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Abstract
Purpose This study utilized data mining and machine learning (ML) techniques to identify new patterns and classifications 
of the associations between nutrient intake and anemia among university students.
Methods We employed K-means clustering analysis algorithm and Decision Tree (DT) technique to identify the association 
between anemia and vitamin and mineral intakes. We normalized and balanced the data based on anemia weighted clusters 
for improving ML models’ accuracy. In addition, t-tests and Analysis of Variance (ANOVA) were performed to identify 
significant differences between the clusters. We evaluated the models on a balanced dataset of 755 female participants from 
the Hebron district in Palestine.
Results Our study found that 34.8% of the participants were anemic. The intake of various micronutrients (i.e., folate, Vit A, 
B5, B6, B12, C, E, Ca, Fe, and Mg) was below RDA/AI values, which indicated an overall unbalanced malnutrition in the 
present cohort. Anemia was significantly associated with intakes of energy, protein, fat, Vit B1, B5, B6, C, Mg, Cu and Zn. 
On the other hand, intakes of protein, Vit B2, B5, B6, C, E, choline, folate, phosphorus, Mn and Zn were significantly lower 
in anemic than in non-anemic subjects. DT classification models for vitamins and minerals (accuracy rate: 82.1%) identified 
an inverse association between intakes of Vit B2, B3, B5, B6, B12, E, folate, Zn, Mg, Fe and Mn and prevalence of anemia.
Conclusions Besides the nutrients commonly known to be linked to anemia—like folate, Vit B6, C, B12, or Fe—the cluster 
analyses in the present cohort of young female university students have also found choline, Vit E, B2, Zn, Mg, Mn, and 
phosphorus as additional nutrients that might relate to the development of anemia. Further research is needed to elucidate 
if the intake of these nutrients might influence the risk of anemia.
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Introduction

Anemia is a public health problem affecting more than 
two billion people worldwide. It is particularly prevalent 
in low- and middle-income countries and is often linked to 
poverty, malnutrition, and inadequate access to healthcare 
[1, 2]. It is defined as a reduction in healthy red blood cells 
and is often diagnosed by the level of hemoglobin (Hb) 
in the blood [3]. The causes of anemia are multifactorial, 
but nutrient deficiencies play a major role. Iron deficiency 
anemia (IDA) is the most common type of nutritional 
anemia and the result of dietary iron (Fe) deficiency or 
low bioavailability of plant-derived Fe species from food 
[4, 5].

Recently, there has been increased interest in the 
prevalence of anemia among university students, par-
ticularly in developing countries, as they may be at 
higher risk for anemia due to overall poor nutrition and 
inadequate access to healthcare [6–8]. In addition, the 
risk of IDA increases in university students due to poor 
dietary intake of Fe-rich foods, vitamin (Vit) B12 and 
folate deficiency, and increased demand for Fe [9, 10]. 
Studies have shown that university students often have 
undesirable food choices, with a high intake of fast food 
and a low intake of fruits, vegetables, and Fe-rich foods 
[11, 12]. This may also be due to financial constraints or 
lack of time to prepare meals [3, 9]. IDA mainly affects 
female university students in childbearing age due to the 
loss of Fe during menstruation [7, 13]. Sari et al. [7] 
found that the duration of blood loss per menstrual cycle 
was one of the most important factors influencing ane-
mia in adolescent girls according to multivariate logistic 
regression. In addition, several studies have shown that 
IDA is also significantly associated with lifestyle factors 
such as physical activity or smoking [3, 14]. In a study 
conducted by Al-alimi et al. [8], smoking was found to 
be negatively associated with an increased risk of IDA 
in university students, with smoking possibly affect-
ing Fe absorption. Female athletes, in particular, are at 
increased risk of IDA due to menstrual blood loss and 
the resulting increased Fe requirement. Regular exercise 
increases the body's need for Fe to support the production 
of red blood cells and oxygen transport to the muscles. 
Female athletes involved in high-intensity training or 
endurance sports may require even more Fe to maintain 
optimal performance [15–17].

Furthermore, Fe metabolism and status are influenced 
by nutrient interactions and food matrix effects. Nutrient 
interactions involve the way different nutrients interact 
with each other in the body, and food matrix refers to the 
physical structure of foods that affect nutrient bioavail-
ability. Vit C enhances Fe absorption, whereas calcium 

(Ca) and phytate are known to have inhibitory effects [9, 
18, 19]. However, there may be unknown nutrient interac-
tions and food matrix effects that affect Fe metabolism and 
status. Therefore, there is a need to elucidate the relation-
ships between nutrient intake patterns and the prevalence 
of anemia.

Data mining techniques, including cluster and classifica-
tion algorithms, have been used to identify micronutrient 
intake patterns among anemia risk factors for the develop-
ment of targeted nutritional strategies to prevent and treat 
IDA in university students [20]. Machine learning (ML) 
techniques, such as decision tree classification modeling, 
have also proved helpful in identifying associated risk fac-
tors and predicting the risk of IDA in this population [21, 
22]. These approaches can identify patterns of key risk fac-
tors for IDA and help develop patient-specific interventions 
with an accuracy rate of 70% to 87% [21, 23]. Overall, data 
mining and ML techniques, such as random forest and sup-
port vector machine, appear to be valuable tools for identify-
ing and predicting IDA.

Using K-means Clustering and Regression Tree (CRT) 
and classification models, we aimed to identify trends in 
such micronutrient intake patterns associated with IDA 
among young healthy female subjects from a Palestinian 
University in the Hebron region. This study is part of a larger 
cross-sectional study with the overall aim of assessing the 
nutrient supply and health status of university students from 
Palestine.

Materials and methods

Data source

The study utilized primary data from a cross-sectional 
study conducted at the Palestine Polytechnic University in 
Hebron City in 2021. We carried out this study in accord-
ance with the Declaration of Helsinki and the study proto-
col was approved by the Institutional Review Board (IRB) 
at the Palestine Polytechnic University (reference number 
KA/41/2019). We collected written consent approval from 
participants prior to data collection. We randomly selected 
the participants from the University student’s registration 
repository by using the matriculation numbers. The partici-
pants group included female students between the ages of 18 
and 30 years. Subjects who were pregnant or breastfeeding, 
had chronic internal diseases (including anemia forms such 
as sickle cell disease or thalassemia), celiac or inflammatory 
bowel disease and those rejecting to participate or refusing 
to sign the written consent were excluded from this study.

