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j Abstract Chronic hemodynamic overload on the heart results in
pathological myocardial hypertrophy, eventually followed by heart failure.
Phosphatase calcineurin is a crucial mediator of this response. Little is
known, however, about the role of calcineurin in response to acute
alterations in loading conditions of the heart, where it could be mediating
beneficial adaptational processes. We therefore analyzed proteome
changes following a short-term increase in preload in rabbit myocardium
in the absence or presence of the calcineurin inhibitor cyclosporine A.
Rabbit right ventricular isolated papillary muscles were cultivated in a
muscle chamber system under physiological conditions and remained
either completely unloaded or were stretched to a preload of 3 mN/mm2,
while performing isotonic contractions (zero afterload). After 6 h,
proteome changes were detected by two-dimensional gel electrophoresis
and ESI-MS/MS. We identified 28 proteins that were upregulated by
preload compared to the unloaded group (at least 1.75-fold regulation, all
P < 0.05). Specifically, mechanical load upregulated a variety of enzymes
involved in energy metabolism (i.e., aconitase, pyruvate kinase, fructose
bisphosphate aldolase, ATP synthase alpha chain, acetyl-CoA acetyltrans-
ferase, NADH ubiquinone oxidoreductase, ubiquinol cytochrome c
reductase, hydroxyacyl-CoA dehydrogenase). Cyclosporine A treatment
(1 lmol/l) abolished the preload-induced upregulation of these proteins.
We demonstrate for the first time that an acute increase in the myocardial
preload causes upregulation of metabolic enzymes, thereby increasing the
capacity of the myocardium to generate ATP production. This short-term
adaptation to enhanced mechanical load appears to critically depend on
calcineurin phosphatase activity.

j Key words proteomics – cardiac metabolism – calcineurin –
mechanical load

j Abbreviations 2-DE: Two-dimensional gel electrophoresis, CsA:
Cyclosporin A, dpi: Dots per inch, DTT: Dithiotreitol, CoA: Coenzyme A,
EDTA: Ethylendiaminetetraacetic acid, ESI-MS/MS: Electrospray ionization
tandem mass spectrometry, FFR: Force-frequency relationship, h: Hours,
IEF: Isoelectric focusing, IPG: Immobilized pH gradient, i.v.: Intravenouse,
K-H: Krebs-Henseleit, min.: Minutes, NFAT: Nuclear factor of activated T
cells, PAGE: Polyacrylamide gel electrophoresis, pI: Isoelectric point, PMSF:
Phenylmethylsulfonyl fluorid, ppm: Parts per million, rpm: Round per
minute, SDS: sodium dodecyl sulfate, Tris: Tris(hydroxymethyl)
aminomethanol, Vh: Volts · hours
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Introduction

Development of cardiac hypertrophy and failure is
associated with chamber remodeling as well as with
changes of the phenotype at the level of individual
myocyte. The concomitant myocardial dysfunction is
largely related to disturbed excitation–contraction-
coupling processes, which in turn mainly result from
altered expression and function of calcium regulatory
proteins [13–15, 23, 25, 26, 35]. Additionally, a dis-
turbed energy metabolism with impaired fatty acid
oxidation and lower expression of proteins involved
in ATP synthesis occurs during myocardial hyper-
trophy and heart failure [3, 22, 34]. The altered
expression of proteins from metabolic pathways may
reflect mitochondrial dysfunction as a feature of the
transition from compensated myocardial hypertrophy
with preserved fatty acid metabolism [9] to impaired
energy metabolism in heart failure [27]. The impor-
tant signaling pathways mediating a hypertrophic
phenotype in cardiomyocytes are the activation of G-
proteins, phosphoinositide 3-kinase, certain protein
kinase C isoforms, mitogen-activated protein kinases,
and the calcium-dependent activation of calcineurin
[5, 12, 21].

