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Abstract
Purpose We aimed to examine the association between dietary patterns and type 2 diabetes mellitus (T2DM) while con-
sidering the potential effect modification by metabolic phenotypes (metabotypes). Additionally, we aimed to explore the 
association between dietary scores and prediabetes.
Methods A total of 1460 participants (11.8% with T2DM) from the cross-sectional population-based KORA FF4 study 
were included. Participants, classified into three metabotype subgroups, had both their FSAm-NPS dietary index (underpin-
ning the Nutri-Score) and ultra-processed foods (UPF) intake (using NOVA classification) calculated. Glucose tolerance 
status was assessed via oral glucose tolerance tests (OGTT) in non-diabetic participants and was classified according to the 
American Diabetes Association criteria. Logistic regression models were used for both the overall and metabotype-stratified 
analyses of dietary scores’ association with T2DM, and multinomial probit models for their association with prediabetes.
Results Participants who had a diet with a higher FSAm-NPS dietary index (i.e., a lower diet quality) or a greater percentage 
of UPF consumption showed a positive association with T2DM. Stratified analyses demonstrated a strengthened association 
between UPF consumption and T2DM specifically in the metabolically most unfavorable metabotype (Odds Ratio, OR 1.92; 
95% Confidence Interval, CI 1.35, 2.73). A diet with a higher FSAm-NPS dietary index was also positively associated with 
prediabetes (OR 1.19; 95% CI 1.04, 1.35).
Conclusion Our study suggests different associations between poorer diet quality and T2DM across individuals exhibiting 
diverse metabotypes, pointing to the option for stratified dietary interventions in diabetes prevention.

Keywords Type 2 diabetes · Glucose tolerance status · Dietary scores · Metabotype · Ultra-processed foods · Nutri-
score
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Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic dis-
order that affects millions of people worldwide and poses 
a substantial burden to human health and economy [1, 2]. 
The global prevalence of diabetes in 2021 was estimated 
to be 10.5% (537 million people), projected to increase to 
12.2% (783 million people) by 2045 [3]. T2DM is associ-
ated with various comorbidities, including cardiovascular 
disease, neuropathy, retinopathy, and kidney disease, lead-
ing to significant morbidity and mortality [4]. Prediabetes is 
a high-risk state for diabetes defined as blood glucose lev-
els above normal but below diabetes thresholds [5]; up to 
10% of individuals with prediabetes may develop T2DM 
annually [6]. Existing metabolic abnormalities during the 
prediabetes stage can heighten the risk of multiple comor-
bidities and chronic complications typically associated with 
diabetes [3, 6], underscoring the urgency for early interven-
tion strategies.

Many risk factors contribute to diabetes development, 
including genetics and modifiable lifestyle factors such as 
diet, smoking, and physical activity [2]. Among them, diet 
plays a crucial role and some food groups or nutrients have 
already been linked to the T2DM [1, 2]. Given the com-
plexity of individuals’ eating habits, dietary patterns that 
describe the overall diet quality may better reflect the diet’s 
impact on multifactorial diseases than isolated components.

In the past, many dietary indices were designed to evalu-
ate different characteristics or patterns of habitual food 
consumption. More recently, dietary scores based on the 
Nutri-Score and the NOVA classification system [7, 8] have 
become available. The Nutri-Score is a front-of-pack food 
labeling system computed from the Modified Food Stan-
dards Agency Nutrient Profiling System (FSAm-NPS), 
grading the overall nutritional quality of the food [7]. On 
the other hand, the NOVA classification rates foods based 
on their degree of processing, rather than solely on nutri-
ent content [8]. Ultra-processed foods (UPF) belong to the 
fourth group of the NOVA classification and have under-
gone the highest degree of industrial processing, potentially 
impacting health via multiple mechanisms [8–10]. Both 

dietary indices have been widely applied to assess diet qual-
ity and ultimately may help to reduce the diet-related burden 
of non-communicable diseases in society [11–13]. Despite 
several investigations demonstrating a consistent associa-
tion between UPF consumption and T2DM [14, 15], as well 
as the high Nutri-Score diet with elevated blood glucose 
[16, 17], the influence of individuals’ metabolic characteris-
tics on these linkages remains largely unexplored.

Studies suggest that personalized and metabolism-spe-
cific dietary recommendations may surpass general advice 
in terms of their efficacy in improving eating behavior and 
influencing health outcomes [18–21]. To address this, one 
possible solution is to stratify the population into subgroups, 
termed metabotypes [18], according to similarities in their 
metabolic profiles and develop tailored preventive measures. 
Building on our previous work identifying various diet-
T2DM associations across metabotypes [22, 23], we aimed 
to investigate how metabotype subgrouping may affect the 
dietary score and T2DM association and the implications 
for disease prevention. We hypothesize that strata-specific 
dietary interventions could be beneficial. Additionally, we 
sought to explore the association between dietary patterns 
and prediabetes. The analysis focused on the FSAm-NPS 
dietary index (underpinning the Nutri-Score) and UPF 
intake ratio (using NOVA classification).

Methods

This study’s findings were reported by following the 
“Strengthening the Reporting of Observational Studies in 
Epidemiology-Nutritional Epidemiology (STROBE-nut)” 
checklist [24].