In our cluster analysis, we initially faced data imbal-
ances with a small sample size of 145. To ad-dress this, we 
employed the SMOTE (Synthetic Minority Over-sampling) 
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technique, effectively increasing our sample size to 755 
participants [24]. This aligns with the O =  2k heuristic for 
estimating sample size, where 'k' is the number of variables, 
ensuring a robust subject pool for effective analysis. While 
some literature suggests a larger size up to 60 k or 70 k 
for each variable for greater statistical power, our adjusted 
sample size adheres to these standards, balancing between 
statistical robustness and practical feasibility for identify-
ing distinct cluster [25]. The SMOTE involved creating syn-
thetic samples by interpolating between the minority class 
instances. The technique created the synthetic samples by 
selecting pairs of neighboring minority class instances and 
generating new samples along the line connecting them. 
We used the cross-validation technique was used to evalu-
ate the model performance and avoid overfitting and reduc-
ing model generalizations. SMOTE has been widely used 
in various fields, including fraud detection, medical diag-
nosis, and image classification [26, 27]. It has been shown 
to improve model performance by increasing the number 
of minority class samples, making it easier for the model to 
learn the features that distinguish the minority class from 
the majority class. The final dataset encompassed 755 par-
ticipants. We excluded participants that refused to complete 
the assessment.

Study variables

We collected the study variables using a face-to-face struc-
tured questionnaire. The questionnaire included variables 
related to participants’ sociodemographic data (age, sex, 
family income, residence, marital status, university year, 
and student financial support), and lifestyle data (physical 
activity, smoking, and sleeping habits). Physical activity was 
assessed using the validated International Physical Activity 
Questionnaire (IPAQ) in the Arabic version (7 items/short 
form) [28]. According to the IPAQ, three categories are 
distinguished: inactive, minimally active, and HEPA active 
(health-enhancing physical activity; a high active category). 
For details and cut-offs see [28].

The study conducted anthropometric measurements 
including weight, height, and Body Mass Index (BMI), 
which was categorized according to the WHO classification 
criteria [28]. To collect blood samples, participants fasted 
overnight and 15 ml of blood were collected via venipunc-
ture from an arm vein in the morning. Platelets, red and 
white blood cell counts, Hb levels, mean corpuscular vol-
ume and red cell distribution width were measured using 
the Celltac ES MEK-7300K automated hematology analyzer 
(Nihon Kohden, Tokyo, Japan). We set diagnostic criteria for 
anemia based on the WHO classification, which used Hb and 
ferritin levels (non-anemic: Hb ≥ 12 g/dl, ferritin ≥ 15 μg/L; 
anemic: Hb < 12 g/dl, ferritin < 15 μg/L) [29].

To document food consumption, all participants had to 
complete three 24-h recalls, including two weekdays and 
one weekend day. All foods and beverages consumed had to 
be recorded, as well as the time, place and method of prepa-
ration. Prior to the study, participants were instructed by 
trained dietitians on how to complete the food recall forms. 
The dietitians also checked the questionnaires for complete-
ness and plausibility and interviewed the participants if there 
were any discrepancies. We analyzed the nutrient intake of 
the 24-h recall data using the EMFID software developed by 
Al-Quds University and the WHO, the software includes the 
food composition tables of five countries (Palestine, Jordan, 
Lebanon, Kuwait, and Bahrain) [30]. The nutrient analy-
sis included macronutrients and micronutrients (vitamins 
and minerals) intake analysis. The nutrient intakes were 
compared with the USDA Recommended Dietary Allow-
ance (RDA) or the Adequate Intake (AI, if there is no RDA 
for the nutrient) values [31]. RDAs or AIs are commonly 
used in studies to assess the risk of inadequate nutrient 
intake [32–35], offering a conservative estimate that cov-
ers the nutrient requirements of nearly all (97–98%) healthy 
individuals in a population, facilitating comparisons and 
identification of at-risk groups [31]. The nutrient intakes 
were grouped into two categories: ≥ RDA/AI and < RDA/
AI. Additionally, median nutrient intakes falling below the 
RDA/AI were subcategorized into ‘very low’ and ‘low’ 
groups. Those with intakes less than the median were clas-
sified as ‘very low’, while those with intakes greater than the 
median were classified as ‘low’.

K‑means clustering algorithm

K-means clustering is an unsupervised ML algorithm used 
to partition a dataset into clusters [36]. K-means works by 
dividing the data points into a specified number of clusters, 
and iteratively updating the cluster centers until convergence 
is reached. In this study we used the K-means clustering 
algorithm to identify patterns and trends in the occurrence 
of anemia among university students in relation to nutrient 
intake.

Before running the K-means algorithm, we preprocessed 
the data to impute missing values, scale the variables to 
have zero mean and unit variance, and normalize data by 
age. Then we ran the K-means algorithm with the optimal 
number of clusters, and the K-means initialization method, 
which the literature has shown to improve its convergence 
rate and result in more stable solutions. We ran the algorithm 
for a maximum of 100 iterations, or until convergence was 
reached, whichever came first.

To evaluate the fit of different clusters, we used Schwarz’s 
Bayesian Criterion (BIC) to determine the optimal number 
of clusters to use when performing K-means clustering. It is 
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based on the idea that the true number of clusters in a data-
set is unknown, and that different values for the number of 
clusters will result in different models of the data [37]. The 
BIC score for each model (i.e., each value of the number of 
clusters) is calculated using the following formula:

In this formula, n is the number of data points, SSE is 
the sum of squared errors between the data points and their 
closest cluster centers, and k is the number of parameters in 
the model (including the cluster centers and the data points).

We decided the optimal number of clusters by selecting 
the number of clusters that resulted in the lowest BIC score. 
The model with the lowest BIC score is the most parsimoni-
ous, namely the model that fits the data well.

Furthermore, we determined the quality of clusters using 
the Silhouette Method, which is commonly used to deter-
mine the optimal number of clusters for the K-means clus-
tering analysis technique [38]. This method involves cal-
culating the silhouette score for each data point, which is a 
measure of how similar the data point is to other data points 
in its own cluster compared to other clusters. To calculate 
the silhouette score for each data point, the average distance 
between the data point and all other data points in its own 
cluster (a) was first calculated. The average distance between 
the data point and all data points in the nearest neighboring 
cluster (b) was then calculated. The silhouette score for the 
data point was then calculated using the formula:

Thereafter we averaged the silhouette scores for all data 
points to determine the overall silhouette score for the clus-
ter solution. We determined the optimal number of clusters 
by selecting the number of clusters that resulted in the high-
est average silhouette score.