In the heart, preload and afterload are the char-
acteristic biomechanical features and major determi-
nants of physiological and pathological regulations of
gene expression. Preload refers to the passive tension
(stretch) on the myocardium caused by the blood
during the diastolic ventricular filling phase of the
cardiac cycle, while afterload is the wall tension ac-
tively generated during the systolic phase. Increases of
the pre- or afterload, trigger ventricular remodeling,
hypertrophy, and heart failure. Nevertheless, little is
known about the load dependent activation of sig-
naling pathways and proteome changes.

It is difficult to study the load dependence of gene
expression in vivo, because load cannot be experi-
mentally modified without concomitant induction of
neurohumoral factors [32]. For studying the influence
of the changes in preload on the myocardial prote-
ome, we used a recently developed and validated long-
term culture system for multicellular myocardial
preparations [18, 19]. This allows us to analyze the
impact of mechanical preload on the myocardium
independent of other stimuli like afterload or neuro-
humoral stimulation. In this model, we have recently
demonstrated that acutely elevated myocardial pre-
load triggers a short-term adaptational response
characterized by enhanced expression of the sarco-
endoplasmic reticulum Ca2+ ATPase (SERCA2) and
improved Ca2+ homeostasis [20]. This compensatory
process critically depended on calcineurin activity.
These data contrast the common hypothesis, that
calcineurin mainly has a maladaptive role during the

development of myocardial hypertrophy. In fact,
previously a beneficial effect of the calcineurin cas-
cade has been described after myocardial infarction
concerning the left ventricular remodeling in mice
[16]. Here, we used the above described model of
enhanced preload in combination with a proteomic
approach to test the hypothesis that elevated preload
causes a compensatory response reflected by the
alterations in the myocardial proteome and further-
more investigated, whether or not these changes de-
pend on the activity of calcineurin. To our knowledge,
this study represents the first analysis of myocardial
proteome changes exclusively due to altered loading
conditions under elimination of additional stimuli
such as neuroendocrine stimulation. Furthermore, we
demonstrate for the first time that preload-dependent
modulation of myocardial energy metabolism is
mediated by calcineurin.

Materials and methods

j Papillary muscle preparation and mechanical
loading

The investigation conforms to the Guide for the Care
and Use of Laboratory Animals (NIH Publication No.
85-23, revised 1996). Female Chinchilla Bastard rabbits
(1.5–2 kg, Charles River Laboratories, Kisslegg, Ger-
many) were heparinized and anesthetized with thio-
pental sodium (50 mg/kg i.v.). Hearts were rapidly
excised and retrogradely perfused with modified
Krebs-Henseleit (K-H) solution as described [18].
Right ventricular thin papillary muscles were dissected
and mounted under completely unloaded conditions in
experimental culture chambers (Scientific Instru-
ments, Heidelberg, Germany) between a force trans-
ducer and a hook connected to a micrometer drive
allowing for length adjustment. The system is equipped
with a servomotor with force-feedback function and
allows for cultivation of functionally intact multicellu-
lar muscle strip preparations for a period of up to 48 h
at 37�C with physiological protein turnover maintained
[19]. A schematic of the setup is shown in the online
supplement. After raising [Ca2+] in a stepwise manner
to 1.0 mM, the K-H solution was replaced with tissue
culture medium (M-199, Invitrogen, Karlsruhe, Ger-
many) containing 1.25 mM [Ca2+] and supplemented
with 20 IU/l human insulin, 0.2% (w/v) bovine serum
albumin, 70 lM streptomycin, 100 IU/ml penicillin,
and equilibrated with 100% O2.