Population

Our analysis was based on data from the German Coopera-
tive Health Research in the Augsburg region (KORA) FF4 
study (2013–2014, 2279 participants), a follow-up to the 
F4 (2006–2008, 3080 participants) and S4 baseline study 
(1999–2001, 4261 participants), conducted in a randomly 
selected general population in Augsburg and two surround-
ing counties. Study designs have been described in detail 
elsewhere [25]. Out of 2279 FF4 participants, subjects 
with missing dietary information (n = 677), type 1 diabetes 
(n = 3), unclear glucose tolerance status due to missing oral 
glucose tolerance test (OGTT) information (n = 39), or miss-
ing metabotype information (n = 24) were excluded. Par-
ticipants with a diagnosis of myocardial infarction (n = 43) 
or stroke (n = 31) were further excluded as severe disease 
might change dietary behavior. A flowchart of exclusion 
criteria is shown in Supplementary Fig. 1. A total of 1460 
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participants were eventually selected for our cross-sectional 
analysis.

The KORA study was authorized by the Ethics Com-
mittee of the Bavarian Medical Society and conducted in 
accordance with the Helsinki Declaration. All study sub-
jects provided written informed consent.

Dietary assessment and dietary indices

The participants’ usual dietary intake was assessed by means 
of one food frequency questionnaire (FFQ) and repeated 
24-hour food lists (24HFL). During the study center visit, 
participants were required to complete a first 24HFL that 
assesses foods that were consumed over the previous day; 
up to two further 24HFLs were collected during the next 
three months. The 24HFL comprised 246 food items and 
was derived from the German National Cohort (NAKO) 
Health study [26]. The FFQ, adapted from the German ver-
sion of the multilingual European Food Propensity Ques-
tionnaire [27], queries the consumption frequency of 148 
food items over the past 12 months. Each participant’s usual 
daily food intake was determined by combining estimated 
consumption probability and amount, and the detailed has 
been described elsewhere [28]. The validity of this approach 
is supported by evidence showing that the combined use of 
multiple 24-hour recalls and FFQ data provide more accu-
rate intake estimates as compared to either method applied 
alone [29]. In addition, the usual intake estimates of food 
items were categorized into main food groups and sub-
groups based on the EPIC-Soft classification system [30] 
and estimates of nutrient intake were derived for every par-
ticipant by linking the usual intake estimates to the German 
Nutrient Database (Bundeslebensmittelschlüssel 3.02).

In order to indicate participants’ overall dietary quality, 
we calculated the FSAm-NPS dietary index [7] and the pro-
portion of UPF intake [8] based on their daily consumption 
estimates.

The FSAm-NPS dietary index assesses the overall nutri-
tional quality of an individual’s diet based on the nutrient 
profiling system (NPS). It is slightly adjusted to the allo-
cation of points for specific foods (beverages, cheese, and 
added fats) recommended by the French High Council of 
Public Health as a modified version of the original Nutrient 
Analysis System (FSA-NPS) [7, 31]. This ensures that the 
FSAm-NPS score corresponds to nutritional recommenda-
tions and that the nutritional quality of products within these 
groups can be distinguished [31]. The FSAm-NPS score’s 
calculation method is described in more detail elsewhere 
[7, 31, 32]. Theoretically the FSAm-NPS score falls on a 
scale from − 15 (the healthiest option) to 40. In practice, 
the Nutri-Score labeling system classifies foods and bever-
ages into five categories, from category A (indicating higher 

nutritional quality) to category E (indicating lower nutri-
tional quality), based on the FSAm-NPS score [7]. We cal-
culated the FSAm-NPS dietary index for each participant’s 
diet by adding the FSAm-NPS score for each food or bever-
age consumed, multiplying it by the amount of energy pro-
vided by this product (energy content per 100 g multiplied 
by the estimated daily intake assessed), and dividing it by 
the total amount of energy intake [33]. Increasing values of 
the FSAm-NPS dietary index thus indicate poorer overall 
diet quality.

UPF intake was estimated using the NOVA classification 
[8], which categorizes foods based on the level and inten-
sity of industrial processing: (1) fresh/minimally processed 
foods (e.g., fruit, meat, milk); (2) processed culinary ingre-
dients (e.g., oils, butter, sugar); (3) processed foods (e.g., 
canned fish, fresh unpackaged bread); and (4) ultra-pro-
cessed foods (UPFs), made mostly or entirely from derived 
food constituents with added flavors, colors, and other addi-
tives (e.g., sugar-sweetened drinks, processed meat, and 
savory packaged snacks). To determine the proportion of 
UPF consumption of the total dietary intake for each par-
ticipant, we summed the quantities (in kcal/d and gram/d) 
of each food group from all four categories of NOVA for 
the total diet and calculated the proportion (%) of UPF (in 
kcal/d and gram/d, respectively) of the total diet, which is 
called energy ratio (or weight ratio) in our study. Individu-
als with a higher UPF intake ratio tend to have a poorer diet 
quality.

