Skip to main content
Log in

The association of dietary total flavonoids and their subclasses with the risk of type 2 diabetes: a prospective cohort study

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Data from mechanistic studies suggest flavonoids may benefit glucose metabolism, but their associations with type 2 diabetes (T2D) remain unclear. This study examined the prospective associations of dietary intake of total, classes, and individual flavonoids, as well as their source foods, with T2D in the CArdioVascular disease Association Study (CAVAS).

Methods

A total of 16,666 Korean men and women were enrolled at baseline, and 953 were newly diagnosed with T2D over a median follow-up of 5.96 years. Intake of flavonoids was cumulatively averaged using all food frequency questionnaires before the censoring events. A Poisson regression model was used to estimate incidence rate ratios (IRRs) and 95% confidence intervals (CIs).

Results

Women with higher total flavonoid, flavonol, isoflavone, and proanthocyanidin intake had a lower risk of T2D (fourth vs. first quartile, IRR 0.62; 95% CI 0.44–0.89; P for linearity and non-linearity < 0.05 for total flavonoids), while in men, flavanones, anthocyanins, and proanthocyanidins, but not total flavonoids, were inversely associated with T2D risk (all P interaction for sex > 0.05). The key source foods contributing to flavonoid intake were also different between men and women, except for apples: tangerines and strawberries in men and green leafy vegetables and soy products in women.

Conclusions

A higher intake of total flavonoids, particularly from vegetables, soybeans, and apples, may be associated with lower risk of T2D in women. However, flavonoids from fruits, rather than total flavonoids, may be inversely associated in men. The association between flavonoid intake and the risk of T2D may be contingent upon the dietary sources of flavonoids consumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data described in the manuscript, code book, and analytic code will not be made available because of data protection regulations in the Korea Disease Control and Prevention Agency (KCDA) and cohorts involved.

References

  1. Federation I (2009) IDF diabetes atlas, 4th edn. International Diabetes Federation, Montreal, CA

    Google Scholar 

  2. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas. Diabetes Res Clin Pract 157:107843

    Article  PubMed  Google Scholar 

  3. Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, Khunti K (2007) Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 334(7588):299–299. https://doi.org/10.1136/bmj.39063.689375.55

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383:132531. https://doi.org/10.1016/j.foodchem.2022.132531

    Article  CAS  PubMed  Google Scholar 

  5. Ley SH, Hamdy O, Mohan V, Hu FB (2014) Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383(9933):1999–2007. https://doi.org/10.1016/S0140-6736(14)60613-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu H, Luo J, Huang J, Wen Q (2018) Flavonoids intake and risk of type 2 diabetes mellitus: a meta-analysis of prospective cohort studies. Medicine 97(19):e0686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bondonno NP, Dalgaard F, Murray K, Davey RJ, Bondonno CP, Cassidy A, Lewis JR, Kyrø C, Gislason G, Scalbert A, Tjønneland A, Hodgson JM (2021) Higher habitual flavonoid intakes are associated with a lower incidence of diabetes. J Nutr 151(11):3533–3542. https://doi.org/10.1093/jn/nxab269

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750. https://doi.org/10.1155/2013/162750

    Article  CAS  Google Scholar 

  9. Yu D, Zhang X, Xiang Y-B, Yang G, Li H, Fazio S, Linton M, Cai Q, Zheng W, Gao Y-T, Shu X-O (2014) Association of soy food intake with risk and biomarkers of coronary heart disease in Chinese men. Int J Cardiol 172(2):e285–e287. https://doi.org/10.1016/j.ijcard.2013.12.200

    Article  PubMed  PubMed Central  Google Scholar 

  10. Woo HW, Kim MK, Lee Y-H, Shin DH, Shin M-H, Choi BY (2021) Sex-specific associations of habitual intake of soy protein and isoflavones with risk of type 2 diabetes. Clin Nutr 40(1):127–136

