. primary valvular disease). All

patients received stable oral medication for HF according to

ESC guidelines [13, 47, 52] and medication was kept

stable for the duration of this study with exception of dose

adjustments for diuretics (Table 1, see Online Resource

Supplemental Material ESM 1). Among all patients, we

excluded coronary heart disease by angiography as well as

acute myocarditis by endomyocardial biopsy (EMB), in

accordance with Dallas criteria and immunohistological

stainings [2, 12, 31, 38]. Myocardial biopsies were obtained

for clinical reasons for diagnosis of DCM according to

guidelines [12, 47] and for assessment of myocardial

infections and inflammation after IA/IgG at baseline and

during follow-up after 6 months (follow-up, FU). Tran-

scriptome (n = 33) and proteome (subset, n = 23) analyses

were performed from endomyocardial biopsies which were

no longer needed for routine diagnostics.

Immunoadsorption and subsequent immunoglobulin

G substitution

In all patients, IA was performed on five consecutive days

using protein-A columns (Immunosorba�, Fresenius

Medical Care AG, Bad Homburg, Germany) with a
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treatment regime described elsewhere [49]. After the final

immunoadsorption session, patients received 0.5-g/kg

human intravenous immunoglobulins (Venimmun, San-

doglobulin, CSL Behring, Germany, or Octagam, Octa-

pharma, Switzerland) to restore physiological IgG plasma

levels [49]. Patients displaying an increase of C5 % in the

absolute LVEF value (5 LVEF units) and C20 % relative

to the LVEF at BL were classified as responders (R), while

those not fulfilling these criteria were defined as non-re-

sponders (NR).

Echocardiography

Echocardiographic parameters [LVEF according to Simp-

son rule and left ventricular internal diameter at diastole

(LVIDD)] were determined by two independent physicians

by two-dimensional echocardiography, performed at BL

and FU 6 months after IA/IgG as described previously [1].

Brain natriuretic peptide

N-terminal pro-brain natriuretic peptide (NT-pro BNP) was

determined in serum on a Siemens Dimension Vista� 1500

System using an in vitro diagnostic assay based on LOCI�

technology (Siemens Healthcare Diagnostics Inc., Newark,

USA).

Histological and immunohistological analyses

and detection of viral genomes

Five endomyocardial biopsies were fixed in 4 % buffered

formaldehyde for histology and immunohistology or were

fixed in RNAlater (Ambion Inc., Foster City, USA) for

detection of viral genomes by nested real-time polymerase

chain reaction (qRT-PCR). Histological analysis for the

diagnosis of myocarditis followed the Dallas criteria

complemented by immunohistology to assess inflammation

Table 1 Baseline characteristics of DCM patients

Responder (n = 20) Non-responder (n = 13) Responder vs. non-responder

p value

Age (years) ± SDa 48 ± 10 53 ± 8 0.145e

Gender (#/$) 14/6 12/4 1.000f

LVEF (%) ± SDa 33 ± 6 35 ± 7 0.406e

LVIDD (mm) ± SDa 67 ± 7 74 ± 7 0.022e

NYHA classification II/III (n) 10/10 7/6 1.000e

NT-pro BNP (pg/ml) ± SDa 1035 ± 1372 1047 ± 992 0.428e

Disease duration (months) ± SDa 13 ± 13 49 ± 42 0.003e

Body mass index (kg/m2) ± SDa 28 ± 5 27 ± 4 0.645e

Inflammation positive (n)b 14 8 0.714f

Fibrosis gradec (n) 0/1/2/3 0/12/4/4 0/4/4/5 0.25g

Virus genomes PVB19/PVB19?HHV6/otherd (n) 4/1/15 4/0/9

Medication (n/total)

b-Blocker 20/20 13/13

ACE inhibitors and/or 16/20 11/13

AT1 antagonists 5/20 5/13

Diuretics 20/20 13/13

Digitalis 2/20 5/13

LVEF left ventricular ejection fraction, LVIDD left ventricular internal diameter at diastole, NYHA New York Heart association, NT-pro BNP

N-terminal, pro brain natriuretic peptide, PVB19 parvovirus B19, ACE angiotensin converting enzyme, AT1 angiotensin-II-receptor-subtype-1
a Mean values with standard deviation (SD) are shown
b Endomyocardial biopsies were considered to be inflamed if immunohistochemistry revealed focal or diffuse mononuclear infiltrates with[14

leucocytes per mm2 (CD3? T-lymphocytes and/or CD68? macrophages) in addition to enhanced expression of HLA class II molecules [31, 38]
c The amount of cardiac fibrosis in HEMBs was determined and categorised as grade 0 = no, grade 1 = mild, grade 2 = moderate, grade

3 = severe
d Other virus types: HHV6 human herpesvirus 6, EBV Epstein–Barr virus, Enteroviruses
e Mann–Whitney test, two-tailed
f Fisher’s exact test, two-tailed
g Chi-square test
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as described [31, 38, 41]. Inflammation was considered

present after immunohistological detection of mononuclear

infiltrates with 14 CD3? T cells/and or CD68? macro-

phages per 1 mm2 in the myocardium, in addition to

enhanced expression of HLA class II molecules.