Metabotypes

Aiming at metabolic homogeneity within groups, our study 
population was divided into three clusters (metabotypes). 
Further details are described elsewhere [34]. The metabo-
typing process used 5 parameters, i.e., fasting glucose, high 
density lipoprotein (HDL) cholesterol, non-HDL choles-
terol, uric acid, and body mass index (BMI), to identify clus-
ters by applying the k-means clustering algorithm. Here, we 
used the Euclidean distances of the three cluster centers as 
determined in KORA F4 to allocate the KORA FF4 partici-
pants to three metabolic clusters [34], using the parameter 
values measured in fasting blood samples collected during 
the FF4 study center visit. Among the three clusters, clus-
ter 1 is deemed the most metabolically favorable (“healthy 
metabotype”), cluster 3 the least favorable, and cluster 2 an 
“intermediate metabotype” between the other two [34].

Measurement of covariates

Information such as age, sex, education, hypertensive sta-
tus, alcohol consumption, fasting status, smoking status, 
and physical activity was assessed by trained medical staff 
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prevalent diabetes referred to a known diagnosis of T2DM 
or use of anti-diabetic medication, verified by consulting 
their treating physician. The OGTT test was conducted in all 
participants without a previous physician-confirmed diag-
nosis of T2DM after an overnight fasting period of at least 
8 h. We classified individuals as having T2DM if they fell 
into either the undetected or the prevalent diabetes category.

Statistical analysis

We analyzed a sample of 1460 individuals from the KORA 
FF4 study. Baseline characteristics were reported stratified 
by the tertiles of UPF intake (energy ratio). Daily intakes of 
major food groups and macronutrients were presented sepa-
rately stratified by tertiles of dietary scores. Normally dis-
tributed continuous covariates were reported as means (with 
standard deviation (SD)), non-normally distributed continu-
ous covariates as medians with the interquartile ranges. Cat-
egorical variables were presented as absolute frequencies 
and proportions in the form of percentages. We compared 
differences between groups by using the Chi-square test or 
Fisher’s exact test for categorical variables and analysis of 
variance (ANOVA) test or Kruskal-Wallis test for continu-
ous variables.

We used multivariable logistic regression models to 
study the association between dietary scores and T2DM. 
The ratio of UPF intake was calculated per 5% increase in 
UPF intake, and the FSAm-NPS dietary index was scaled 
per 2-point increase in FSAm-NPS points. These models 
were constructed based on potential confounders according 
to previous literature. Model 1 was adjusted for age, sex, 
and total energy intake, while Model 2 included additional 
adjustments for education, physical activity, and smoking. 
To avoid overfitting, total energy intake was excluded in 
models concerning UPF intake energy ratio. Furthermore, 
we adjusted for metabotype to investigate its effect on this 
relationship in both models. To evaluate the effect modifica-
tion of metabotype, we conducted likelihood-ratio tests. Due 
to significant interactions between metabotype and dietary 
scores, metabotype-stratified analyses were also employed.

As the assumptions of ordinal regression were violated, 
multinomial probit models were used to assess the associa-
tion between dietary scores and glucose tolerance status. 
The choice of a multinomial probit model over a multino-
mial regression model was motivated by the results of the 
Hausman-McFadden test, which indicated a violation of the 
assumption of irrelevant alternatives (IIA) [40]. Glucose 
tolerance status was categorized into normal, prediabetes, 
and T2DM. The adjusted variables were consistent with the 
logistic regression models mentioned above.

In sensitivity analyses, we further adjusted for waist cir-
cumference and hypertension status (Model 3) and replaced 

through a standardized interview. The classification of the 
education variable was determined according to the edu-
cational system in Germany. Waist circumference was 
measured midway between the lowest margin of the least 
palpable rib and the top of the iliac crest using stretch-resis-
tant tapes. Sitting blood pressure was measured by a trained 
health worker using an electronic sphygmomanometer. 
Measurements were conducted after a rest of at least 5 min 
on the right arm three times. For the analysis, the second and 
third measurements were averaged.

Blood samples were collected after an overnight fast of 
≥ 8 h and at 2 h after ingestion of a 75 g glucose solution 
in the absence of stasis and stored at 4 °C until centrifu-
gation. Serum glucose was measured with hexokinase/glu-
cose-6-phosphat-dehydrogenase (GLUFlex; Dade Behring, 
USA). Triglycerides was enzymatically measured in serum 
(glycerine phosphate oxidase peroxidase method) (TGL 
Flex, Dade Behring). HDL cholesterol, low density lipopro-
tein (LDL) cholesterol and total cholesterol were measured 
in serum by enzymatic methods (CHOL Flex and AHDL 
Flex, Dade Behring). High-sensitivity C-reactive protein (hs 
C-reactive protein) was determined by nephelometry on a 
BN II analyzer (Siemens, Erlangen, Germany) from frozen 
plasma. Serum concentrations of uric acid were measured 
from fresh samples by the uricase method (enzymatic color 
test, URCA Flex®; Dade Behring). More technical details 
on the processing of blood samples and biomarker measure-
ments could be found elsewhere [35, 36].

BMI was calculated as weight (kg) per height (m2) 
and categorized into underweight: BMI < 18.5 kg/m2; 
normal weight: 18.5 ≤ BMI < 25 kg/m2; overweight: 
25 ≤ BMI < 30 kg/m2; obese: BMI ≥ 30 kg/m2 [37]. Hyper-
tension was defined as current hypertension (≥ 140/90 
mmHg) and/or known hypertension controlled by medica-
tion. Participants were categorized as “physically active” if 
they spent ≥ 1 h per week on leisure physical activity in at 
least one season (summer or winter); otherwise, they were 
“physically inactive” [38].