    Article  CAS  PubMed  Google Scholar 

  11. Kim Y, Han B-G (2017) Cohort profile: the Korean genome and epidemiology study (KoGES) consortium. Int J Epidemiol 46(2):e20. https://doi.org/10.1093/ije/dyv316

    Article  PubMed  Google Scholar 

  12. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018 (2018). Diabetes Care 41 (Supplement 1):S13–S27. https://doi.org/10.2337/dc18-S002

  13. Woodward M (2013) Epidemiology: study design and data analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  14. Ahn Y, Kwon E, Shim JE, Park MK, Joo Y, Kimm K, Park C, Kim DH (2007) Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr 61(12):1435–1441. https://doi.org/10.1038/sj.ejcn.1602657

    Article  CAS  PubMed  Google Scholar 

  15. Stadlmayr B, Wijesinha-Bettoni R, Haytowitz D, Rittenschober D, Cunningham J, Sobolewski R, Eisenwagen S, Baines J, Probst Y, Fitt E (2011) INFOODS guidelines for food matching. FAO, Rome

    Google Scholar 

  16. Haytowitz DB, Wu X, Bhagwat S (2018) USDA database for the flavonoid content of selected foods, release 3.3. US Department of Agriculture 173

  17. Haytowitz DB (2015) USDA database for the isoflavone content of selected foods, release 2.1

  18. Haytowitz D, Wu X, Bhagwat S (2018) USDA Database for the proanthocyanidin content of selected foods release 2.1. US Department of Agriculture, Agricultural Service Nutrient Data Laboratory, pp 1–46. Retrieved from http://www.ars.usda.gov/nutrientdata/flav. Accessed on 19 May 2022

  19. Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’Hiri N, García-Lobato P, Manach C, Knox C, Eisner R, Wishart DS, Scalbert A (2013) Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford) 2013:bat070. https://doi.org/10.1093/database/bat070

    Article  PubMed  Google Scholar 

  20. The Korean Nutrition Society (2009) Food values. The Korean Nutrition Society, Seoul, Korea

    Google Scholar 

  21. CAN-Pro 4.0 for professionals (2011). The Korean Nutrition Society, Seoul

  22. Mira L, Tereza Fernandez M, Santos M, Rocha R, Helena Florêncio M, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Res 36(11):1199–1208

    Article  CAS  Google Scholar 

  23. Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82(4):513–523

    Article  PubMed  Google Scholar 

  24. Shahinfar H, Jayedi A, Shab-Bidar S (2022) Dietary iron intake and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis of prospective cohort studies. Eur J Nutr. https://doi.org/10.1007/s00394-022-02813-2

    Article  PubMed  Google Scholar 

  25. Eshak ES, Iso H, Maruyama K, Muraki I, Tamakoshi A (2018) Associations between dietary intakes of iron, copper and zinc with risk of type 2 diabetes mellitus: A large population-based prospective cohort study. Clin Nutr 37(2):667–674

    Article  CAS  PubMed  Google Scholar 

  26. Kim M-J, Woo HW, Shin M-H, Koh SB, Kim HC, Kim Y-M, Kim MK (2023) Habitual intake of iron, copper, and zinc and the risk of type 2 diabetes in a prospective cohort: the CAVAS (Cardiovascular Disease Association Study). Nutr Metab Cardiovasc Dis 34(1):167–176

    Article  PubMed  Google Scholar 

  27. Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spiegelman D, Willett WC (1999) Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol 149(6):531–540

    Article  CAS  PubMed  Google Scholar 

  28. Kim DJ (2011) The epidemiology of diabetes in Korea. Diabetes Metab J 35(4):303–308. https://doi.org/10.4093/dmj.2011.35.4.303

    Article  PubMed  PubMed Central  Google Scholar 

  29. Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A (2011) Type 2 diabetes incidence and socio-economic position: a systematic review and meta-analysis. Int J Epidemiol 40(3):804–818

    Article  PubMed  Google Scholar 

  30. Li X-H, Yu F-f, Zhou Y-H, He J (2016) Association between alcohol consumption and the risk of incident type 2 diabetes: a systematic review and dose–response meta-analysis. Am J Clin Nutr 103(3):818–829