Fibrosis

The extent of myocardial fibrosis in EMB was determined

from samples immediately fixed under sterile conditions in

4 % buffered formaldehyde by routine light microscopy

examination using Masson‘s trichrome staining. The extent

of myocardial fibrosis in EMB was defined as an index as

described previously [58]. The percentage area of fibrosis

in the section was evaluated by dividing the sum of fibrotic

areas of the section by that of the total tissue area.

According to this fibrosis index, patients were classified as

having no (grade 0), mild (grade 1), moderate (grade 2), or

severe fibrosis (grade 3).

Transcriptome analyses

EMBs (3–4 samples) from each patient were pooled, and

homogenised. From a portion of tissue powder, RNA was

isolated following the manufacturer’s instructions for total

RNA isolation from fibrous tissues (RNeasy� Micro Kit,

Qiagen Inc., Valencia, USA). After purification and quality

assessment, transcriptional profiling of EMBs was per-

formed with GeneChip-Human Genome-HG U133-Plus

2.0-arrays (Affymetrix, Santa Clara, USA) as described

recently [1]. Expression raw data were transferred to

Rosetta Resolver� 7.2 (Ceiba Solutions, Seattle, USA.) for

probe set extraction and normalisation. For further analy-

ses, filtering was based on probe sets having signals above

background intensity (p\ 0.05) in at least 80 % of one of

the classes compared. In the initial phase of the study, the

validity of the microarray data were confirmed by con-

ducting qRT-PCR of selected genes in a subset of patients

(9 responders, 5 non-responders) using a custom-manu-

factured TaqMan low density array (see Online Resource

ESM 1).

Proteome analyses

For 23 patients (R: n = 12, NR: n = 11), remaining EMB

tissue powders were also sufficient for proteome analysis.

Protein extraction, determination of concentration, and

sample preparation for mass spectrometry (MS) were per-

formed as described earlier [24]. Briefly, relative quanti-

tation of therapy effects on protein levels was based on

label-free MS analyses of tryptic peptide extracts of each

patient and time point. After alignment of signals across all

MS runs, signal intensities as quantitative measures were

extracted and assigned to peptides and proteins by a Uni-

prot_SProt database search (see Online Resource ESM 1).

Statistical analyses and functional classification

For determination of IA/IgG-related alterations on gene

expression, the ratios of probe set signals at FU and BL per

patient were calculated, allowing reduction of the effects of

inter-individual variability at BL. Therapy effects were

calculated using the rank product-based statistics method

[5] using 1000 permutations, generating for each probe set

an average ratio and two false discovery rate (q) values

[51] for upregulation (FU/BL[1) and downregulation (FU/

BL\1) for each group (R or NR), respectively (Fig. 1a, b).

The same algorithm was applied to compare ratios of

responders and non-responders (R FU/BL vs. NR FU/BL)

(Fig. 1c). Probe sets with significant (q\ 0.05) upregula-

tion (R FU/BL[NR FU/BL) or downregulation (R FU/

BL\NR FU/BL) were considered differentially affected

by IA/IgG and selected for further analysis. Gene expres-

sion data were also analysed with adjustment for inflam-

mation and fibrosis (see Online Resource ESM 1). IA/IgG-

associated changes on protein level were calculated as

described above except no multiple test correction was

applied due to the lower number of molecules in the

analyses and a fold change filter (FC) of 1.3 was used.

The descriptive statistics of clinical parameters are

expressed as mean with standard deviation (SD). Mann–

Fig. 1 Schematic overview of analyses. Exemplarily, an altered

gene/protein level per patient—as indicated by follow-up (FU) vs.

baseline (BL) ratios per patient (bar) for a responders (R) and b non-

responders (NR), was shown. To define differences between sub-

groups, ratios of responders and non-responders were compared with

each other (c)
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Whitney test, Fisher’s exact test, Wilcoxon-signed rank

test, and Pearson’s Chi-square test were used for appro-

priate comparisons.

Ingenuity Pathway Analysis (Ingenuity Systems, Red-

wood City, USA; http://www.ingenuity.com) was used for

functional assignments of differentially expressed genes

and altered proteins. Expression data have been submitted

to the NCBI gene-expression and hybridization-array data

repository (GEO).