Glucose tolerance status

Glucose tolerance status was categorized into normal glu-
cose tolerance, prediabetes, and T2DM, following the 
American Diabetes Association criteria [39]. Normal glu-
cose tolerance was defined as fasting glucose < 5.6 mmol/L 
or 2-h OGTT < 7.8 mmol/L. Prediabetes was defined based 
on the presence of impaired glucose tolerance (2-h OGTT 
concentration of 7.8–11.0 mmol/L), impaired fasting glu-
cose (fasting glucose concentration of 5.6–6.9 mmol/L), 
or both. Undetected diabetes was defined as fasting glu-
cose ≥ 7.0 mmol/L or 2-h OGTT ≥ 11.1 mmol/L in individu-
als without prevalent, i.e. already known, diabetes. While 
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for metabotype and UPF intake in all models. In stratified 
analyses, significant associations were only seen in the third 
cluster. After adjustment using model 1, UPF intake [OR 
(95% CI) for energy ratio: 1.31 (1.05, 1.65); OR (95% CI) 
for weight ratio: 1.42 (1.10, 1.87)] was positively associ-
ated with T2DM. The association remained significant but 
decreased slightly for UPF intake weight ratio [OR (95% 
CI): 1.38 (1.07, 1.81)] after adjustment in model 2. Further 
adjustment in model 2 significantly attenuated the associ-
ations for energy ratio [OR (95% CI): 1.25 (0.99, 1.59)]. 
Regarding the FSAm-NPS dietary index, a significant posi-
tive relationship was observed between each 2-point incre-
ment of the index with prevalent T2DM in model 1 [OR 
(95% CI): 1.82 (1.34, 2.48)] and model 2 [OR (95% CI): 
1.54 (1.11, 2.15)] only for the total sample (Fig. 1).

In the multinomial probit regression analysis (Table 3), 
significant positive associations were only found between 
FSAm-NPS dietary index and prediabetes in model 1 [OR 
(95% CI): 1.26 (1.11, 1.42)] and model 2 [OR (95% CI): 
1.19 (1.04, 1.35)].

The sensitivity analysis, wherein we further adjusted for 
hypertension and waist circumference (Model 3), showed 
no significant associations between dietary scores and 
T2DM, nor for prediabetes in total study sample (Table 3; 
Fig. 1). Additionally, we ran Model 3 with BMI substi-
tuted for waist circumference, the effect sizes and P-values 
remained similar (data not shown). The further inclusion 
of carbohydrates intake level (model 4) into the multivari-
able models strengthened the associations of the UPF intake 
with T2DM, whereas this adjustment did not significantly 
alter the association of the FSAm-NPS index with T2DM 
(Supplementary Tables S3–4).

Discussion

Our population-based study found a significant positive 
association between diets with poor nutritional profiles or 
higher UPF intake and T2DM, as indicated by the FSAm-
NPS dietary index and the NOVA classification, respec-
tively. The interaction effects between both dietary scores 
and metabotype were found to be significant. Specifically, 
in metabotype-stratified subgroups, only metabotype 3, 
the most metabolically unfavorable group, showed a sig-
nificant association between UPF consumption and T2DM. 
No significant relationship was found between the FSAm-
NPS dietary index and T2DM in any metabotype subgroup. 
Concerning glucose tolerance status, a higher FSAm-NPS 
dietary index, i.e., a lower diet quality, was associated with 
prediabetes.

Earlier research suggested that diets high in FSAm-NPS 
dietary index or UPF, were associated with an elevated risk 

waist circumference with BMI in Model 3 alternatives con-
sidering their potential mediation role [41–43]. To assess 
the impact of carbohydrates intake on results, we conducted 
additional analyses (Model 4), adjusting for this factor. We 
calculated odds ratio (OR) with 95% confidence interval 
(CI) from the logistic regressions and multinomial pro-
bit models. All P values correspond with two-tailed tests. 
P-values of < 0.05 were considered significant. All statisti-
cal analyses were performed using R V.4.1.1.

Results

Among 1460 adults (52.7% of them being women) aged 
38–87 years eligible for the study, 173 (11.8%) had T2DM. 
The mean UPF energy ratio in participants’ diets was 
38% (SD = 7%), accompanied by a weight ratio of 16% 
(SD = 7%) and an FSAm-NPS dietary index averaging 6.93 
points (SD = 1.35). Demographic data and comorbidity 
prevalence by tertiles of UPF intake energy ratio were sum-
marized in Table 1. Compared with the other two groups, 
participants in the highest UPF intake group were on aver-
age younger and male. They had the highest BMI, the larg-
est waist circumference and thus were more often classified 
as obese. They also showed higher mean triglyceride and 
C-reactive protein, and lower HDL cholesterol levels than 
other groups. Furthermore, the highest prevalence of T2DM 
was observed in this group. We found that participants 
belonging to metabotype cluster 3 were, on average, the 
oldest, most likely to be male, and generally had the most 
unfavorable lifestyle (Supplementary Table S2).