To validate the results of the K-means clustering, we per-
formed additional analyses using t-tests and Analysis of Var-
iance (ANOVA) to identify significant differences between 
the clusters. Additionally, we presented visualized form of 
the data using scatter plots to examine the distribution of the 
variables within each cluster.

Classification algorithm

Decision trees (DT) are a popular and widely used tech-
nique in the field of data mining and ML. They are a form 
of predictive model used to make decisions based on a set 
of input data [39, 40]. The DT procedure creates a tree-
based classification model that classifies cases into groups 
or predicts values of a dependent (anemia disease) variable 

(1)BIC = n × log
(

SSE

n

)

+ k × log(n),

(2)
(b − a)

max (a, b)
,

based on values of independent (predictor) variables. The 
DT is a tree-like model that represents a series of decisions 
and their possible consequences. It is composed of a root 
node, branches, and leaf nodes. The root node represents 
the initial decision that needs to be made, and each branch 
represents a possible outcome of that decision. The leaf 
nodes represent the final decision or prediction made by 
the tree.

We conducted the ML classification tree by performing 
the Exhaustive Chi-squared Automatic Interaction Detec-
tion (exhaustive CHAID) algorithm. It is a sophisticated, 
non-parametric, ML approach utilized for analyzing intricate 
interactions among variables. Originally, Fordon Kass devel-
oped this technique in 1980, serving as an enhancement to 
CHAID (Chi-squared Automatic Interaction Detector) [41].

Exhaustive CHAID functions by dissecting a dataset into 
distinct and exhaustive subsets, subsequently creating a DT 
model. It employs a chi-squared based technique to ascer-
tain the most suitable next split at every stage and contin-
ues splitting until no statistically significant splits can be 
identified between the independent and dependent variables, 
thereby epitomizing its ‘exhaustive’ nature. Unlike other 
algorithm, exhaustive CHAID assesses all potential splits for 
each predictor variable, leading to the selection of the most 
significant split from all the predictors [42]. Consequently, 
it can uncover complex multi-tier interactions between vari-
ables and deliver substantial insights into data, making it a 
critical instrument for researchers and data analysts across a 
multitude of fields such as marketing, healthcare, and social 
sciences. Nonetheless, it’s worth mentioning that its exhaus-
tive approach can be computationally demanding, particu-
larly with extensive datasets or a large number of predictors.

In this study we used exhaustive CHAID analysis to 
investigate the patterns of association between nutrient 
intakes and anemia in a normalized and weighted sample of 
755 female university students. The outcome variable was 
anemia status (anemic vs. non-anemic), while the predictor 
variables included intakes of vitamins and minerals from 
24-h recalls. Two classification models were designed to 
examine the pattern of associations: the vitamin model and 
the mineral model.

In each model, the maximum tree depth was set to 5, 
minimum number of cases 30, and three statistical output 
indicators  (X2, P-Value, % and n) for each node. The models 
reported accuracy rates of 87%.

There are several criteria that can be used to determine 
the best split at each step in the tree building process. The 
Gini index is one of the features’ selection methods used 
in DT-based ML models to determine the importance of 
each feature in predicting the target variable. The Gini 
index is a measure of the impurity of a particular split 
in a classification and regression tree (CRT) [43]. It is 
used to determine the best split at each step in the tree 
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building process. Statisticians calculate the Gini index by 
comparing the proportions of different classes in a split. 
It is minimized when the split is pure, meaning that all the 
instances in a particular subset belong to the same class. 
The Gini index is calculated using the following formula:

(3)Gini = i −
∑

(X)
2

In the formula, X is the proportion of instances in class 
i. If the split were pure, with all the instances belonging 
to the same class, the Gini index would be 0. The Gini 
index is just one of several criteria that can be used to 
determine the best split in a CRT. In this study, we used 
the Gini method to make predictions and decisions based 
on university students’ data.

Table 1  Sociodemographic, lifestyle, and health variables of the study cohort (n = 755)

Variables Total group
n (%)

Non-Anemic 
subgroup
n (%)

Anemic subgroup
n (%)

Non-Anemic 
subgroup 
Hb (g/dl)
mean ± SD

Anemic subgroup 
Hb (g/dl)
mean ± SD

F (p-value)
Hb values 
non-anemic vs. 
anemic

Age (years)
 18–19 236 (31.3) 146 (61.9) 90 (38.1) 13.1 ± 1.0 12.2 ± 1.4 8.0 (0.005)
 20–21 277 (36.7) 169 (61.0) 108 (39.0) 13.4 ± 0.9 12.2 ± 1.2
 22–24 242 (32.1) 177 (73.1) 65 (26.9) 13.6 ± 0.7 11.9 ± 0.5
 Total group 492 (65.2) 263 (34.8) 13.4 ± 0.9 12.1 ± 1.2

Living status
 With family 709 (93.9) 469 (66.1) 240 (33.9) 13.4 ± 0.8 12.2 ± 1.2 15.1 (0.001)

Students housing 46 (6.1) 23 (50.0) 23 (50.0) 12.8 ± 1.5 11.8 ± 0.6
Family income
 Low 230 (30.5) 176 (76.5) 54 (23.5) 13.2 ± 1.0 11.6 ± 1.4 7.2 (0.007)
 Moderate 335 (44.4) 200 (59.7) 135 (40.3) 13.3 ± 0.9 12.4 ± 0.9
 High 190 (25.2) 116 (61.1) 74 (38.9) 13.5 ± 0.9 12.2 ± 1.4

Screen time
 ≤ 1 h 71 (9.4) 50 (70.4) 21 (29.6) 12.3 ± 1.2 12.6 ± 0.6 1.2 (0.266)

2–3 h 241 (31.9) 145 (60.2) 96 (39.8) 13.1 ± 0.9 12.3 ± 1.3
 4–5 h 177 (23.4) 106 (59.9) 71 (40.1) 13.4 ± 0.8 12.1 ± 1.1
 ≥ 6 h 266 (35.2) 191 (71.8) 75 (28.2) 13.7 ± 0.8 12.0 ± 1.4

Place of residence
 Urban 529 (70.1) 341 (64.5) 188 (35.5) 13.4 ± 0.9 12.1 ± 1.3 0.925 (0.337)
 Non-urban 226 (29.9) 151 (66.8) 75 (33.2) 13.3 ± 1.0 12.2 ± 0.9