    Article  CAS  PubMed  Google Scholar 

  31. Vazquez G, Duval S, Jacobs DR Jr, Silventoinen K (2007) Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev 29(1):115–128. https://doi.org/10.1093/epirev/mxm008

    Article  PubMed  Google Scholar 

  32. Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65(4 Suppl):1220S-1228S. https://doi.org/10.1093/ajcn/65.4.1220S. (discussion 1229S–1231S)

    Article  CAS  PubMed  Google Scholar 

  33. Callas PW, Pastides H, Hosmer DW (1998) Empirical comparisons of proportional hazards, poisson, and logistic regression modeling of occupational cohort data. Am J Ind Med 33(1):33–47

    Article  CAS  PubMed  Google Scholar 

  34. Zou G (2004) A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 159(7):702–706

    Article  PubMed  Google Scholar 

  35. Zhou Y, Wang T, Song D, Wang A (2018) Dietary intake of flavonoid subclasses and risk of type 2 diabetes in prospective cohort studies: a dose–response meta-analysis. Clin Nutr 37(6):2294–2298

    Article  CAS  PubMed  Google Scholar 

  36. Durrleman S, Simon R (1989) Flexible regression models with cubic splines. Stat Med 8(5):551–561

    Article  CAS  PubMed  Google Scholar 

  37. Kim S, Haines PS, Siega-Riz AM, Popkin BM (2003) The diet quality index-international (DQI-I) provides an effective tool for cross-national comparison of diet quality as illustrated by China and the United States. J Nutr 133(11):3476–3484

    Article  CAS  PubMed  Google Scholar 

  38. Hong SM, Woo HW, Kim MK, Kim SY, Lee Y-H, Shin DH, Shin M-H, Chun B-Y, Choi BY (2017) A prospective association between dietary folate intake and type 2 diabetes risk among Korean adults aged 40 years or older: the Korean multi-rural communities cohort (MRCohort) study. Br J Nutr 118(12):1078–1088

    Article  CAS  PubMed  Google Scholar 

  39. Oh JM, Woo HW, Kim MK, Lee Y-H, Shin D, Shin M-H, Choi B (2017) Dietary total, animal, vegetable calcium and type 2 diabetes incidence among Korean adults: the Korean multi-rural communities cohort (MRCohort). Nutr Metab Cardiovasc Dis 27(12):1152–1164

    Article  CAS  PubMed  Google Scholar 

  40. Kim SY, Woo HW, Lee YH, Shin DH, Shin MH, Choi BY, Kim MK (2020) Association of dietary glycaemic index, glycaemic load, and total carbohydrates with incidence of type-2 diabetes in adults aged ≥40 years: the multi-rural communities cohort (MRCohort). Diabetes Res Clin Pract 160:108007. https://doi.org/10.1016/j.diabres.2020.108007

    Article  CAS  PubMed  Google Scholar 

  41. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol) 57(1):289–300

    Article  Google Scholar 

  42. Zamora-Ros R, Knaze V, Luján-Barroso L, Romieu I, Scalbert A, Slimani N, Hjartåker A, Engeset D, Skeie G, Overvad K, Bredsdorff L, Tjønneland A, Halkjær J, Key TJ, Khaw K-T, Mulligan AA, Winkvist A, Johansson I, Bueno-de-Mesquita HB, Peeters PHM, Wallström P, Ericson U, Pala V, de Magistris MS, Polidoro S, Tumino R, Trichopoulou A, Dilis V, Katsoulis M, María Huerta J, Martínez V, Sánchez M-J, Ardanaz E, Amiano P, Teucher B, Grote V, Bendinelli B, Boeing H, Förster J, Touillaud M, Perquier F, Fagherazzi G, Gallo V, Riboli E, González CA (2013) Differences in dietary intakes, food sources and determinants of total flavonoids between Mediterranean and non-Mediterranean countries participating in the European prospective investigation into cancer and nutrition (EPIC) study. Br J Nutr 109(8):1498–1507. https://doi.org/10.1017/S0007114512003273