Preparations were allowed to stabilize for 1 h under
continuous end-to-end electrical stimulation at 1 Hz
(amplitude 3–5 V) and then remained either com-
pletely unloaded or were stretched progressively over
the course of 30 min to a resting tension of 3 mN/mm2,
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corresponding to the length at which isometric tension
would be maximum (Lmax), and allowed to shorten
isotonically from this level of resting tension. These
loading conditions simulate an isolated increase of
preload (preloaded group), while due to the isotonic
shortening no afterload is developed. Isotonic short-
ening was recorded continuously over the entire incu-
bation period of 6 h under the designated loading
conditions. In a subset of preparations, the calcineurin/
NFAT signaling pathway was blocked by incubating
preparations in a medium containing 1 lM of the cal-
cineurin inhibitor, cyclosporin A (CsA, Sigma, Tauf-
kirchen, Germany). CsA was dissolved at 10 mM in
ethanol (final concentration 0.01%). The concentration
of 1 lM CsA was selected based on a separate set of
experiments in which calcineurin activity was assessed.
After incubation with CsA, rabbit papillary muscles
were lysed in 50 ll calcineurin assay buffer (BioMol,
Plymouth Meeting, PA). The Quantizyme Assay System
AK-804 was performed according to the manufac-
turer’s procedure using 5 lg of protein homogenates
and calcineurin phosphatase activity was measured
spectrophotometrically by detecting the free-phos-
phate released from the calcineurin-specific RII phos-
phopeptide extracts. In the presence of CsA at the
concentration used in our study (1 lM), we found a
significant suppression of calcineurin phosphatase
activity. A lower CsA concentration that has been
previously used in the studies on myocardial calci-
neurin activity (100 nM) tested in parallel to our hands
failed to significantly reduce calcineurin activity (data
not shown).

Control preparations were incubated in a medium,
supplemented with an equal amount of ethanol but
without CsA. At the end of the incubation, muscle
preparations were recovered from the culture cham-
ber, rapidly frozen in liquid N2, and stored at )80�C
until later analysis.

For the analysis of the muscle strip contractile
function after 6 h of culture with and without CsA, the
frequency dependence of force development was as-
sessed by recording muscle shortening at stimulation
rates of 1–3 Hz, first immediately after the stretch and
again at the end of the 6-h incubation period. At both
time points, muscles were stretched to 3.0 mN/mm2

resting tension and the force development was allowed
to reach steady state before the frequency protocol was
initiated. Functional data (force–frequency relation-
ship) were analyzed using 2-way ANOVA, with values
of P < 0.05 considered statistically significant.

j Sample preparation for 2-DE

Rabbit papillary muscles were thawed on ice and
washed twice in 400 ll ice-cold buffer containing (in
mM) TrisBase/HCl pH 7.1 50, KCl 100, EDTA 6, and a

mixture of protease inhibitors (in lM) pepstatin A 1,
benzamidin 5.8, leupeptin 2.1, PMSF 250 and aproti-
nin 0.36. After washing, samples were homogenized in
50 ll lysis buffer containing (in mM) TrisBase/HCl
pH 7.1 25, KCl 50, EDTA 3, DTT 70, urea 9 M and a
mixture of protease inhibitors (in lM) pepstatin A 1,
benzamidin 5.8, leupeptin 2.1, PMSF 250, aprotinin
0.36, and 2% (v/v) of ampholytes pH 2–4. After
manual homogenization, samples were sonicated for
10 min, followed by 10 min centrifugation at
16,000 rpm. The protein concentrations of the
supernatants were measured for samples with a high
concentration of urea using the Bio-Rad Protein As-
say (Munich, Germany), according to manufacturers’
instructions. Samples were stored at )80�C until they
were used for 2-DE.

j Two-dimensional Gelelectrophoresis (2-DE)

Isoelectric focusing (IEF) was carried out with 18 cm
IPG strips (pH 3–10, non-linear gradient, Amersham
Biosciences, Freiburg, Germany) in the Protean-IEF
cell (Bio-Rad, Munich, Germany) for 32,000 Vh as de-
scribed before [32]. Protein homogenates were added
to the rehydration buffer and analyzed. After focusing,
strips were equilibrated in Tris/HCl pH 8.8 50 mM,
urea 6 M, glycerol 30 % (v/v), and SDS 2% (w/v) for
10 min in buffer containing 10 mg/ml DTT followed by
incubation for 10 min in buffer containing 25 mg/ml
iodacetamide. Second dimension electrophoresis was
performed using 12% polyacrylamide gels for 30 min at
30 V followed by 250 V for about 5–6 h under contin-
uous cooling to 4�C. The SDS-PAGE was performed in
the Protean II XL chamber (Bio-Rad, Munich, Ger-
many) with 200 · 220 · 1 mm gels. Gels were nor-
malized for loading using 150 lg protein homogenates
for each gel. Further, spot intensities were normalized
for total quantity in the valid spot count mode
(PDQuest 7.1 software) and given in ppm.