As expected, a higher consumption of UPF (energy ratio) 
was characterized by higher intakes of meat, non-alcoholic 
beverages, carbohydrates, fats, protein, and lower intakes of 
vegetables and fruits (Table 2), whereas no association was 
evident for UPF with cereals and fats. Stratifying dietary 
intake by FSAm-NPS dietary index revealed a similar dis-
tribution, where the highest FSAm-NPS dietary index tertile 
group had the highest consumption of meat, carbohydrates, 
and fats, and the lowest consumption of vegetables.

The associations between UPF intake and T2DM were 
shown in Fig. 1. In the total study sample, a per 5% increase 
in UPF intake ratio was associated with elevated odds of 
T2DM for both energy [OR (95% CI): 1.35 (1.18, 1.55)] and 
weight ratios [OR (95% CI): 1.27 (1.10, 1.46)], following 
adjustment with model 1 (without the metabotype variable). 
On further adjustment (model 2), the significance persisted 
for the energy ratio [OR (95% CI): 1.22 (1.06, 1.42)], and 
weight ratio [OR (95% CI): 1.23 (1.05, 1.42)]. No asso-
ciation was detected between UPF intake and T2DM after 
including the metabotype for all models. However, signifi-
cant interaction terms (p-interaction < 0.001) were found 
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Tertiles UPF intake, energy ratio
Overall Low Medium High

N 1460 487 486 487
Sex, n (%)
 Male 690 (47.3) 169 (34.7) 231 (47.5) 290 (59.5)
 Female 770 (52.7) 318 (65.3) 255 (52.5) 197 (40.5)
Age (years) 59.2 (11.8) 61.0 (11.0) 60.2 (11.9) 56.3 (12.0)
Education, n (%)
 < 10 years 76 (5.2) 23 (4.7) 31 (6.4) 22 (4.5)
 10–12 years 837 (57.3) 235 (48.3) 285 (58.6) 317 (65.1)
 ≥ 13 years 547 (37.5) 229 (47.0) 170 (35.0) 148 (30.4)
Family history of diabetes, n (%)
 Yes 472 (32.3) 161 (33.1) 145 (29.8) 166 (34.1)
 No 856 (58.6) 277 (56.9) 300 (61.7) 279 (57.3)
Not specified 132 (9.0) 49 (10.1) 41 (8.4) 42 (8.6)
Metabotype, n (%)
 1 218 (14.9) 74 (15.2) 65 (13.4) 79 (16.2)
 2 1029 (70.5) 365 (74.9) 356 (73.3) 308 (63.2)
 3 213 (14.6) 48 (9.9) 65 (13.4) 100 (20.5)
BMI (kg/m2) 27.46 (4.84) 26.38 (4.20) 27.42 (4.32) 28.58 (5.61)
BMI categorized, n (%)
 Underweight 6 (0.4) 5 (1.0) 1 (0.2) 0 (0.0)
 Normal weight 476 (32.6) 195 (40.0) 153 (31.5) 128 (26.3)
 Overweight 611 (41.8) 197 (40.5) 216 (44.4) 198 (40.7)
 Obese 367 (25.1) 90 (18.5) 116 (23.9) 161 (33.1)
Waist circumference (cm) 95.8 (14.1) 92.3 (12.7) 95.8 (13.3) 99.3 (15.3)
Physical activity, n (%)
 Active 909 (62.3) 379 (77.8) 299 (61.5) 231 (47.4)
 Inactive 551 (37.7) 108 (22.2) 187 (38.5) 256 (52.6)
Smoking status, n (%)
 Current 204 (14.0) 77 (15.8) 62 (12.8) 65 (13.3)
 Former 560 (38.4) 177 (36.3) 185 (38.1) 198 (40.7)
 Never 696 (47.7) 233 (47.8) 239 (49.2) 224 (46.0)
Alcohol consumption (g/day) 7.0 [0.2, 22.9] 5.7 [0.2, 22.9] 8.6 [1.4, 22.9] 5.7 [0.0, 20.3]
Fasting serum glucose (mg/dl) 97.0 [91.0, 106.0] 97.0 [91.0, 106.0] 97.0 [91.0, 106.0] 98.0 [91.0, 107.0]
hs C-reactive protein (mg/L) 1.12 [0.57, 2.40] 1.04 [0.50, 2.12] 1.13 [0.60, 2.29] 1.25 [0.61, 2.93]
Total-cholesterol (mg/dl) 218.8 (39.5) 221.5 (38.5) 218.7 (39.3) 216.3 (40.6)
HDL cholesterol (mg/dl) 64.0 [53.0, 78.6] 69.6 [57.3, 84.0] 65.0 [53.9, 79.7] 60.6 [50.0, 72.0]
non-HDL cholesterol (mg/dl) 152.0 (40.1) 150.8 (40.0) 150.9 (38.8) 154.3 (41.3)
LDL cholesterol (mg/dl) 136.1 (35.5) 135.8 (35.2) 136.0 (35.5) 136.45 (35.8)
Triglycerides (mg/dl) 104.9 [75.7, 142.0] 97.5 [72.0, 134.9] 100.2 [74.0, 137.4] 113.9 [80.6, 157.2]
Serum uric acid (mg/dl) 5.49 [4.51, 6.63] 5.17 [4.39, 6.36] 5.53 [4.55, 6.67] 5.74 [4.66, 6.84]
Hypertension, n (%)
 No 897 (61.5) 307 (63.3) 290 (59.7) 300 (61.6)
 Yes 561 (38.5) 178 (36.7) 196 (40.3) 187 (38.4)
Glucose tolerance status, n (%)
 Normal glucose tolerance 771 (52.8) 267 (54.8) 258 (53.1) 246 (50.5)
 Prediabetes 516 (35.3) 174 (35.7) 172 (35.4) 170 (34.9)
Undetected diabetes 58 (4.0) 14 (2.9) 21 (4.3) 23 (4.7)
Prevalent diabetes 115 (7.9) 32 (6.6) 35 (7.2) 48 (9.9)
T2DM, n (%)
 No 1287 (88.2) 441 (90.6) 430 (88.5) 416 (85.4)
 Yes 173 (11.8) 46 (9.4) 56 (11.5) 71 (14.6)
UPF intake, energy ratio 0.38 (0.07) 0.32 (0.03) 0.38 (0.02) 0.46 (0.04)