Physical activity
 Inactive 215 (28.5) 154 (71.6) 61 (28.4) 13.4 ± 0.8 12.4 ± 1.4 90.2 (0.001)
 Moderately active 364 (48.2) 242 (66.5) 122 (33.5) 13.3 ± 1.1 12.2 ± 1.2
 HEPA active 176 (23.3) 96 (54.5) 80 (45.5) 13.3 ± 0.5 11.8 ± 1.1

Smoking
 Yes 94 (12.5) 56 (59.6) 38 (40.4) 13.1 ± 1.0 12.0 ± 0.7 3.6 (0.057)
 No 661 (87.5) 436 (66.0) 225 (34.0) 13.4 ± 0.9 12.2 ± 1.3

Sleeping 6–8 h daily
 Yes 620 (82.1) 409 (66.0) 211 (34.0) 13.3 ± 0.9 12.1 ± 1.2 28.0 (0.001)
 No 135 (17.9) 83 (61.5) 52 (38.5) 13.7 ± 0.7 12.3 ± 1.0

BMI
 Underweight 92 (12.2) 44 (47.8) 48 (52.2) 13.2 ± 0.3 12.3 ± 0.8 4.7 (0.03)
 Normal 587(77.7) 393(67.0) 194(33.0) 13.4 ± 0.9 12.1 ± 1.3
 Overweight 57(7.5) 42(73.7) 15(26.3) 13.3 ± 1.1 12.7 ± 1.1
 Obese 19(2.5) 13(68.4) 6(31.6) 13.0 ± 0.7 11.4 ± 1.1
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Results

Sociodemographic descriptive analysis

The results in Table 1 show the characteristics of the study 
sample and the distribution of socio-demographic variables. 
The sample consisted of 755 female university students aged 
18–24 years. The results showed that the place of residence 
of the participants was urban for 70.1% and non-urban for 
29.9%, while 30.5%, 44.4% and 25.2% reported low, average 
and above average family income respectively. When asked 
about their lifestyle, 12.5% of participants reported smok-
ing, 28.5% reported being physically inactive, 48.2% were 
moderately physically active and 23.3% were HEPA active. 
Approximately 94% of participants reported living in student 
accommodation and 17.9% reported sleeping less than 6 h 
per night. The results in Table 1 also show mean ± SD Hb 
levels by socio-demographic variables.

The study reported a prevalence of anemia of 34.8% in 
different age groups. The prevalence of anemia was higher 
in the younger age groups (38.1% in the 18–19 age group 
and 39.0% in the 20–21 age group) than in the older age 
group (26.9% in the 22–24 age group). For several other 
sociodemographic variables (living status, family income, 
place of residence, sleep duration), there were no consist-
ent patterns for differences in anemia prevalence between 
categories, although in some cases the differences were 
significant. The higher prevalence of anemia in the group 
with the higher physical activity (45.5%) compared with 
minimal activity (33.5%) and inactivity (28.4%) was also 
noticeable. The prevalence of anemia was also slightly 
higher in smokers (40.4%) than in non-smokers (34%), 
although the difference showed only a trend towards sig-
nificance (P = 0.057). Women with weight under the aver-
age range had the highest anemia prevalence (52.2%) com-
pared to the women with average weight (33.0%), women 
with weight above the average range (26.3%) and women 
with obesity (31.6%).

Overall nutrient intake

Table 2 shows the descriptive analysis of nutrient intakes 
from the 24-h recalls. The results indicated that individuals 
with anemia had lower intakes of numerous micronutrients 
compared to individuals without anemia. The results showed 
significant differences in the intake of protein, several vita-
mins (B1, B2, B3, B5, B6, C, as well as folate and E equiva-
lents), and certain minerals (phosphorus, manganese, and 
zinc) between individuals with and without anemia. Intakes 
of micronutrients such as Vit A (RAE), Vit B5, Vit B6, cho-
line, folate, Vit B12, Vit C, Vit E, calcium (Ca), magnesium 

(Mg), potassium (K), and iron (Fe) fall below the RDA/AI 
and were categorized as ‘very low’ and ‘low’.

K‑means cluster analysis of nutrient intake

We used the K-means clustering algorithm to identify nutri-
ent intake clusters after adjusting for age and Hb level. The 
results of the K-means clustering yielded two clusters with 
distinctive characteristics. Cluster 1 consisted of individuals 
with nutrient intakes < RDA/AI values, while cluster 2 con-
sisted of individuals with nutrient intakes ≥ RDA/AI, except 
for Vit A (RAE), choline, Vit B2, Vit B5, Vit B6, folate, 
Vit B12, Vit C, Vit E equ., Mg, Fe, and manganese (Mn) 
for which participants' intakes were classified as “Low” and 
“Very low” because their intakes were entirely < RDA/AI 
values.

We evaluated the cluster quality using the silhouette 
measure of cohesion and the separation algorithm. The 
results in Fig. 1 show the cluster quality of vitamin and 
mineral intake. The clustering algorithms reported high sil-
houette scores of 0.7 for both vitamin and mineral intake. 
These results show that most of the nutrients in the dataset 
are well matched to their own cluster, with most nutrients 
having a silhouette score greater than a 0.5 silhouette score, 
indicating that the clusters are well defined and separated.

Table 3 shows the average nutrient intakes of the stu-
dents in the identified clusters. The results showed that par-
ticipants in cluster 1 had significantly lower intakes of all 
nutrients. Multivariate analysis between the nutrient intake 
clusters and the variables anemia, BMI, and age revealed 
several associations. The analysis showed that anemia was 
significantly associated with energy, protein, fat, Vit B1, Vit 
B5, Vit B6, Vit C, Mg, copper (Cu), and zinc (Zn). BMI 
was significantly associated with calories, protein, carbo-
hydrates, fat, Vit B2, Vit B3, Vit B5, Vit B6, Vit C, Mg, Cu 
and Zn. In addition, age was significantly associated with 
protein, fat, Vit B3, Vit B6, folate, Vit B12, Vit E, phospho-
rus (P), K, Cu, Fe, and Mn.