For estimation of molecular weight and pI of
protein spots, we used a 2-DE SDS-PAGE protein
standard with a molecular weight ranging from 17.5 to
76 kDa and a pH ranging from 4.5 to 8.5 (Bio-Rad,
Munich, Germany). Hence, we were able to divide the
gels into six zones with pH ranges from 3 to 4.5, 4.5 to
5.0, 5.0 to 5.4, 5.4 to 6.0, 6.0 to 8.5 and 8.5 to 10.0.
Furthermore, we defined five zones of different
molecular weights with ranges from 0 to 17.5, 17.5 to
31, 31 to 37, 37 to 66, 66 to 76, and above 76 kDa.

j Staining procedures

For the detection of differentially expressed proteins,
gels were silver stained according to a protocol
modified from Blum et al. [4, 32] as described pre-
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viously. Further colloidal coomassie brilliant blue
G250 staining (Roth, Karlsruhe, Germany) and Sypro
Ruby stain (Invitrogen , Karlsruhe, Germany) in
preparative gels for MS/MS analysis were used
according to the manufactures manual.

j Computer-assisted analysis of 2-DE images

Gel imaging was carried out with a flatbed gel scan-
ning densitometer using a resolution of 300 dpi
(Image Scanner, Amersham Biosciences, Freiburg,
Germany). PDQuest 7.1 Software (Bio-Rad, Munich,
Germany) was used for spot detection, spot quantifi-
cation, gel matching, and statistical analysis of dif-
ferences between the experimental groups. The
threshold level for differentially expressed proteins
was defined as an at least 1.75-fold increase or de-
crease in spot intensity that was significant at least at
the P < 0.05 level using a Student́s t-test. The spot
intensity was normalized for the total quantity in the
valid spot count mode (PDQuest 7.1 software) and is
given in ppm.

j Identification of 2-DE separated proteins
by in-gel digest and ESI-MS/MS

Protein spots excised from silver stained, coomassie
blue and Sypro Ruby stained 2-DE were in-gel di-
gested as described before [4, 32]. Extracted peptides
were analyzed by ESI-MS/MS analysis for protein
identification (details see online supplement). Pro-
cessed data were searched against MSDB and Swiss-
prot databases using the Mascot search engine
(Matrix Science, London, UK; http://www.matrix-
science.com), allowing for a peptide mass tolerance of
100 ppm. The search criteria were set to allow one
missed cleavage by trypsin, protein modifications
were set to methionine oxidation and carbamidome-
thylation of cysteine. A Protein was accepted as
identified if there was a significant Mowse score
(P < 0.05), correct molecular weight and pI value of
the corresponding spot on 2-DE.

j Western Immunoblot Analysis

Two-dimensional gel electrophoresis data concerning
the protein expression of two proteins (pyruvate ki-
nase and triosephosphate isomerase) were confirmed
by western blot analysis.

Rabbit cardiac trabeculae were thawed on ice and
chilled in 50 ll homogenization buffer (containing in
mmol/L: Na-HEPES 20, pH 7.4, EDTA 2, EGTA 2,
DTT 1, phenylmethylsulfonyl fluoride 1,leupeptin

