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Abstract
Purpose To investigate the association between pro-inflammatory markers platelet-activating factor (PAF), lipoprotein-
associated phospholipase  A2 (Lp-PLA2), hsCRP, and intake of core food groups including fruit, cruciferous and other 
vegetables, grains, meat and poultry, fish and seafood, nuts and legumes, and dairy.
Methods A cross-sectional study was conducted. 100 adults (49 ± 13 years, 31% male) with variable cardiovascular disease 
risk were recruited. Data were collected in 2021 and 2022. Fasting PAF, Lp-PLA2 activity, hsCRP and usual dietary intake 
(via a validated food frequency questionnaire) were measured. Intake of foods were converted into serves and classified into 
food groups. Correlations and multiple regressions were performed with adjustment for confounders.
Results A one-serve increase in cruciferous vegetables per day was associated with 20–24% lower PAF levels. An increase 
of one serve per day of nuts and legumes was associated with 40% lower hsCRP levels. There were small correlations with 
PAF and Lp-PLA2 and cheese, however, these were not significant at the Bonferroni-adjusted P < 0.005 level.
Conclusion The lack of associations between PAF and Lp-PLA2 and other healthy foods may be due to confounding by 
COVID-19 infection and vaccination programs which prevents any firm conclusion on the relationship between PAF, Lp-
PLA2 and food groups. Future research should aim to examine the relationship with these novel markers and healthy food 
groups in a non-pandemic setting.
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Introduction

Diet is a modifiable risk factor associated with cardiovas-
cular disease (CVD) and an optimal intake of healthy foods 
including whole grains, vegetables, fruits, nuts, legumes, 

dairy, and fish has been shown to reduce CVD risk by as 
much as 65% [1]. This reduction in risk may be partly due 
to the anti-inflammatory potential of these foods as ath-
erosclerosis, the underlying cause of CVD, is a chronic 
inflammatory disease of the arteries, and healthy food 
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groups have been found to modulate this inflammation 
[2–4]. Chronic inflammation is traditionally measured by 
high sensitivity C-reactive protein (hsCRP), however, the 
use of this biomarker is not without limitations. CRP is a 
nonspecific marker of inflammation and can be elevated in 
acute inflammatory conditions [5]. There is a high intra-
person variability with CRP requiring repeat measurements 
to gain an accurate assessment of true levels [6]. In addi-
tion, new research has discovered that CRP has several iso-
forms, some atherogenic and some protective and current 
assays are not able to differentiate between the two [7]. Thus, 
researchers have been looking for other biomarkers, espe-
cially those specific to endothelial dysfunction, to detect and 
monitor chronic inflammatory processes. Two novel mark-
ers involved in CVD that are receiving increasing attention 
due to their association with endothelial inflammation are 
platelet-activating factor (PAF) and lipoprotein-associated 
phospholipase  A2 (Lp-PLA2) [8].

PAF is an ether-linked glycerophospholipid that is one 
of the most potent inflammatory mediators in the body that 
is active in nanomolar concentrations and is closely impli-
cated in all stages of atherosclerosis [9]. PAF is produced 
by numerous cells such as platelets, endothelial cells, and 
leukocytes and triggers an inflammatory cascade through the 
act of binding to the G-protein coupled PAF receptor [10, 
11]. PAF is involved in the early stages of atherosclerosis 
by the mediation of adhesion of monocytes to the endothe-
lium and increasing endothelial permeability, allowing low-
density lipoproteins (LDL) and monocytes to migrate into 
the intima [12, 13]. PAF is also responsible for stimulat-
ing reactive oxygen and nitrogen species which contributes 
to the oxidation of LDL once inside the intima [14]. PAF 
stimulates the release of numerous cytokines such as inter-
leukin-6 (IL-6), interleukin-8 (IL-8), tumour necrosis factor 
alpha (TNF-α) and monocyte chemotactic protein (MCP-1) 
[12, 15, 16]. PAF further stimulates the differentiation of 
monocytes into macrophages which engulf the oxidised LDL 
to create foam cells [17, 18]. It is also involved in later stages 
of atherosclerosis through the stimulation of plaque growth 
and their eventual rupture or thrombosis [19]. PAF has been 
shown to be associated with many CVDs including coronary 
heart disease, acute myocardial infarction, heart failure and 
stroke [20–23]. PAF is further involved in other metabolic 
chronic diseases such as diabetes and non-alcoholic fatty 
liver disease [24–26].