Classification analysis of anemia and micronutrient 
intake

Anemia and vitamin model

Figure 2 shows the anemia classification model for vitamin 
intake. The classification tree identified different patterns 
of classification among the group of participants. The tree 
produced 8 terminal nodes, in which the model classified 
the participants according to the importance of the associa-
tion between anemia and vitamin intake. The model had an 
accuracy rate of 82.1% with an estimated risk error of 0.322 
and an SE of 0.017.
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The results in Fig.  2 revealed a significant relation-
ship between Vit B12 intake and anemia  (X2 = 50.8, 
P-value < 0.001). Among the participants with a very low 
intake of Vit B12, the rate of anemia was higher com-
pared to the participants with lower intake of Vit B12 
(45.9% vs. 21.1%, respectively). The Vit E intake was 
found to be another significant factor associated with 
anemia  (X2 = 39.0, P-value < 0.001). The very low Vit E 
intake group had a higher prevalence of anemia than the 
low intake group (54.8% vs. 19.8%, respectively). Vit 
B2 intake was also significantly associated with anemia 
 (X2 = 24.5, P-value < 0.001), whereby participants with a 
Vit B2 intake < RDA having a higher rate of anemia than 
participants with a Vit B2 intake ≥ RDA (35.5% vs. 12.7%, 
respectively).

Interestingly, the Vit E classification groups showed sig-
nificant associations with different nutrients. The very low 
Vit E intake group was associated with the Vit B6 intake 
 (X2 = 11.0, P-value = 0.001), where the Vit B6 intake indi-
cated that the participants with very low intakes had a higher 
rate of anemia compared to participants with low intake lev-
els (63.6%vs. 44.9%, respectively). The study also found a 
significant association between Vit B5 intake and anemia 
 (X2 = 13.7, P-value < 0.001). Of the subjects who consumed 
very low Vit B5, 45.1% were anemic. On the other hand, 
only 9.1% of those consuming low Vit B5 were anemic. 
Furthermore, the folate intake was also significantly associ-
ated with anemia  (X2 = 8.1, P-value = 0.001). In the group 
consuming very low folate, 16.0% were anemic, whereas in 
the group consuming low folate, 0% were anemic.

Table 2  Daily nutrient intake in the total cohort (n = 755) and in anemic and non-anemic sub-groups

1 RAE: Retinol activity equivalents, 2Equ.: equivalents
Prevalence of subjects with nutrient intakes above or below the Recommended Daily Allowance (RDA) or Adequate Intake (AI). If the median 
intakes of nutrients were below the RDA, the nutrient intakes were again divided into avery low intake (< median intake of the total group) and 
blow intake (> median intake of the total group)

Nutrients Total group
Mean ± SD

 < RDA/AI1

n (%)
 ≥ RDA/AI
n (%)

Non-anemic sub-
group
Mean ± SD

Anemic subgroup
Mean ± SD

F(p-value)
non-anemic vs. 
anemic

Very low  intakea Low  intakeb

Energy and macronutrients
 Calories (Kcal) 1405 ± 360 – 509 (67.4) 246 (32.6) 1414 ± 374 1392 ± 342 0.8 (0.386)
 Protein (g) 52.2 ± 14.2 – 225 (29.8) 530 (70.2) 52.3 ± 14.5 52.0 ± 13.7 7.2 (0.008)
 Carbohydrates (g) 193 ± 54.8 – 117 (15.5) 638 (84.5) 194 ± 56.5 191 ± 52.5 0.1 (0.723)
 Fat (g) 49.6 ± 15.6 – 123 (16.3) 632 (83.7) 49.9 ± 16.4 49.1 ± 14.4 0.7 (0.418)

Vitamins
 Vit A  RAE1 (µg) 150.3 ± 247.9 484 (64.1)a 271 (35.9)b 154.7 ± 259.6 144.8 ± 234 0.06 (0.813)
 Vit B1 (mg) 1.9 ± 1.5 – 361 (47.8) 394 (52.2) 1.9 ± 1.5 2.0 ± 1.5 4.5 (0.034)
 Vit B2 (mg) 2.0 ± 2.1 – 401 (53.1) 354 (46.9) 2.2 ± 2.2 1.7 ± 1.9 19.7 (0.001)
 Vit B3 equ.2 (mg) 9.6 ± 3.5 – 382 (50.6) 373 (49.4) 9.1 ± 3.6 10.5 ± 3.4 26.3 (0.001)
 Vit B5 (mg) 4.2 ± 2.5 504 (66.8)a 251 (33.2)b – 4.5 ± 2.5 3.9 ± 2.3 9.6 (0.002)
 Vit B6 (mg) 1.7 ± 1.3 627 (83)a 128 (17)b – 1.8 ± 1.4 1.6 ± 1.2 10.8 (0.001)
  Choline1 (mg) 136 ± 65.0 666 (88.2)a 89 (11.8)b – 139 ± 69.4 131 ± 58.2 1.9 (0.164)
 Folate equ. (µg) 135 ± 51.3 426 (56.4)a 329 (43.6)b – 141 ± 52.8 127 ± 48.4 8.6 (0.003)
 Vit B12 (µg) 2.0 ± 1.5 418 (55.4)a 337 (44.6)b – 2.0 ± 1.5 1.8 ± 1.4 2.1 (0.148)
 Vit C (mg) 58.8 ± 39.7 430 (57)a 325 (43)b – 63.8 ± 43.6 51.3 ± 31.9 6.5 (0.011)
 Vit E equ. (mg) 1.9 ± 1.0 531 (70.3)a 224 (29.7)b – 2.1 ± 1.2 1.7 ± 0.8 35 (0.001)

Minerals
 Ca (mg) 418 ± 182 443 (58.7)a 312 (41.3)b – 433 ± 186 396 ± 175 3.8 (0.051)
 Mg (mg) 148 ± 51.2 201 (26.6)a 554 (73.4)b – 151 ± 52.6 143 ± 49.0 0.5 (0.47)
 P (mg) 626 ± 202 – 372 (49.3) 383 (50.7) 634 ± 218 613 ± 177 7.8 (0.005)
 K (mg) 1413 ± 536 431 (57.1)a 324 (42.9)b 1429 ± 522 1388 ± 561 0.2 (0.654)
 Cu (mg) 2.3 ± 1.9 – 197 (26.1) 558 (73.9) 2.4 ± 2.0 2.1 ± 1.8 0.1 (0.761)
 Fe (mg) 7.8 ± 2.8 251 (33.2)a 504 (66.8)b – 8.2 ± 3.1 7.2 ± 2.5 0.9 (0.333)
 Mn (mg) 1.7 ± 0.9 – 317 (42) 438 (58) 1.7 ± 1.1 1.6 ± 0.6 19.2 (0.001)
 Zn (mg) 7.0 ± 4.2 – 308 (40.8) 447 (59.2) 7.8 ± 4.9 5.7 ± 2.4 6.6 (0.01)
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Table 3  Univariate analysis 
of nutrients intake clusters by 
anemia BMI and age