Results

Baseline characteristics of patients

Clinical BL characteristics of all patients are summarised

in Table 1. LVEF and NYHA classes showed no significant

difference at BL between responders and non-responders,

but patient groups significantly differed in LVIDD

(p = 0.022) and disease duration (p\ 0.003). Serum

levels of the heart failure marker NT-pro BNP as well as

inflammation, virus detection, and fibrosis findings from

EMBs of responders and non-responders did not differ

significantly between both groups.

Clinical findings and haemodynamic changes

after immunoadsorption and subsequent

immunoglobulin G substitution

IA/IgG treatment was tolerated well by all 33 patients, and

no serious events occurred. Immunoglobulin G levels were

reduced by 94.7 ± 2 % 5 days after IA, with no significant

difference in subgroups (responders 95.4 ± 1 %, non-re-

sponders 94.1 ± 3 %). In the responder group, LVEF

increased from 33 ± 6 % at BL to 47 ± 6 % after

6 months (p\ 0.001). Simultaneously, LVIDD decreased

from 67 ± 7 to 60 ± 7 mm (p\ 0.001), and NYHA class

improved from NYHA class III/II to II/I (p = 0.021). In

contrast, LVEF (35 ± 7 % at BL to 36 ± 8 % at FU) and

LVIDD (74 ± 7 mm at BL to 73 ± 9 mm at FU) remained

almost unchanged in non-responders (Table 2). Moreover,

the number of patients with myocardial inflammation

decreased significantly among the responders from BL

(n = 14) to FU (n = 6, p = 0.026), and serum NT-pro

BNP level was significantly decreased (1035 to 463 pg/ml,

p\ 0.004) in this group 6 months after treatment com-

pared with BL (Fig. 2). In non-responders, these parame-

ters did not change significantly. The grade of fibrosis in

Masson Trichrome stained EMB tissue sections as

Table 2 Longitudinal characteristics of IA/IgG population

Responder (n = 20) Non-responder (n = 13)

BL FU pd BL FU pd

Subgroup specific differences after IA/IgG

LVEF (%) ± SDa 33 ± 6 47 ± 6 \0.001 35 ± 7 36 ± 8 0.344

LVIDD (mm) ± SDa 67 ± 7 60 ± 7 \0.001 74 ± 7 73 ± 9 0.586

NT-pro BNP pg/ml ± SDa 1035 ± 1372 463 ± 923 \0.004 1047 ± 992 1196 ± 1211 0.839

Inflammation positive (n)b 14 6 0.026e 8 9 1.000e

NYHA I/II/III/IV (n) 0/10/10/0 6/9/5/0 0.021f 0/7/6/0 2/8/3/0 0.216f

Fibrosis gradec 0/1/2/3 (n) 0/12/4/4 0/12/5/3 0.838f 0/4/4/5 0/3/5/5 0.806f

Differences between subgroups after IA/IgG

DLVEF (%) ± SDa 13 ± 6 1 ± 4 \0.001g

DLVIDD (mm) ± SDa -7 ± 5 0 ± 3 \0.001g

DNT-pro BNP pg/ml ± SDa -572 ± 1099 148 ± 813 0.172g

LVEF left ventricular ejection fraction, LVIDD left ventricular internal diameter at diastole, NYHA New York Heart Association
a Mean values with standard deviation (SD) are shown
b Myocardial biopsies were considered to be inflamed if immunohistochemistry revealed focal or diffuse mononuclear infiltrates with[14

leucocytes per mm2 (CD3? T-lymphocytes and/or CD68? macrophages) in addition to enhanced expression of HLA class II molecules [31, 38]
c The amount of cardiac fibrosis in HEMBs was determined and categorised as grade 0 = no, grade 1 = mild, grade 2 = moderate, grade

3 = severe
d p value baseline (BL) vs. follow up (FU) of responders and non-responders is based on Wilcoxon-signed rank test
e Fisher’s exact test, two-tailed
f Chi-square test
g p value DLVEF, DLVIDD, DNT-pro BNP [absolute change of LVEF, LVIDD or NT-pro BNP (FU-BL)] of responders vs. non-responders is

based on Mann–Whitney test, two-tailed
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evaluated by light microscopy did not change in any of the

two groups after IA/IgG (Table 2). Individual patient data

are shown in Fig. 2.