Table 1 Baseline characteristics of KORA FF4 study participants, overall and stratified by tertiles of ultra-processed foods (UPF) intake
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In our sensitivity analysis, adjusting for waist circumfer-
ence and hypertension weakened the association between 
both dietary scores and T2DM in total study sample. Since 
the association between diet quality and T2DM is likely 
mediated, at least partly, by these factors it is possible that 
model 3 was over-adjusted. Unfortunately, due to the cross-
sectional design of our study, conducting a mediation analy-
sis to examine the potential mediating effect is ill-advised. 
With regards to waist circumference, the analysis demon-
strated unaltered results upon substituting it with BMI in 
Model 3. Given that waist circumference is even more 
strongly associated with the risk of developing cardiovas-
cular disease and is more frequently used as an indicator of 
central adiposity than BMI [37], we chose waist circumfer-
ence over BMI in analysis model 3.

of chronic diseases, specifically diabetes, hypertension, car-
diovascular disease, and cancer [44–48]. In accordance with 
previous studies [16, 49], our study suggests that both diet 
patterns were similar in that they consisted of substantially 
larger amounts of meat and sugar, along with reduced veg-
etables and fruits. Aside from the low nutritional density, 
UPF are often subjected to degradation of the food matrix, 
chemical modification of food substances, presence of food 
additives, loss of micronutrients, and exposure to packaging 
materials [8, 10]. Due to their pervasive accessibility and 
affordability, these high-energy-density options may not just 
account for the majority of consumers’ daily caloric intake 
[49, 50], but potentially reduce their consumption of health 
promoting foods such as whole grains, fruits, and vegeta-
bles [51]. This shift in dietary habits could, in turn, heighten 
the risk of adverse health outcomes [9, 50, 52].

Table 2 Habitual dietary intake of main food groups and macronutrients across tertiles of ultra-processed foods (UPF) intake, and tertiles of Food 
Standards Agency nutrient profiling system (FSAm-NPS) dietary index

Tertiles of UPF intake, energy ratio Tertiles of FSAm-NPS dietary 
index

Dietary Variable Low (high-
est nutritional 
quality)
N = 487

Medium
N = 486

High
N = 487

Low (high-
est nutritional 
quality)
N = 487

Medium
N = 486

High
N = 487

Potatoes and other tubers (g/day) 61.1 (22.4) 61.6 (22.2) 57.2 (19.8) 63.7 (23.4) 60.0 (21.1) 56.2 (19.4)
Vegetables (g/day) 199.8 (65.2) 170.8 (53.0) 156.9 (51.1) 207.6 (64.5) 174.0 (50.8) 145.9 (44.3)
Pulses (g/day) 7.3 (4.9) 6.0 (4.4) 5.2 (3.5) 7.3 (4.9) 6.1 (3.6) 5.0 (4.3)
Fruits and nuts (g/day) 197.9 (94.2) 173.6 (79.9) 139.5 (75.3) 230.5 (86.5) 164.5 (72.2) 116.0 (57.9)
Dairy products (g/day) 210.6 (107.1) 190.5 (100.0) 194.3 (110.8) 246.5 (120.1) 188.0 (92.9) 160.8 (84.1)
Cereals and cereal products (g/day) 168.6 (50.3) 167.5 (47.8) 169.2 (45.1) 171.1 (52.5) 162.9 (46.8) 171.2 (43.2)
Meat and meat products (g/day) 100.5 (36.2) 113.1 (38.2) 133.2 (47.8) 94.0 (29.5) 109.5 (35.9) 143.2 (46.6)
Fish and crustaceans (g/day) 22.5 (13.9) 21.2 (14.4) 18.4 (10.9) 23.0 (15.2) 20.1 (12.4) 19.0 (11.6)
Eggs and egg products (g/day) 18.1 (13.0) 17.5 (10.7) 15.8 (10.4) 17.6 (11.1) 17.4 (12.0) 16.3 (11.2)
Sugars and sweets (g/day) 33.7 (12.6) 37.1 (14.8) 42.2 (16.9) 33.7 (13.2) 37.9 (14.7) 41.4 (16.7)
Cake (g/day) 48.6 (15.8) 54.4 (18.7) 57.2 (22.7) 51.9 (17.4) 54.2 (19.8) 54.1 (21.4)
Non-alcoholic beverages (g/day) 1,520.0 (267.8) 1,539.6 