0.05, and iodoacetamide 1). After mechanical
homogenization and sonification at 4�C, protein
concentrations were determined in triplicate. Sam-
ples of 40 lg were denatured in electrophoresis
buffer [containing in mmol/l: TRIS/HCl 100, pH 6.8,
DTT10, 2% SDS, 2% glycerol, and 0.5% bromophe-
nol blue (wt/vol)] at 95�C and subjected to poly-
acrylamide gel electrophoresis. Proteins were
electroblotted to nitrocellulose membranes, and
membranes were blocked overnight at 4�C in 5%
(wt/vol) nonfat dry milk in TRIS-buffered saline.
Blots were probed with antibodies against glyceral-
dehyde phophate dehydrogenase (GAPDH; mono-
clonal, 1:50000, Biotrend Chemikalien, Cologne,
Germany), pyruvate kinase (1:2500, polyclonal, Bio-
genesis, Kingston, USA) and triosephosphate isom-
erase (1:5000, polyclonal, Novus Biologicals,
Kingston, USA). Bands were visualized with en-
hanced chemiluminescence (Amersham, Freiburg,
Germany) and quantified by 2-dimensional scans
with a CCD camera system (Multiimager,AlphaIn-
notech Inc, San Leandro, Calif). GAPDH data were
used as the internal standard to control the loaded
amount of protein for each sample.

Results

j Contractile function of papillary muscles
in culture

We assessed the muscle strip contractile function
after 6 h of culture with and without 1 lM of the
calcineurin inhibitor cyclosporine A. Raising the
stimulation rate resulted in a significant frequency-
dependent increase in developed twitch tension
(positive force-frequency relationship, FFR). A po-
sitive FFR is a typical finding in the myocardium
exhibiting competent Ca2+ homeostasis [6], and
demonstrates that under our culture conditions
regular muscle function is preserved. In preloaded
preparations, the steepness of the frequency-depen-
dent increase in developed twitch tension was sig-
nificantly higher compared to that of the unloaded
preparations (n = 8, P < 0.05, Fig. 1a). After 6-h
incubation in the presence of the calcineurin inhib-
itor, CsA, muscle strips irrespective of mechanical
loading conditions still exhibited a positive FFR. The
preload-induced increase in the steepness of the
FFR, however, was abolished by CsA treatment
(Fig. 1b). Thus, calcineurin activity appears neces-
sary to mediate the preload-induced optimization in
Ca2+ homeostasis and associated improvement in
mechanical performance, indicated by the higher
steepness of the FFR.
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j Two-dimensional Gelelectrophoresis

We created two different matchset analyses to detect
preload-dependent and calcineurin-mediated altera-
tions of the myocardial proteome. In the first
matchset analysis, 2-DE gels of unloaded preparations
[unloaded, n = 6 (six papillary muscles from six dif-
ferent hearts)] were compared with the preparations
subjected to 6 h of increased preload (preloaded,
n = 6). This matchset enables us to detect the pre-
load-dependent changes of the myocardial proteome.
In a second matchset analysis, we compared the un-
loaded and preloaded papillary muscles after 6 h in
culture, in the presence of CsA (1 lM, n = 6 each) in
the culture medium. CsA leads to specific inhibition
of calcineurin activity. Thus, by comparing these two
matchsets, we were able to analyze preload-dependent
and calcineurin-mediated changes of the myocardial
proteome.

A protein was accepted to be differently expressed
if there was at least a 1.75-fold difference in the spot
intensity associated with a P-value <0.05 (Student’s T-
test) in all matchsets. Figure 2 shows a representative
2-DE of a papillary muscle, after 6 h of elevated pre-
load in culture. All regulated spots, which where
identified by MS/MS analysis in the two matchsets
(see above) are labeled with circles.

In the online supplement, a 2-DE with all regulated
spots is given (including not identified proteins).

j Preload dependent changes of the myocardial
proteome

To identify the preload-dependent changes of the
myocardial proteome, we compared the 2-DE of the
isotonically contracting papillary muscles stretched to
Lmax (preloaded, n = 6) with the 2-DE of the prepara-
tions remaining completely unloaded (n = 6) over 6 h
in culture. We identified 28 protein spots with a pre-
load-induced significant change in intensity. All 28
spots were upregulated in the preloaded group com-

pared to that of the unloaded group. Among these 28
proteins, 15 were identified by tryptic in-gel digest and
ESI-MS/MS. In Fig. 2, all the identified protein spots are
marked and Table 1 lists the identified proteins and
their expression levels. In the online supplement, de-
tails about MS/MS analysis and statistical comparison
of spot intensities are given for each identified protein.