Equ. equivalents, RAE Retinol activity equivalents
a Very low intake cluster (< median intake)
b Low intake cluster (> median intake)

Nutrients Cluster 1 Cluster 2 Anemia
F(p-value)

BMI
F(p-value)

Age
F(p-value)

Energy and macronutrients
 Calories (Kcal) 1202 ± 193 1826 ± 187 13.6 (0.001) 27.1 (0.001) 0.1 (0.706)
 Protein (g) 49.6 ± 10.2 78.1 ± 8.3 4.8 (0.029) 7.5 (0.006) 13.4 (0.001)
 Carbohydrates (g) 167 ± 31.8 251 ± 29.5 3.1 (0.078) 17.9 (0.001) 2.3 (0.13)
 Fat (g) 37.7 ± 8.1 65.2 ± 9.1 26.9 (0.001) 5.4 (0.021) 20.7 (0.001)

Vitamins
 Vit A RAE (µg) 45.5.4 ± 34.2a 170.8 ± 79.3b 0.5 (0.47) 0.1 (0.787) 0.2 (0.695)
 Vit B1 (mg) 0.6 ± 0.2 3.2 ± 1.3 20.9 (0.001) 4.9 (0.027) 3.2 (0.073)
 Vit B2 (mg) 0.8 ± 0.4 3.8 ± 1.6 0.3 (0.562) 11.7 (0.001) 1 (0.311)
 Vit B3 equ. (mg) 9.4 ± 2.7 16.0 ± 1.9 0.5 (0.479) 4.2 (0.041) 4.8 (0.029)
 Vit B5 (mg) 3.0 ± 1.0 8.1 ± 1.7 22 (0.001) 36.7 (0.001) 0.6 (0.447)
 Vit B6 (mg) 1.1 ± 0.6 4.9 ± 2.7 5 (0.026) 10.2 (0.001) 14.3 (0.001)
 Choline (mg) 82.5 ± 24.5a 180 ± 45.1b 0.6 (0.422) 27.7 (0.001) 0.1 (0.77)
 Folate equ. (mg) 104 ± 69.4a 175 ± 32.8b 0.1 (0.79) 6.1 (0.014) 6.8 (0.009)
 Vit B12 (µg) 1.2 ± 0.5a 5.4 ± 4.6b 3 (0.082) 0.9 (0.335) 13.3 (0.001)
 Vit C (mg) 37.9 ± 17.7a 97.4 ± 23.5b 26.4 (0.001) 9.5 (0.002) 2.5 (0.113)
 Vit E equ. (mg) 0.5 ± 0.5a 2.2 ± 0.5b 2.1 (0.146) 0.1 (0.703) 14.3 (0.001)

Minerals
 Ca (mg) 288 ± 86.6 589 ± 144 0.1 (0.812) 17.3 (0.001) 0 (0.856)
 Mg (mg) 108 ± 22.4a 192 ± 39.3b 14.1 (0.001) 0.2 (0.62) 3.6 (0.059)
 P (mg) 529 ± 107 882 ± 128 0.5 (0.48) 0 (0.886) 6.1 (0.014)
 K (mg) 1,286 ± 362 2,607 ± 495 0.5 (0.466) 2.2 (0.136) 20.2 (0.001)
 Cu (mg) 0.63 ± 0.18 2.84 ± 1.76 1.2 (0.283) 9.9 (0.001) 1.7 (0.187)
 Fe (mg) 6.1 ± 1.6a 10.9 ± 2.8b 1.8 (0.181) 9.1 (0.003) 7.9 (0.005)
 Mn (mg) 1.5 ± 0.8 2.6 ± 1.7 1.2 (0.279) 17.8 (0.001) 14.9 (0.001)
 Zn (mg) 6.2 ± 3.1 7.5 ± 4.0 7.1 (0.008) 1.6 (0.207) 0 (0.866)

Fig. 1  Silhouette cluster quality measures for vitamins, and minerals
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Anemia and mineral model

Figure 3 shows the anemia classification model for min-
eral intake, which identified different classification patterns 
among participants and generated 7 terminal nodes. The 
model accurately classified participants based on the asso-
ciation between anemia and mineral intake, with an accuracy 
rate of 83% and an estimated risk error of 0.185 and an SE 
of 0.014.

The analysis in Fig. 3 revealed a significant relationship 
between Zn intake and anemia  (X2 = 145.9, P-value < 0.001). 
Participants who consumed Zn < RDA had a higher rate 
of anemia than those who consumed Zn ≥ RDA (60.1% 
vs. 17.4%, respectively). The ≥ RDA Zn intake group was 
associated with the Mg intake as another significant fac-
tor associated with anemia  (X2 = 77.4, P-value < 0.001). 
The very low Mg intake group had a higher rate of anemia 
than the low intake group (42.5% vs. 7.5%, respectively). 
The < RDA Zn intake group was associated with Mg intake 
 (X2 = 64.8, P-value < 0.001). Participants who consumed 
very low Mg intake reported higher rate of anemia (100%, 
47.4%, respectively).

Interestingly, the two Mg groups were significantly 
associated with Fe and Mn intakes. The very low Mg 
intake group was associated with Fe intake  (X2 = 47.8, 
P-value < 0.001). Whereby the very low Fe intake group 
reported a higher rate of anemia than the low intake group 

(77.8%, 16.4%). Moreover, the Mg low intake group was 
associated with Mn intake  (X2 = 12.5, P-value < 0.001). In 
the < AI Mn intake group, the anemia rate is higher than in 
the ≥ AI Mn intake group (11.1%, 0%, respectively).

Models importance analysis of micronutrients 
related to anemia

In this study we conducted the Gini Importance analysis 
to determine which nutrient intake factors had the greatest 
impact on the likelihood of developing anemia among uni-
versity students (Fig. 4). The higher the score, the greater the 
importance of the factor in predicting anemia. The results 
in Fig. 4 showed the normalized importance score of the 
vitamin model and indicated that Vit B12, choline, Vit E, Vit 
B2, Vit C, Vit B5, folate, and Vit A (RAE) had a > 50% like-
lihood of predicting anemia. In addition, the mineral model 
indicated that Fe, Mg, Fe, and phosphorus (P) have a > 50% 
likelihood of predicting anemia.