Changes in myocardial gene expression and protein

levels in responders and non-responders after IA/

IgG

Responders and non-responders were analysed separately

(Fig. 1a, b) to elucidate gene expression changes after IA/

IgG. In general, more genes were altered in responders

(244 genes, mean of individual FU over BL ratios

FC C |1.2|, q\ 0.05) after IA/IgG therapy than in non-

responders (129 genes, see Online Resource Supplemental

Tables ESM 2, ESM 3). Functional assignment of genes

altered significantly in expression levels at FU compared

with BL in the respective subgroup revealed largely dif-

ferent categories or a different level of alterations for

responders and non-responders (Fig. 3a, c). In responders,

preferentially genes of the categories skeletal and muscular

system development and function (42 genes) and connec-

tive tissue development and function (41 genes) were

altered after therapy. For the majority of the respective

genes, lower expression was found in responders after IA/

IgG compared with BL (Fig. 3b, Online Resource Sup-

plemental Table ESM 4).

Significantly lower gene expression was observed for

periostin (POSTN), angiotensin converting enzyme 2

(ACE2), and the connective tissue growth factor (CTGF) at

FU compared with BL in responders, whereas, in non-re-

sponders, the expression of these genes remained unchan-

ged or even increased (Fig. 4). Transcripts of natriuretic

peptides A (NPPA) and B (NPPB) showed the same

declining trend in responders (Fig. 4), indicating a slightly

better status after therapy compared with non-responders.

qRT-PCR analysis for a subset of patients revealed the

same significant decrease for both natriuretic peptides ANP,

BNP, and ACE2 in responders (n = 9), but not in non-re-

sponders (n = 5) (Online Resource ESM 5 Supplemental

Fig. S1), supporting the microarray data (Fig. 4). Microar-

ray data (see Online Resource Supplemental Tables ESM 2,

ESM 3) were also confirmed for natriuretic peptide receptor

3 (NPR3) and CORIN, whereas data for periostin (POSTN)

were not confirmed by qRT-PCR in the smaller subset.

Further inverse regulation upon IA/IgG in responders

and non-responders was observed for additional six genes,

including chemokine (C-X-C motif) ligand 11 (CXCL11),

golgi glycoprotein 1 (GLG1), iroquois homeobox 1

A

C D E

B

Fig. 2 Individual changes in a LVEF, b LVIDD, c NT-pro BNP

plasma levels, d inflammation as indicated by infiltrated leucocytes

(CD3? T-lymphocytes and/or CD68? macrophages) [(a–d) p value

derived by Wilcoxon-signed rank test, for both subgroups)], and

e fibrosis grade after IA/IgG (Chi-square test, for both subgroups, ns.

not significant)
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(IRX1), mitochondrial ribosomal protein S18C

(MRPS18C), peripheral myelin protein 2 (PMP2), and

hyaluronan and proteoglycan link protein 1 (HAPLN1) (see

Online Resource ESM 5 Supplemental Fig. S2).

Of the genes affected in expression level by IA/IgG (R:

244 genes, NR: 129 genes), 10 genes including CORIN (see

Online Resource ESM 5 Supplemental Fig. S2) displayed a

conserved effect in responders and non-responders.

By functional assignment of genes altered significantly

in expression levels at FU compared with BL in non-re-

sponders, the highest significance was observed for

haematological system development and function (38

genes), immune cell trafficking (28 genes), and cardio-

vascular system development and function (25 genes) cat-

egories which were also affected but to a lesser degree in

responders (Fig. 3c, Online Resource Supplemental

Table ESM 6). Since, in non-responders, no changes in

LVEF were observed, these alterations do not seem to be

associated with improvement of heart function. In total, IA/

IgG-associated gene expression changes pointed to a rather

diverse pattern than an alteration of a defined pathway.

Since inflammation and fibrosis are known parameters

Fig. 3 Altered gene expression of HF markers in responder (R) and

non-responder (NR) before (BL) and after (FU) IA/IgG therapy. Mean

signal intensities and standard deviation were depicted for POSTN—

periostin, ACE2—angiotensin converting enzyme, CTGF—

connective tissue growth factor, NPPA—atrial natriuretic factor and

NPPB—brain natriuretic peptide for responders (R, n = 20) and non-

responders (NR, n = 13) (rank product test, q FDR-value, rank

product test, ns. not significant)
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associated with DCM progression and affected by IA/IgG

(Table 2), data were adjusted for these cofactors to screen

for effects independent of these two cofactors. We

observed a stronger influence of the adjustment for

inflammation and fibrosis on the data of responders com-

pared with non-responders (see Online Resource ESM 5

Supplemental Fig. S3). The adjustment for the factors

inflammation or fibrosis revealed a decrease in the number

of significantly regulated genes and the corresponding

p values in responders but triggered only marginal changes

in non-responders. Functional categorization of the genes

remaining after adjustment (see Online Resource ESM 7

and ESM 8) did not reveal hints for other pathways tar-

geted by IA/IgG in any of the two patient subgroups.