The most prominent finding of this analysis is that
a variety of enzymes involved in the energy metabo-
lism were upregulated in myocardium subjected to
elevated preload. This applies to the proteins involved
in glycolysis [pyruvate kinase, triosephosphate
isomerase (2 spots), fructose bisphosphate aldolase
A], citric acid cycle (Aconitase), fatty acid beta oxi-
dation and ketone body metabolism (2-hydroxyl-CoA
dehydrogenase, acetyl-CoA acetyltransferase), as well
as in the respiratory chain [ubicquinol cytochrome C
reductase, electron transfer flavoprotein alpha chain,
ATP synthase alpha chain (2 spots), NADH-ubiqui-
none oxidoreductase (2 spots)]. Additionally, the
myofilament protein tropomyosin alpha chain and the
nuclear protein endonuclease VIII DNA glycosylase
were upregulated by increased preload.

The reliability of the level of upregulation deter-
mined by 2-DE was confirmed by re-analyzing two
arbitrarily selected spots (pyruvate kinase and triose-
phosphate isomerase) using Western blot analysis.
Densitometric analysis confirmed the preload-depen-
dently upregulated protein expression for pyruvate
kinase [16,960 ± 241 vs. 24,864 ± 431 arbitrary units
(AU), P < 0.01, n = 5] and triosephosphate isomerase
(13,667 ± 1439 vs. 21,614 ± 1,084 AU, P < 0.01,
n = 5). Figure 3 shows 2-DE zoomed gels, Western
immunoblot and statistical data for pyruvate kinase
(spot 5 in Fig. 2). Corresponding data for the analysis of
triosephosphate isomerase are presented in the online
supplement.

Some of the significantly regulated proteins (Spots 1,
3, 7 and 8) were present in ‘‘spot chains’’ or at multiple
sites on the 2-DE. To elucidate the nature of these
protein changes, we performed a screening for possible
posttranslational modifications (PTM) on the MS/MS
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Fig. 1 Preload-dependent change of the force-
frequency relationship in untreated (a) and CsA-treated
(b) papillary muscles (n = 8 for each group). Force-
frequency relationships were recorded at the beginning
(filled symbols) and the end (open symbols) of the 6-hr
incubation of stretched muscle strips at optimum
preload. Data for each muscle strip are normalized with
respect to the force developed at 1-Hz stimulation, *
P < 0.05
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level and used a phosphoprotein stain (Pro-Q-Dia-
mond� = Invitrogen, Karlsruhe, Germany) after 2-DE.
However, we were not able to detect PTMs of these
proteins (details are given in the online supplement).

j Preload dependent changes of the myocardial
proteome depend on calcineurin activity

Six hours of elevated preload applied to muscle
strips in the presence of the calcineurin inhibitor
CsA (unloaded/CsA, n = 6; preloaded/CsA, n = 6)
resulted in the detection of six differently expressed
proteins in this matchset. Out of these six proteins,
five were down- and only one spot was upregulated.
The upregulated spot was identified as heat-shock
protein 60 (HSP 60). One of the downregulated
proteins was identified by the mass spectrometry as
histidine ammonia lyase. To our surprise, only one
of the 28 spots found to be upregulated upon anal-
ysis of the first matchset (preloaded vs. unloaded
without CsA) was significantly altered by mechanical
load after inhibition of calcineurin (Spot SSP 4801,
see online supplement). However, the change in the
protein expression was in the opposite direction:
While the protein was significantly upregulated by
increased preload with maintained calcineurin
signaling (ratio preloaded/unloaded: 2.25, P = 0.029),

preload caused significant downregulation when
calcineurin activity was inhibited (ratio preloaded/
CsA/unloaded/CsA: 0.6, P = 0.046). Unfortunately,
we were unable to identify this spot by MS/MS.