Discussion

The high prevalence of anemia among female university 
students (34.8%) is consistent with other studies investi-
gating the prevalence of anemia, especially among female 
university students, in Low- and Middle-Income Countries 

Fig. 2  The anemia and vitamins intake decision tree classification model
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(LMICs) [1, 44]. The literature consistently states that 
women, especially those of reproductive age (15–49 years), 
are at particularly high risk for IDA due to menstrual blood 
and Fe losses, pregnancy, and bleeding during childbirth 
[45]. Another important reason for the higher susceptibility 
of women in reproductive age to anemia is diet, primarily 
inadequate access to Fe-rich foods. In addition to Fe, other 
micronutrients may be associated with anemia.

In this study, we used data mining and ML techniques to 
identify new patterns and classifications of the associations 
between nutrient intake and anemia among female university 
students in the Hebron district in Palestine. We used the 
K-means clustering analysis algorithm to identify the clus-
ters of anemia and nutrient intake. Additionally, we used the 
DT-ML technique to identify the classification tree between 
anemia and associated factors. The K-means algorithm was 
able to identify high quality clusters of nutrient intakes, 
which resulted in the identification of two main clusters 

(< RDA/AI; ≥ RDA/AI groups) for most of nutrients, except 
for those with median intakes less than the RDA/AI values, 
which were classified as very low and low intake clusters.

Analysis of nutrient intakes showed that median intakes 
of several micronutrients (including Vit A, choline, folate, 
Vit B12, Vit E, Vit C, Mg, Fe, an Mn) were < RDA values 
in the entire cohort, indicating an overall unbalanced mal-
nutrition in the present cohort. Moreover, several nutrients 
were generally significantly lower in students with anemia 
than in students without anemia. The classification models 
and the Gini Importance analysis identified key nutrient 
factors influencing anemia, including Vit E, Vit A, Vit 
B12, Vit B2, Vit B3, Vit B6, Vit B5, folate, Vit C, choline, 
as well as Zn, Mg, Fe, Mn, and P.

The importance of micronutrients such as Fe, folate, 
and Vit B12 in Fe metabolism and blood cell formation 
is well established. Consistent with our findings, several 
other studies observed associations between anemia and 

Fig. 3  The anemia and vitamins intake decision tree classification model
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intake of folate, Vit B12, and Fe [2, 14, 44]. An associa-
tion between low intake of Vit E other than Fe, Vit B12, 
and folate and a higher risk of anemia in women of repro-
ductive age and pregnant women was also described in the 
Women’s Health Initiative Observational Study [3].

B vitamins have important functions in the production 
of red blood cells and the prevention of anemia. Folate 
and Vit B12 play critical roles in the synthesis of DNA 
and red blood cells, and a deficiency of the two B vitamins 
can impair the production of red blood cells, leading to 
anemia. Vit B2 and B5 also play important roles in the Fe 
metabolism, albeit indirectly.

Vit B2 acts as cofactor in the conversion of vitamin 
B6 into its active coenzyme forms—particularly pyri-
doxal 5'-phosphate (PLP) and pyridoxamine 5ʹ-phosphate 

(PMP). Moreover, Vit B2 is involved in the conversion of 
the inactive form of folic acid into its active forms, such 
as 5-methyltetrahydrofolate (5-MTHF). Active forms of 
Vit B6 and folic acid are crucial for DNA synthesis, cell 
division, and the production of Hb and red blood cells. Vit 
B5 is essential for the synthesis of coenzyme A (CoA), 
which plays a crucial role in several metabolic pathways. 
Although it doesn’t directly affect Fe metabolism, a defi-
ciency of B5 may affect overall energy production and 
utilization, which may indirectly affect the body's abil-
ity to maintain optimal Fe levels. Vit B6 intake was also 
found to be associated with the prevalence of anemia. This 
was particularly clear in the cluster analyses, where the 
prevalence of anemia was higher at very low intakes of Vit 
B6 than at low intakes. In addition, a comparison showed 
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that Vit B6 intake was significantly lower in the anemic 
group than in the non-anemic group. However, in the Gini 
importance analysis, Vit B6 intake in this cohort was less 
important than expected. There is no physiological reason 
for this unexpected finding. The fact that the intake of 
Vit B6 was extremely low in the whole cohort (median 
intake < RDA) is probably more responsible. 88% of the 
subjects had a Vit B6 intake that could be classified as 
very low. Compared with the other nutrients, intakes of 
Vit B6 were the worst.

The Vit C intake of the entire cohort was low (median 
intake < RDA). In addition, Vit C intake was significantly 
lower in the anemic group than in the non-anemic group. Vit 
C intake was significantly associated with anemia across the 
cohort, although the Vit C node doesn’t appear in the tree 
model due to the small sample of participants. Vit C plays a 
significant role in Fe metabolism and absorption. It signifi-
cantly improves the bioavailability of dietary Fe, especially 
plant-derived non-heme Fe by converting ferric Fe (less 
absorbable form) into ferrous Fe (more absorbable form) 
[46]. Therefore, the low intake of Vit C in the present cohort 
is likely to contribute to the high prevalence of anemia.

Choline is a vitamin-like nutrient found in many foods, 
however, because choline can also be formed in the liver, no 
RDA values have been published. The USDA specifies an 
AI of 425 mg/day for choline for women aged 19 years and 
older [47]. In the USA, the average daily intake of choline 
from food and beverages is 278 mg for women. At 136 mg, 
the daily choline intake in the present cohort of female Pal-
estinian students is only half of this and only one third of 
the AI. Our data show that choline intake is associated with 
the rate of anemia. As with Vit C, choline does not appear 
as a node in the tree model due to the overall small number 
of cases. Choline is involved in three major physiological 
processes: structural integrity and lipid-derived signaling for 
cell membranes, cholinergic neurotransmission, and meth-
ylation [48]. Choline deficiency can lead to muscle damage, 
liver damage, and nonalcoholic fatty liver disease. The exact 
physiological relationships between choline metabolism and 
the development of anemia are unclear. A possible link has 
been discussed based on the involvement of choline in the 
de novo metabolism of pyrimidines. Pyrimidine deficiency 
reduces the stability of red blood cells, which is a hallmark 
of anemia [48]. Studies in rats have shown that choline sup-
plementation reduces the effects of iron deficiency [49]. The 
role of choline for anemia in adults remains unclear and 
should be investigated in future studies.