Alterations on protein level were only minor in

responders (16 proteins) and non-responders (43 proteins,

see Online Resource ESM 9 and ESM 10, respectively).

Notably, in responders, an increase in prostaglandin D2

synthase abundance was observed and confirmed, thereby,

the microarray data.

Subgroup specific differences in ECM remodelling

after IA/IgG

To gain a better insight into the molecular alterations

triggered by IA/IgG in the two patient subgroups, we

compared the magnitude of the gene expression/protein

abundance changes after IA/IgG of responders and non-

responders (Fig. 1c).

Comparison of FU over BL ratios of both subgroups

revealed significantly different alterations upon IA/IgG in

320 genes (q\ 0.05, FC C |1.2|, see Online Resource

Supplemental Table ESM 11). Functional classification of

those genes highlighted the following categories of

molecular and cellular function: cellular assembly and

organisation (25 genes); function and maintenance (33-

genes); and cellular movement (77 genes) (see Online

Resource Supplemental Table ESM 12). Among the

canonical pathways, the difference was most pronounced

for genes associated with fibrosis (Fig. 5a).

Responders displayed significantly lower expression

after therapy compared with BL (ratio FU/BL\ 1),

whereas, in non-responders, expression was higher after

therapy compared with BL (ratio FU/BL[ 1) for fibrosis-

associated genes, such as collagen 1A2 (COL1A2), colla-

gen 3A1 (COL3A1), biglycan (BGN), and connective tis-

sue growth factor (CTGF) (Fig. 6), indicating lower

expression of pro-fibrotic genes after IA/IgG in responders.

These findings are in line with the appearance of cellular

assembly and organisation as the most significant biolog-

ical function highlighting additional genes encoding

extracellular matrix proteins (e.g. versican, dermatopondin,

Fig. 4 Functional assignment of genes regulated in responders

(R) and non-responders (NR) after IA/IgG (|1.2|, q\ 0.05, responder

244 genes, and non-responders 129 genes). Top 3 enriched categories

of physiological system development and function and direction of

regulated genes in responders (a, b) and non-responders (c, d) are

displayed. Data of both patient groups are shown comparatively

(white bars R; black NR). Significance (-log BH p value) of the

association, which is dependent on the number of genes in the class,

was Benjamini–Hochberg (BH) corrected as assigned by Ingenuity

Pathways Analysis
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collagen 5A2) and indicating differences among subgroups

in extracellular matrix remodelling processes after IA/IgG.

Significant differences in protein ratios (FU/BL)

between responders and non-responders were observed for

57 proteins (FC C |1.3|, p\ 0.001) (see Online Resource

Supplemental Table ESM 13). Functional assignment of

those proteins revealed enrichment for, e.g. integrin linked

kinase (ILK) signalling, calcium signalling, actin

cytoskeleton signalling as well as fibrosis (Fig. 5b, see

Online Resource Supplemental Table ESM 14). In con-

cordance with the gene expression results, significantly

lower ratios were observed for fibrosis-associated proteins

in responders than in non-responders (R FU/BL\NR FU/

BL). Among them, collagen 1A1, lumican, prolargin, and

biglycan were found, indicating strong IA/IgG-dependent

differences in regulation of extracellular matrix compo-

nents in the two subgroups (Fig. 7, Online Resource Sup-

plemental Table ESM 13). Differences were also observed

Fig. 5 Differentially affected

canonical pathways after IA/

IgG in responders and non-

responders. Functional

assignment of differentially

affected genes (a) and proteins

(b) points to a different response
of subgroups in fibrotic

pathway. Significance (-log

p value) of the association,

which is dependent on the

number of genes/proteins in the

class, as assigned by ingenuity

pathways analysis

Fig. 6 Fibrosis-associated genes of responder and non-responder

groups. Geometric mean of ratio intensity data (FU/BL) and standard

deviation (SD) were calculated for the subgroups responder (R) and

non-responder (NR) and displayed for collagen 3A1 (COL3A1),

collagen 1A2 (COL1A2), biglycan (BGN), and connective tissue

growth factor (CTGF) (rank product test, q FDR value)
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for cAMP-dependent protein kinase A, catalytic subunit

beta, and myosin regulatory light chain 7 (R FU/BL[NR

FU/BL) but not myosin heavy chain 6 or 7. Significantly

lower ratios (R FU/BL\NR FU/BL) were observed in

responders for myosin heavy chain 11 and myosin regu-

latory light chain 9. Furthermore, proteome data confirmed

transcriptome data for periostin.