None of the 28 protein spots found to be upregu-
lated by elevated preload was significantly upregu-
lated when a mechanical load was applied after
inhibition of calcineurin by CsA. Thus, calcineurin
activity is essential to mediate preload-dependent
upregulation of these proteins. To illustrate the dif-
ference in spot expression under altered loading
conditions with and without CsA, Fig. 4 shows
zoomed 2-DE for spots 1–3 and the corresponding
expression data. Interestingly, HSP 60 (Spot 1), which
was upregulated by preload in the preloaded/CsA
group, was not upregulated by preload without inhi-
bition of calcineurin.

Importantly, none of the proteins were found to
be upregulated by elevated preload but unaltered
when preload was applied in the presence of CsA
exhibited altered expression levels in unloaded
preparations treated with CsA (data not shown).
This indicates that CsA indeed specifically affected
preload-dependent protein expression changes and
did not exert non-specific effects on protein
expression, e.g., by affecting mitochondrial mem-
brane permeability.
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Discussion

We here describe proteome changes caused by 6 h of
elevated preload in isolated rabbit myocardium,
compared to completely unloaded myocardium. Pre-
load significantly upregulated several proteins of
which the majority is involved in various pathways of
energy metabolism of the myocardium, including
enzymes of glycolysis, citric acid cycle, fatty acid b-
oxidation, and mitochondrial respiratory chain. Upon
blockade of calcineurin activity with CsA, the ob-
served preload-dependent protein expression changes
were completely abolished, while CsA treatment in
mechanically unloaded preparations did not affect the
expression of proteins found to be regulated by load
without CsA. The abundance of metabolic pathways
that the upregulated enzymes are derived from indi-

cates that acutely elevated preload triggers a global
increase in the capacity of energy metabolism.

The profound suppression of preload-triggered
compensatory protein expression changes by calci-
neurin inhibition is astounding. Calcineurin has been
implicated as a key mediator of myocardial hypertro-
phy under pathological conditions [7, 8, 24], such that
calcineurin activation in the myocardium is considered
to have deleterious consequences, whereas lower cal-
cineurin activities seem to be cardioprotective [17].
The findings of the present study, however, divert from
this hypothesis by suggesting that calcineurin may have
a physiological role in the myocardium as a mediator of
compensatory short-term adaptation to enhanced
biomechanical load, as well. This result is in line with
our recent finding that acutely elevated preload caused
calcineurin-dependent upregulation of SERCA2 in
isolated rabbit myocardium, which was associated with
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improved contractility [20]. In this previous publica-
tion, we used identical experimental conditions and
measured SERCA2a expression by real-time PCR and
western blots after 6 h of preload compared to un-
loaded preparations with and without CsA. A further
set of western blot analysis, which confirmed the load-
dependent upregulation of SERCA2a expression in
unloaded and preloaded muscle preparations is pre-
sented in the online supplement.

Acute stretch of myocardium evokes a rapid in-
crease in myofibrillar Ca2+ responsiveness followed
by an increase in cytosolic [Ca2+], thereby stimulating
actin–myosin cross-bridge cycling, and thus force
development [2, 36]. This increases the turnover of
high-energy phosphate compounds. Upon sustained
elevation of load, an adaptation of the energy
metabolism would enable the myocardium to cope
with this elevated energy demand.

Our assessment of contractile function confirms a
significantly enhanced steepness of the frequency-
dependent increase in developed twitch tension in
preparations preloaded for 6 h, compared to that of
unloaded preparations. This load-dependent effect is
abolished upon inhibition of calcineurin using CsA.
Thus, both the boost in contractility and the upreg-
ulation of proteins involved in metabolic pathways by
elevated mechanical load occur in a calcineurin-
dependent manner. The calcineurin-mediated upreg-
ulation of SERCA2 under the same loading conditions
that we have recently observed [20] may well account
for the improved Ca2+-handling capability of the
myocardium that is reflected by the increased steep-
ness of the FFR. SERCA2 is the energetically most
efficient mechanism for the diastolic removal of Ca2+