    Article  CAS  PubMed  Google Scholar 

  43. Escobar-Cévoli R, Castro-Espín C, Béraud V, Buckland G, Zamora-Ros R, Béraud G (2017) An overview of global flavonoid intake and its food sources. Flavonoids-from biosynthesis to human health

  44. Tresserra-Rimbau A, Medina-Remón A, Pérez-Jiménez J, Martínez-González M, Covas MI, Corella D, Salas-Salvadó J, Gómez-Gracia E, Lapetra J, Arós F (2013) Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutr Metab Cardiovasc Dis 23(10):953–959

    Article  CAS  PubMed  Google Scholar 

  45. Zamora-Ros R, Biessy C, Rothwell JA, Monge A, Lajous M, Scalbert A, López-Ridaura R, Romieu I (2018) Dietary polyphenol intake and their major food sources in the Mexican teachers’ cohort. Br J Nutr 120(3):353–360

    Article  CAS  PubMed  Google Scholar 

  46. Quansah DY, Ha K, Jun S, Kim SA, Shin S, Wie GA, Joung H (2017) Associations of dietary antioxidants and risk of type 2 diabetes: data from the 2007–2012 Korea national health and nutrition examination survey. Molecules. https://doi.org/10.3390/molecules22101664

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jun S, Shin S, Joung H (2016) Estimation of dietary flavonoid intake and major food sources of Korean adults. Br J Nutr 115(3):480–489. https://doi.org/10.1017/s0007114515004006

    Article  CAS  PubMed  Google Scholar 

  48. Zq Z, Lp He, Liu Yh, Liu J, Yx Su, Ym C (2014) Association between dietary intake of flavonoid and bone mineral density in middle aged and elderly Chinese women and men. Osteoporos Int 25(10):2417–2425. https://doi.org/10.1007/s00198-014-2763-9

    Article  CAS  Google Scholar 

  49. McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95(2):454–464. https://doi.org/10.3945/ajcn.111.016634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zamora-Ros R, Forouhi NG, Sharp SJ, González CA, Buijsse B, Guevara M, van der Schouw YT, Amiano P, Boeing H, Bredsdorff L, Clavel-Chapelon F, Fagherazzi G, Feskens EJ, Franks PW, Grioni S, Katzke V, Key TJ, Khaw K-T, Kühn T, Masala G, Mattiello A, Molina-Montes E, Nilsson PM, Overvad K, Perquier F, Quirós JR, Romieu I, Sacerdote C, Scalbert A, Schulze M, Slimani N, Spijkerman AMW, Tjonneland A, Tormo MJ, Tumino R, van der ADL, Langenberg C, Riboli E, Wareham NJ (2013) The association between dietary flavonoid and lignan intakes and incident type 2 diabetes in European populations: the EPIC-InterAct study. Diabetes Care 36(12):3961–3970. https://doi.org/10.2337/dc13-0877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu H, Luo J, Huang J, Wen Q (2018) Flavonoids intake and risk of type 2 diabetes mellitus: a meta-analysis of prospective cohort studies. Medicine (Baltimore) 97(19):e0686. https://doi.org/10.1097/md.0000000000010686

    Article  CAS  PubMed  Google Scholar 

  52. Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B, Willett W, Hu FB, Sun Q, van Dam RM (2012) Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 95(4):925–933. https://doi.org/10.3945/ajcn.111.028894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jacques PF, Cassidy A, Rogers G, Peterson JJ, Meigs JB, Dwyer JT (2013) Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr 143(9):1474–1480. https://doi.org/10.3945/jn.113.177212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song Y, Manson JE, Buring JE, Sesso HD, Liu S (2005) Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 24(5):376–384

    Article  CAS  PubMed  Google Scholar 

  55. Raman G, Avendano EE, Chen S, Wang J, Matson J, Gayer B, Novotny JA, Cassidy A (2019) Dietary intakes of flavan-3-ols and cardiometabolic health: systematic review and meta-analysis of randomized trials and prospective cohort studies. Am J Clin Nutr 110(5):1067–1078. https://doi.org/10.1093/ajcn/nqz178