IA/IgG-associated changes in transforming growth

factor beta signalling in responders

Based on the observed IA/IgG-associated changes in gene

expression and protein levels in the EMBs of responders

and non-responders as well as the differences between the

two subgroups at FU, an analysis with the Ingenuity

Pathway Analysis suite predicted a lower expression/ac-

tivity of transforming growth factor beta in responders than

in non-responders (see Online Resource ESM 5 Supple-

mental Fig. S4). In line with this prediction, latent trans-

forming growth factor binding protein 2 displayed

decreased levels in responders 6 months after IA/IgG,

whereas no significant change in levels was observed in

non-responders. Table 3 summarises the different changes

after IA/IgG on transforming growth factor dependent

molecules in responders and non-responders.

Discussion

Immunoadsorption with subsequent IgG substitution rep-

resents a therapeutic approach for the treatment of patients

with DCM. Several studies on IA/IgG showed beneficial

effects on myocardial and endothelial function

[7, 16, 32, 49, 50]. However, response to this therapeutic

intervention shows wide inter-individual variability [1].

The molecular mechanisms that explain the variability in

response to therapy of DCM patients still remain to be

elucidated. This is the first report addressing IA/IgG-re-

lated changes in the myocardium at the molecular level by

performing transcriptomic and proteomic profiling.

Changes in DCM-related myocardial gene

expression in responders and non-responders

upon IA/IgG therapy

A recent profiling of myocardial gene expression patterns

of responders and non-responders at baseline before IA/

IgG in comparison with control individuals revealed dif-

ferential expression between responders and non-respon-

ders for genes assigned to oxidative phosphorylation,

mitochondrial dysfunction, hypertrophy, and ubiquitin–

proteasome pathway [1]. Surprisingly, according to this

Fig. 7 Selected proteins in the

responder and non-responder

groups. Geometric mean of ratio

intensity data (FU/BL) and

standard deviation of collagen

1A1, lumican, periostin,

prolargin, biglycan, and myosin

light chain 7 were compared and

displayed for the subgroups

responder (R, n = 12) and non-

responder (NR, n = 11) (rank

product test, R FU/BL vs. NR

FU/BL, q FDR value)
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study, none of these pathways was affected by IA/IgG,

neither in responders nor in non-responders (see Online

Resource Supplemental Material ESM 15, ESM 5 Sup-

plemental Fig. S5). Only a few genes described as altered

in DCM previously [1] were inversely affected in expres-

sion after IA/IgG in responders (seven genes: LTBP2,

RGS4, SERPINE2, SH3GL2, TAGLN, FAM124A, MRO)

and non-responders (six genes: ACTG2, MRO, IDS,

MTHFD2L, CREB5, GLG1), respectively (see Online

Resource Supplemental ESM 15 and Supplemental

Tables ESM 2 and ESM 3). Similar observations were

made on the proteome level: IA/IgG-related alterations

overlapped only to a minor extent with the DCM-associ-

ated changes in protein levels reported previously [24] (see

Online Resource Supplemental Tables ESM 9 and ESM

10). Hence, the molecular processes influenced by DCM

and IA/IgG seem to differ substantially.

In general, the magnitude of IA/IgG-associated alter-

ations in mRNA levels of responders (244 genes) was

similar to that of disease-associated alterations previously

recorded (208 genes [1]. However, since the disease- and

therapy-associated alterations barely overlapped, the IA/

IgG-related changes might not be causative for the

functional and clinical improvement, but might rather

reflect secondary effects. These findings are in line with

observations by Margulies et al. who studied the molecular

changes in human pre- and post-LVAD samples [39]. Only

a minor proportion of HF-associated alterations exhibited

normalisation indicating morphological and functional

improvements without reversing pathological expression

patterns [39]. Margulies et al. hypothesised that many HF-

associated changes in transcript levels have only a limited

role in regulation of cardiac structure and function and may

represent epiphenomena [39]. In line with this observation,

global heart failure-related gene expression patterns were

largely unaffected by cardiac resynchronization therapy

(CRT) [4]. However, dyssynchrony-induced expression

changes were reversed in a region-specific manner for

transcripts and proteins with metabolic and cell signalling

function by CRT [4].

Myocardial molecular changes in responders

and non-responders upon IA/IgG therapy

Improvement of heart function in the responder group after

IA/IgG was associated with a reduced LVIDD, a decrease

Table 3 Genes and proteins with significant differentially alterations upon IA/IgG which leads to the prediction of an more active TGFß-

signalling in non-responders (NR) than in responders (R) after therapy

Genes Gene/protein name Probe set ID Difference in IA/IgG effect NR vs R

Uniprot ID mRNA Protein

LOX Lysyl oxidase 215446_s_at 1.56 n.d.

CTGF Connective tissue growth factor 209101_at 1.54 n.d.

BGN Biglycan 213905_x_at P21810 1.51 2.02

LTBP2 Latent transforming growth factor beta binding protein 2 204682_at 1.49 n.d.