from the cytosol, because the pump transports 2 mol
of Ca2+ ions for each mol of ATP hydrolyzed. This
efficiency comes at the price that SERCA is the
ATPase with the highest minimal energy requirement
in cardiac muscle cells [1, 10]. Since the free energy
available from ATP hydrolysis critically depends on
the phosphorylation potential, and thus is sensitive to
an increase in the concentrations of Pi or ADP, an
augmentation of the ATP-generating capacity of the
myocytes could facilitate SERCA2 to cope with this
energetic burden [37]. This concept is supported by a
recent study using computational modeling, which
demonstrated that upon an abrupt increase in myo-
cardial energy expenditure concerted activation of
glycolysis, mitochondrial dehydrogenases, the elec-
tron transport chain, and oxidative phosphorylation
serves to keep the concentrations of ATP and ADP
constant [38], thereby maintaining the phosphoryla-
tion potential at levels required for energy-efficient
ATP hydrolysis.

The findings concerning the CsA-dependent
expression of metabolic proteins are supported by a

recent study using microarray technology and ade-
novirus-mediated gene transfer of a constitutively
active calcineurin mutant into neonatal rat myocytes
[31]. The authors demonstrated, that increased cal-
cineurin activity caused upregulation of a variety of
enzymes involved in fatty acid metabolism, glycolysis
and mitochondrial ATP synthesis. This was associated
with the activation of PPARa, which is known to
regulate the expression of fatty acid oxidation en-
zymes, and transcriptional coactivator PGC-1a, which
is known to regulate the expression of mitochondrial
respiratory chain enzymes.

Changes in the expression of a variety of proteins
involved in energy metabolism have been detected in
heart failure by performing proteome analysis [3]. It
has been suggested that altered expression of proteins
from metabolic pathways reflects mitochondrial dys-
function as a feature of the transition from compen-
sated myocardial hypertrophy to heart failure [27].
During the development of mechanical load-induced
cardiac hypertrophy, a shift of energy substrate con-
sumption occurs with reduced fatty acid oxidation and
increased glucose utilization [28–30]. This has been
interpreted as the recapitulation of a fetal gene
expression pattern resulting in this substrate switch
from fatty acid to glucose and pyruvate utilization [11,
33]. In the present study, the metabolic enzyme
expression changes do not indicate that a comparable
shift of substrate utilization occurs in our preparations,
since the alterations also involve enzymes implicated in
fatty acid b-oxidation.

Our findings are made possible by the use of an
experimental setting that allows for entirely inde-
pendent assessment of the effects of various loading
conditions and humoral stimuli. This is in contrast to
in vivo models of elevated myocardial load, which are,
to some extent, obscured by an indispensable
accompanying neuroendocrine activation. This is
particularly important, since we have previously de-
scribed an increased expression of enzymes involved
in mitochondrial ATP synthesis in neurohumorally
stimulated myocardium [32]. The alterations of the
myocardial proteome in our study are exclusively
induced by elevated preload.

The main limitation of our study is the lack of direct
demonstration of calcineurin activation and its aboli-
tion by CsA treatment in the loaded and unloaded
myocardial preparations. Unfortunately, measurement
of calcineurin activity in isolated rabbit papillary
muscles is not possible due to technical limitations (for
details see the comment in the online supplement).

In conclusion, by using a proteomic approach in
combination with an in vitro model of increased
myocardial preload, we demonstrate for the first time
that elevated preload is associated with upregulation
of proteins involved in fatty acid oxidation, glucose
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metabolism, and mitochondrial ATP synthesis. These
proteome changes seem to be critically linked to a
load-dependent calcineurin activity and suggest a
physiological role for calcineurin as a mediator of
compensatory short-term adaptation to acutely en-
hanced preload.
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Research Foundation (DFG, SFB/TR2 and grant KO 1873/2-1) and
the German National Genome Research Network (NGFN).
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