We also found associations between anemia and the 
intake of the two fat-soluble vitamins, Vit E and Vit A. 
It has observed that mild to moderate Vit E deficiency is 
common in women of reproductive age in a population 
in South Asia [50]. The role of Vit E in the prevention 

and treatment of anemia has not been clearly established. 
There is a debate whether Vit E acts as an antioxidant 
in red blood cell membranes, preventing the oxidation of 
polyunsaturated fatty acids, and thereby inhibiting pre-
mature erythrocyte lysis [51]. Healthy red blood cells are 
essential for maintaining proper iron levels and preventing 
certain types of anemia. Clinical studies have shown that 
Vit E acts as an erythropoietic agent, reducing the fragility 
of red blood cells [52, 53]. Vit A also appears to play an 
important role in the pathogenesis of anemia by increas-
ing the mobilization of Fe stores and the growth and dif-
ferentiation of red blood cell precursors [54]. In addition, 
Vit A enhances immunity to infection, thereby reducing 
susceptibility to infectious anemia. Epidemiologic studies 
have shown that the prevalence of anemia in populations in 
developing countries is increased by Vit A deficiency [54]. 
Daily intakes of both vitamins are well below the RDAs in 
the overall cohort and especially in women with anemia. 
The clinical status of both vitamins was not assessed, but 
because of the extremely low intakes, deficiencies of both 
vitamins can be expected.

Our classification mineral intake model showed that low 
(or very low) intakes of Zn, Mg, Fe, and Mn were associ-
ated with a higher risk of anemia, while the Gini Importance 
analysis revealed that the most important factors in predict-
ing anemia were Zn, Mg, Fe, and P. The Fe intakes in the 
low intake cluster (6.1 ± 1.6 mg/d) and in the anemia group 
(7.2 ± 2.5 mg/d) were well below the RDA values for Fe for 
menstruating women (15–18 mg/d). The available data can-
not be used to clarify the contribution of poorly bioavailable 
plant-derived Fe or more readily available heme-bound Fe 
to the total intake. In any case, our results confirm that an 
inadequate consumption of Fe-rich foods is associated with 
the prevalence of anemia in university students, which has 
been determined in comparable studies [11, 12].

With respect to Fe, Zn, and Mg, our findings are consist-
ent with other studies that have found a significant associa-
tion between anemia and an inadequate intake or deficiency 
of these minerals [14, 18, 46–48]. It is known from experi-
mental studies that high doses of minerals such as Ca, Zn, 
Cu, or Mn can inhibit the absorption of non-heme (plant-
derived) Fe. In a normal, balanced diet, these effects are 
insignificant. In the present cohort contrast, however, dietary 
intakes of several of these minerals (e.g., Mg, Fe) are well 
below the RDA values. Our finding that the prevalence of 
anemia is higher in the very low intake clusters of the corre-
sponding minerals than in the low intake clusters is therefore 
plausible. A physiological explanation could be due to the 
essential functions of the various minerals in Fe metabolism 
and red blood cell formation. For example, the trace ele-
ment Zn plays an important role in Fe metabolism and the 
prevention of anemia in several ways. Zn is involved in the 
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regulation of Fe absorption in the intestine and is crucial for 
the storage and mobilization of Fe in the body [55, 56]. For 
example, it interacts with the Fe-storing protein ferritin and 
with hepcidin, which regulates Fe absorption and release. Zn 
is also a co-factor for enzymes involved in heme synthesis 
and Fe metabolism. Several studies, including animal mod-
els, suggest that Zn is essential for erythropoiesis [57]. In 
most cases, Fe deficiency coexists with Zn deficiency and 
there is evidence that Zn deficiency is a major contributor to 
Fe deficiency anemia [56]. Therefore, a combination of Fe 
and Zn supplementation, rather than Fe replacement alone, 
may be considered for more effective treatment of IDA [58].

Mg is a cofactor for various enzymes involved in numer-
ous metabolic pathways and is therefore involved in the 
regulation of cell replication, differentiation, and apoptosis 
[59] and the hematopoietic system [59]. A Mg imbalance or 
deficiency can lead to modification of increased oxidative 
stress [60] and inflammation [61], which in turn is associated 
with anemia. Cross-sectional studies have shown that a high 
intake of Mg is negatively associated with the presence of 
anemia [62], suggesting that Mg may play an important role 
in the development of anemia. Finally, the Gini Importance 
analysis identified P as a nutrient whose intake is also con-
sidered a predictor of anemia. High P intakes may influence 
the bioavailability of Fe [63]. However, the intake of P for 
the entire cohort was 626 ± 202 mg/d, which is well below 
the RDA of 1250 mg/d. Therefore, an absorption-inhibiting 
influence of P on Fe is unlikely. Similarly, the differences in 
mean P intakes between the non-anemia and anemia groups 
are marginal. A link between P intake and IDA is rather 
unlikely.

Conclusions

The prevalence of anemia of among female university stu-
dents from Hebron district in Palestine was very high at 
34.8%. The dietary quality of the entire cohort was poor. 
Women with anemia had an unbalanced diet with many 
micronutrients below the RDA/AI. In addition to nutrients 
known to be associated with anemia, such as folate, Vit B6, 
Vit C, Fe, and Vit B12, our cluster analyses also identified 
choline, Vit E, Vit B2, Zn, Mg, Mn, and P as other nutrients 
whose intake may also be associated with the occurrence of 
anemia. Ultimately, this question cannot be answered here, 
as markers of nutrient status would need to be collected to 
clarify these relationships. Future studies should, for exam-
ple, clarify the connection between low choline intake and 
the risk of anemia. Our study highlights the potential of data 
mining and ML techniques to identify patterns and clas-
sifications of the associations between nutrient intake and 
anemia.

Study limitations

Our study has several limitations, including the use of cross-
sectional data, which provides only a snapshot of the partici-
pants’ nutritional status and anemia prevalence at one time 
point. As the ML algorithms take all nutrients into account, 
associations between nutrient intakes and anemia prevalence 
may be identified that have no known physiological rela-
tionship. Interpretation of the results and combination with 
other research methods is therefore crucial to draw accurate 
conclusions. Moreover, the study did not examine potential 
confounding variables that could have influenced the study 
results. The study relied on self-reported dietary intake data, 
which may be subject to recall bias and misreporting. Addi-
tionally, the sample size of the study was relatively small, 
which limits the generalizability of the findings to other uni-
versity students in Palestine in general. Finally, the study did 
not control other potential factors that may influence anemia 
risk, such as genetic predisposition or medication use.
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