(264.1)
1,602.2 (317.3) 1,576.2 (278.0) 1,538.5 

(262.7)
1,547.1 (314.2)

Alcoholic beverages (g/day) 183.9 (212.0) 202.3 (224.5) 212.2 (233.7) 128.7 (169.8) 185.4 (204.8) 284.3 (259.0)
Carbohydrates (g/day) 189.26 (45.18) 196.24 (47.20) 212.28 (53.28) 202.07 (49.92) 193.45 (48.70) 202.24 (49.72)
Fats (g/day) 73.99 (15.27) 77.20 (16.06) 82.32 (18.50) 73.43 (15.42) 75.58 (16.30) 84.50 (17.21)
Protein (g/day) 68.49 (14.40) 68.94 (14.46) 72.07 (15.33) 70.20 (14.36) 67.02 (14.78) 72.29 (14.83)
Values are expressed as the mean (SD)
UPF, ultra-processed foods

Tertiles UPF intake, energy ratio
Overall Low Medium High

UPF intake, weight ratio 0.16 (0.07) 0.12 (0.03) 0.15 (0.04) 0.21 (0.07)
FSAm-NPS dietary index 6.93 (1.35) 6.15 (1.16) 6.86 (1.09) 7.78 (1.26)
Values are expressed as the mean (SD) for normally distributed continuous variables or median [interquartile range] for non-normally distrib-
uted continuous variables, or n (%) for categorical variables
BMI, body mass index; HDL cholesterol, high-density lipoprotein cholesterol; LDL cholesterol, low-density lipoprotein cholesterol; T2DM, 
type-2 diabetes mellitus; UPF, ultra-processed foods

Table 1 (continued) 
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association was also seen with prediabetes. Few studies 
have revealed the association between higher FSAm-NPS 
diet index (or Nutri-Score) and elevated glucose levels [16, 
17], an observation that is consistent with our findings. 
To the best of our knowledge, the current study is the first 
to examine and identify the associations between FSAm-
NPS diet index with both prediabetes and diabetes within 
a large sample. Notably, all non-diabetic subjects received 
an OGTT, ensuring an accurate characterization of glucose 
metabolism.

Our findings support and enhance previous research indi-
cating that both dietary scores similarly impact health [57]. 
Of note Ferreiro et al. [58] observed that a greater propor-
tion of UPF exists in the higher Nutri-Score categories, with 
the percentage escalating from 26.1% in category A to a 
staggering 83.7% in category E. As a practical and simple 
food labeling system, the Nutri-Score has already proven 
effectiveness in supporting informed decision-making about 
healthier food choices, and has been suggested by the EU to 
enhance customers’ diet quality [12, 13].

Incorporating the metabotype concept

In our analysis, the relationship between UPF consumption 
and T2DM risk was confined to metabotype 3, the most 

Association between dietary patterns and T2DM

Prior to including the metabotype variable, our study dem-
onstrated a significant positive association between UPF 
intake (both weight ratio and energy ratio) and T2DM, align-
ing with the existing literature. The French Nutri Net-Santé 
cohort study demonstrated that a 10.0% increase in the con-
sumption of UPF (in weight) escalated the risk of T2DM by 
13.0% [53]. The higher intake of UPF has been shown to 
be positively associated with a higher risk for T2DM (haz-
ard ratio 1.12 per 10% increment in UPF weight) in another 
prospective cohort study based on participants from the UK 
Biobank [54]. With a median 12-year follow-up, the SUN 
(Seguimiento Universidad de Navarra) project showed a 
53% increased T2DM risk for participants in the highest 
tertile of UPF intake (in energy) compared to the lowest ter-
tile [55]. Similar trends were also found in the other cohort 
studies in Netherlands and China [15, 56]. In an effort to 
bolster comparability and generalizability, we analyzed 
both the weight and energy ratios of UPF intake, diverging 
from most previous research that typically focused just on 
one of these aspects.

In our study, a diet characterized with a higher FSAm-
NPS diet index, i.e., a nutritionally poorer diet, was sig-
nificantly positively associated with diabetes. A significant 

Fig. 1 Associations between ultra-processed foods (UPF) intake and 
Food Standards Agency nutrient profiling system (FSAm-NPS) dietary 
index with type 2 diabetes (T2DM) in the total sample, and stratified 
by metabotype. Model 1 adjusted for age, sex, total energy intake. 
Model 2 additionally adjusted for education, physical activity, smok-
ing. Model 3 additionally adjusted waist circumference and hyperten-
sion. For UPF intake (energy ratio), the variable total energy intake 