POSTN Periostin 210809_s_at Q15063 1.49 2.12

COL3A1 Collagen, type III, alpha 1 211161_s_at 1.43 n.d.

LOXL1 Lysyl oxidase-like 1 203570_at 1.41 n.d.

COL1A2 collagen, type I, alpha 2 202404_s_at P08123 1.39 1.71

F2R Coagulation factor II (thrombin) receptor 203989_x_at 1.36 n.d.

INHBA Inhibin, beta A 227140_at 1.32 n.d.

NOX4 NADPH oxidase 4 219773_at 1.31 n.d.

RASL11B RAS-like, family 11, member B 219142_at 1.31 n.d.

COL1A1 Collagen, type I, alpha 1 1556499_s_at P02452 1.30 2.13

TAGLN Transgelin 205547_s_at Q01995 1.30 1.29

SPP1 Secreted phosphoprotein 1 209875_s_at 1.26 n.d.

VIM Vimentin 201426_s_at P08670 -1.10 1.43

NPPA Natriuretic peptides A 209957_s_at P01160 1.37 1.36

MFAP4 Microfibril-associated glycoprotein 4 P55083 n.d. 1.51

FN1 Fibronectin 211719_x_at P02751 1.22 1.32

FBN1 Fibrillin-1 202766_s_at P35555 1.11 n.d.

FBLN5 Fibulin-5 Q9UBX5 n.d. 1.85

Bold: significant in proteome and transcriptome approach, italics: not significant

NR non-responder, R responder, n.d. not detected
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in inflammation as determined by the number of infiltrating

immune cells, and a decreased serum NT-pro BNP level.

NT-pro BNP is stimulated by pathophysiological stressors,

such as hypoxia, biomechanical stretch or ventricular

hypertrophy [56], and is accepted as a biomarker reflecting

the severity of HF [46]. The significant downregulation of

NPPA and NPPB after IA/IgG that was found in responders

exclusively might thus reflect differences in myocardial

function of the patient subgroups. CORIN, the gene

encoding atrial natriuretic peptide-converting enzyme,

which catalyses the conversion of NT-pro ANP and to a

lesser extent also NT-pro BNP [14], was found at signifi-

cant higher levels after IA/IgG in responders compared

with BL. Furthermore, CORIN was expressed at higher

levels after IA/IgG in responders compared with non-re-

sponders which might explain in part the reduced NT-pro

BNP levels in this patient subgroup. In a murine DCM

model, overexpression of CORIN was associated with

improved cardiac function, reduced myocardial fibrosis,

and prolonged survival [20]. These observed beneficial

effects of increased corin levels might be secondary to the

effects of processed natriuretic peptides ANP and BNP.

Besides regulation of intravascular blood volume and

vascular tone, BNP and ANP also display cardioprotective

effects by inhibition of inflammation and cardiac fibrosis,

and thus, each of these mechanisms may also influence the

progression of dilated cardiomyopathy [43, 55]. Especially,

BNP is assumed to act locally as an anti-fibrotic factor by

inhibiting collagen synthesis and proliferation of cardiac

fibroblasts which, in turn, inhibits cardiac fibrosis

[20, 43, 44].

In our study, major alterations were found for extra-

cellular matrix components which were predominantly

pronounced in responders and fit well with the observation

of a decreased left ventricular diameter indicating

myocardial recovery. After IA/IgG, responders showed

lower expression of different collagens (Fig. 6) compared

with non-responders. Furthermore, in non-responders,

lumican levels increased but not in responders (Fig. 7).

Increased expression of lumican in the myocardium of

patients with HF was recently reported, and a pathophysi-

ological role affecting extracellular matrix (ECM) was

suggested by initiating increased ECM collagen cross-

linking and cardiac fibrosis [15]. Furthermore, lower

expression in responders than in non-responders after IA/

IgG was found for the heart failure marker and ECM

component periostin which is associated with myocardial

fibrosis in human failing hearts [57]. Animal experiments

already revealed that inhibition of periostin gene expres-

sion resulted in a significant increase in survival rate

accompanied by an improvement of LV function [30]. In

addition, responders showed a downregulation of the

fibrosis-associated gene CTGF [35], which is induced by

growth factor TGF-b [10]. Expression of TGF-b-dependent
genes and levels of proteins, such as fibronectin (FN1) and

different collagens (COL1A1 and COL1A2) [10], were

significantly different (Table 3) in responders and non-re-

sponders after IA/IgG. Although no direct association of

IA/IgG with TGF-ß mRNA and protein levels was detec-

ted, a higher TGF-ß activity in non-responders was pre-

dicted independently for proteome as well as transcriptome

data. The difference in the molecular remodelling might be

caused by a higher expression of latent transforming

growth factor binding protein 2 (LTBP2) in non-respon-

ders, which was recently described as a new biomarker for

heart failure [3]. LTBP2 is part of the latent TGF-ß1

complex. As a further component of the extracellular

matrix, LTBP2 seems to contribute directly to myocardial

remodelling and fibrosis, which was more pronounced in

non-responders than in responders 6 months after IA/IgG.