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu X, Xu W, Cai H, Gao Y-T, Li H, Ji B-T, Shu X, Wang T, Gerszten RE, Zheng W, Xiang Y-B, Shu X-O (2018) Green tea consumption and risk of type 2 diabetes in Chinese adults: the Shanghai women’s health study and the Shanghai men’s health study. Int J Epidemiol 47(6):1887–1896. https://doi.org/10.1093/ije/dyy173

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang J, Mao QX, Xu HX, Ma X, Zeng CY (2014) Tea consumption and risk of type 2 diabetes mellitus: a systematic review and meta-analysis update. BMJ Open 4(7):e005632. https://doi.org/10.1136/bmjopen-2014-005632

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shahwan M, Alhumaydhi F, Ashraf GM, Hasan PMZ, Shamsi A (2022) Role of polyphenols in combating type 2 diabetes and insulin resistance. Int J Biol Macromol 206:567–579. https://doi.org/10.1016/j.ijbiomac.2022.03.004

    Article  CAS  PubMed  Google Scholar 

  59. Hollman PC, Cassidy A, Comte B, Heinonen M, Richelle M, Richling E, Serafini M, Scalbert A, Sies H, Vidry S (2011) The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J Nutr 141(5):989S-1009S

    Article  CAS  PubMed  Google Scholar 

  60. Cassidy A, Minihane A-M (2017) The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 105(1):10–22. https://doi.org/10.3945/ajcn.116.136051

    Article  CAS  PubMed  Google Scholar 

  61. Nettleton JA, Harnack LJ, Scrafford CG, Mink PJ, Barraj LM, Jacobs DR Jr (2006) Dietary flavonoids and flavonoid-rich foods are not associated with risk of type 2 diabetes in postmenopausal women. J Nutr 136(12):3039–3045. https://doi.org/10.1093/jn/136.12.3039

    Article  CAS  PubMed  Google Scholar 

  62. Kong J-S, Kim Y-M, Woo H-W, Shin M-H, Koh S-B, Kim H-C, Shin J-H, Kim M-K (2023) Prospective associations between cumulative average intake of flavonoids and hypertension risk in the cardiovascular disease association study (CAVAS). Nutrients 15(5):1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kong JS, Lee J, Kim Y, Woo HW, Shin MH, Koh SB, Kim HC, Kim YM, Kim MK (2023) Associations of cumulative average dietary total antioxidant capacity and intake of antioxidants with metabolic syndrome risk in Korean adults aged 40 years and older: a prospective cohort study (KoGES_CAVAS). Epidemiol Health 45:e2023067. https://doi.org/10.4178/epih.e2023067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Willett W (2012) Nutritional epidemiology. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Program funded by the Korea Centres for Disease Control and Prevention (2004-E71004-00, 2005-E71011-00, 2006-E71009-00, 2007-E71002-00, 2008-E71004-00, 2009-E71006-00, 2010-E71003-00, 2011-E71002-00, 2012-E71007-00, 2013-E71008-00, 2014-E71006-00, 2014-E71006-01, 2016-E71001-00, 2017N-E71001-00) and was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2020R1A2C1004815).

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis: HWW. Writing—original draft: HWW, MKK. Writing—review and editing: HWW, MKK. Methodology: HWW, MKK. Investigation: HWW, YMK, HCK, SBK, MHS, MKK. Data curation: HWW, JK, JL. Funding acquisition: HCK, SBK, MHS, and MKK. Supervision: MKK.

Corresponding author

Correspondence to Mi Kyung Kim.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, H.W., Kim, M.K., Ji-Sook, K. et al. The association of dietary total flavonoids and their subclasses with the risk of type 2 diabetes: a prospective cohort study. Eur J Nutr 63, 1339–1356 (2024). https://doi.org/10.1007/s00394-024-03341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-024-03341-x

Keywords

Navigation