was not in models. The T2DM was defined as individuals with unde-
tected or prevalent type 2 diabetes mellitus. The interaction between 
metabotype and dietary scores were found to be significant in all mod-
els (p-interaction < 0.001). UPF, ultra-processed foods; T2DM, type-2 
diabetes mellitus; OR, odds ratio; CI, confidence interval. Shown are 
per 5% increase of UPF intake ratio and per 2-point increase of FSAm-
NPS dietary index
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among various metabotypes. This notion is further substan-
tiated by studies utilizing the decision tree method to deliver 
personalized dietary recommendations for specific meta-
bolic subgroups [21, 62]. Our research group, in its prior 
investigations, has also explored the relationship between 
diet and T2DM, identifying distinct associations only in 
specific metabotype clusters [22, 23]. Similar to our current 
results, we have also previously reported stronger associa-
tions between common dietary patterns-quantified by the 
Alternate Healthy Eating Index and the Mediterranean Diet 
Score—and T2DM in metabotype 3 compared with the total 
study group [22]. In addition, applying the same metabo-
type subgrouping approach as in this study, different reac-
tions to the OGTT or dietary fiber supplementation across 
metabotypes were observed in another study population 
[63]. Our finding suggests a potentially more pronounced 
impact of UPF consumption on individuals with unhealthy 
metabolic profile, supporting the argument for metabotype-
specific dietary recommendations over generalized dietary 
advice [18–20].

Subjects in metabotype cluster 3 exhibited relatively 
adverse demographic characteristics, which are recognized 
risk factors for diabetes [1, 3], and a higher prevalence of 
prediabetes, T2DM, and hypertension, demonstrating the 
metabotype concept’s effectiveness in stratifying popula-
tions into distinct metabolic subgroups [34]. To further con-
firm our hypothesis, as well as deepen our understanding of 
the intricate interplay between dietary patterns, metabotype, 
and diabetes risk, it is necessary to conduct future prospec-
tive studies with larger sample size. Such an approach could 
help formulate tailored dietary recommendations for differ-
ent metabotype subgroups and implement personalized dis-
ease prevention strategies on a population-wide scale.

Strengths and limitations

Our relatively large sample size, comprehensive dietary 
data collected via combined repeated 24HFLs and an FFQ, 
and detailed glucose tolerance status information strength-
ened our study. Regarding the cross-sectional study design, 
our findings can provide insights into potential associations 
and generate hypotheses on dietary recommendation, rather 
than establishing causality. Also, subgrouping resulted in a 
smaller participants number in each metabotype. The recall 
bias and the potential for under- or over-reporting inherent 
in dietary data collection cannot be entirely circumvented. 
Population loss during follow-up from KORA S4 to FF4 and 
the exclusion criteria may have introduced selection bias. 
Also, the definition of “metabotype” is yet to be standard-
ized. Nevertheless, we employed an optimized metabotype 
as proposed by Dahal et al. [34], which reduced the previ-
ous comprehensive set of 32 [35] and 16 [23] parameters 

metabolically unfavorable subgroup. Extensive studies have 
demonstrated the role of UPF in promoting the development 
of T2DM [14, 15, 53–56]; however, they largely overlooked 
individual factors such as genetics and metabolism, which 
led to a one-size-fits-all approach in dietary guidelines. 
Our study differentiates itself by scrutinizing the varied 
responses—or lack thereof—to dietary patterns across mul-
tiple metabotypes, potentially enabling more precise dietary 
suggestions.

Some researchers argue that the efficacy of dietary inter-
ventions can be contingent on individual-specific factors; 
e.g., the impact of vitamin D [59], breads [60], and red 
wine polyphenols [61] has been found to significantly differ 

Table 3 Multinomial probit analysis for the associations between 
ultra-processed foods (UPF) intake and Food Standards Agency nutri-
ent profiling system (FSAm-NPS) dietary index with glucose tolerance 
status

Glucose tolerance status (N = 1460)
Normal Prediabetes T2DM

Cases N = 771 N = 516 N = 173
Reference OR (95% CI) OR (95% CI)

UPF intake, energy 
ratioa

 Model 1 b 1 1.06 
(0.99,1.13)

1.52 
(0.44,5.25)

 Model 2 c 1 1.02 
(0.95,1.08)

1.27 
(0.62,2.59)

 Model 3 d 1 0.98 
(0.91,1.05)

1.04 
(0.81,1.32)

UPF intake, weight 
ratio
 Model 1 b 1 1.06 

(0.99,1.13)
1.43 
(0.57,3.59)

 Model 2 c 1 1.04 (0.97,1.11) 1.29 
(0.68,2.43)

 Model 3 d 1 1.01 
(0.94,1.08)

1.01 
(0.91,1.11)

FSAm-NPS dietary 
index
 Model 1 b 1 1.26 (1.11,1.42) 2.42 

(0.29,20.47)
 Model 2 c 1 1.19 

(1.04,1.35)
1.73 
(0.54,5.60)

 Model 3 d 1 1.06 
(0.92,1.22)

1.26 
(0.54,2.97)

a For UPF intake (energy ratio), the variable total energy intake was 
not in models. b: Adjusted for age, sex, total energy intake. c: Addi-
tionally adjusted for education, physical activity, smoking. d: Addi-
tionally adjusted waist circumference and hypertension
Glucose tolerance status was categorized into normal, prediabetes, 
and T2DM, following the American Diabetes Association criteria
T2DM, type-2 diabetes mellitus; UPF, ultra-processed foods; OR, 
odds ratio; CI, confidence interval
Shown are per 5% increase of UPF intake ratio and per 2-point 
increases of FSAm-NPS dietary index, respectively. P-values < 0.05 
are shown in bold
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