Improved LV function after LVAD implant therapy was

also associated with reduced transcript levels of pro-fi-

brotic genes COL1A1 and COL3A1 as well as fibronectin 1

[18]. For extracellular matrix components, similar results

were obtained in an LVAD implant study with patients

suffering from cardiomyopathy. However, despite reduced

levels of mRNA for TGF-ß1, CTGF, COL1A1, and

COL3A1, only a modest reduction in tissue fibrosis was

monitored between pre- and post-LVAD tissue samples by

mechanical unloading [33]. Intriguingly, continuous-flow

LVAD support is associated with increased myocardial

fibrosis as well as circulating pro-fibrotic markers [36] and

might emphasise the need of an earlier LVAD implantation

for improvement in advanced HF. As a result of CRT—a

therapeutic intervention against the loss of ventricular heart

function in DCM patients—upregulation of contractility

regulating genes, such as sarcoplasmatic reticulum calcium

ATPase 2a (ATP2A2), phospholamban (PLN), beta-1-

adrenoreceptor (ADRB1), and apelin (APL), was reported

[26, 42, 53]. However, these genes were not found to be

changed after IA/IgG irrespective of the responder status in

our study (see Online Resource ESM 5 Supplemental

Fig. S6). Our transcriptome and proteome data indicate

differences in ECM remodelling instead of increase in

expression or level of contractile proteins after IA/IgG.

Study limitation

A control group of DCM patients which did not receive IA/

IgG but for which FU biopsy was performed after 6 months

was not available. Therefore, at least in theory, the changes

in myocardial gene expression and proteome observed in

responders may reflect differences in the natural course of

disease rather than the effect of therapeutic intervention

with IA/IgG. In this context, responders and non-
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responders display differences in disease duration. There-

fore, it may be argued that differences in gene regulation

after IA/IgG found in responders and non-responders are

related, at least in part, to the significant differences in

disease duration with better myocardial recovery in

patients exhibiting shorter disease duration. Compared with

non-responders, the less advanced disease process in

responders is also mirrored by significantly lower LVIDD

at baseline. However, we consider it unlikely that the

molecular differences observed are primarily attributable to

differences in disease stages, because the same molecular

differences between responders and non-responders are

also seen in patients of both subgroups having similar

disease duration (see Online Resource ESM 5 Supple-

mental Fig. S7). The total number of subjects available for

the study as well as for the validation of results by qRT-

PCR approach limits the power of the analyses. However,

the study is based on paired comparisons of samples of the

same patients, which greatly reduces the overall variability.

The gene expression and protein analyses data overlap only

to minor extent (see Online Resource ESM 5 Supplemental

Fig. S8), but the results point to a common result—a dif-

ference in the myocardial remodelling and fibrosis. One

reason is the lower coverage of the proteome by the LC–

MS/MS analysis in comparison with the transcriptome

accessible by microarray analyses. Furthermore, it is

known that mRNA and protein levels do not essentially

correlate, because the latter one depends, e.g. on mRNA

stability, translation rate, protein degradation rate, and

other factors.

Conclusion

This is the first study relating IA/IgG therapy characteris-

tics with comprehensive global molecular changes in

myocardial biopsies of DCM patients. Improvement of

LVEF, LVIDD, and NYHA classes, and inflammation

status were accompanied by reduced serum natriuretic

peptide levels and lower expression of TGF-ß dependent

extracellular matrix components and fibrosis markers in

responders. A few single molecules clearly show different

expression pattern/protein levels in the patient subgroups,

e.g. LTPB2, CORIN, periostin, and transgelin, but the

importance or even causative role of those molecules in the

functional recovery process in responders has to be shown

in the future studies. IA/IgG did not normalise DCM-as-

sociated expression profiles reported earlier [1, 24]. In

contrast to other studies on therapeutic intervention effects

in DCM patients [26, 42, 53], normalised neurohormonal

activity and beneficial LV remodelling in the responder

group were not accompanied by a positive effect on

molecules of the Ca2?-handling. A placebo-controlled

multicentre study on IA/IgG therapy is still in progress

(NCT00558584). Analysis of this data will show if IA/IgG

is a potential treatment option for a subset of patients

suffering from dilated cardiomyopathy, and material of this

patient cohort might be useful to verify the findings of this

pilot study.
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