Lp-PLA2 is a 50-kD,  Ca2+ independent phospholipase 
(EC 3.1. 1.47) that is classified within Group VIIA of the 
 PLA2 superfamily [27, 28]. Lp-PLA2 catalyses the hydroly-
sis of the sn-2 ester bond of glycerophospholipids such as 
the acetyl group on PAF and is actively involved in PAF 
metabolism [29]. However, Lp-PLA2 is not specific to PAF, 
and because of the capacity of its active site, can also accom-
modate oxidatively truncated fatty acids at the sn-2 position, 

thus hydrolyses oxidised phospholipids on the surface of 
LDL particles [30]. This hydrolysis reaction results in the 
generation of two atherogenic by-products lysophosphati-
dylcholine (LysoPC) and oxidized, nonesterified fatty acids 
(OxNEFA) [31]. These by-products contribute to endothelial 
dysfunction, inflammation and plaque instability by upregu-
lating adhesion molecules, acting as a chemoattractant to 
monocytes, activating leukocytes, and stimulating cytokine 
production such as IL-6 and TNFα [31–34]. Lyso PC also 
upregulates osteogenic genes and increases calcification in 
vascular smooth muscles cells [35] and is responsible for 
inducing smooth muscle migration into the intima [36]. Lp-
PLA2 has a low biological fluctuation unlike CRP, and is a 
vascular specific marker, with higher levels correlated with 
plaque instability [37]. It has been shown to be associated 
with numerous CVDs in a manner similar to PAF, including 
coronary heart disease, stroke, and calcific aortic valve ste-
nosis as well as type 2 diabetes and chronic kidney disease 
[38–43].

The Mediterranean Diet and its individual components 
have been widely researched in relation to PAF and Lp-PLA2 
[44]. Less investigated are a priori non-Mediterranean die-
tary patterns with these biomarkers, however, two recent 
reviews have reported on Mediterranean and other healthy 
dietary patterns and PAF and Lp-PLA2 including a dietary 
pattern consistent with national dietary recommendations 
[8, 45]. Whilst previous research has explored foods and 
food groups and their association with inflammation and 
in particular CRP, studies looking at food groups and PAF 
and Lp-PLA2 are limited. Some reviews have focused on 
individual foods or nutrients and their association with 
PAF and Lp-PLA2 [11, 44]; however, many of the studies 
included in these reviews were in vitro or in animal models. 
Other studies that have examined PAF and/or Lp-PLA2 in 
humans did not utilise strict exclusion criteria to prevent 
confounding [20, 46–50] with the exception of one study 
specifically investigating the Mediterranean Diet and PAF 
and its enzymes in healthy adults [51]. For example, numer-
ous medications and supplements have been shown to lower 
levels of PAF and Lp-PLA2 such as statins, ezetimibe, 
fenofibrate, niacin, orlistat, hormone replacement therapy, 
omega-3 fatty acids, and fish oils; and smoking has been 
shown to raise levels [52–56]. The inclusion of participants 
who smoke or who are taking these medications and/or sup-
plements may introduce confounding into a study prevent-
ing a true understanding of the relationships between foods 
and the markers of inflammation. In addition, several ethnic 
groups such as Asians and Africans have been shown to 
have lower levels of Lp-PLA2 due to genetic polymorphisms 
[57–59].

Furthermore, many studies of Lp-PLA2 have measured 
plasma concentration (mass) instead of enzyme activity. 
Enzyme activity assays have now replaced mass assays as 



447European Journal of Nutrition (2024) 63:445–460 

1 3

they are a more robust measurement of Lp-PLA2 and provide 
better risk stratification. Lp-PLA2, once secreted by the mac-
rophages, is carried bound both to high-density lipoprotein 
(HDL) and LDL with the Lp-PLA2 bound to HDL thought 
to be protective [31]. Mass assays only detect a small portion 
of the total Lp-PLA2, predominantly the Lp-PLA2 associated 
with HDL [60]. Enzymatic assays that measure Lp-PLA2 
activity capture the Lp-PLA2 bound to LDL cholesterol 
which is more atherogenic [61].

Therefore, this study aimed to examine the association 
of core food groups, aligned with the Australian dietary 
guidelines [62], with PAF, Lp-PLA2 activity and hsCRP in 
a broadly Caucasian population at varying risk of CVD, uti-
lising strict exclusion criteria.

Materials and methods

Methodology for this study, except for the assessment of 
dietary intake and calculation of servings of food groups, 
has been previously published [63].

Study design and setting

This cross-sectional study was carried out on the Gold Coast, 
Queensland Australia and used a convenience sampling tech-
nique. Participants were recruited through community-based 
organisations such as fitness centres, surf lifesaving clubs, 
sporting clubs, council libraries, community centres, shop-
ping centres, a university setting, and through social media 
and online/email methods to obtain a representative com-
munity sample of healthy adults at varying risk of CVD. The 
study began recruitment in February 2021 and samples were 
collected from May 2021 to April 2022, over four 2-week 
periods.

Approval for this study protocol was obtained from 
the Bond University Human Research Ethics Committee 
(approval number DR03194) and the study conforms to 
the ethical guidelines of the 1964 Declaration of Helsinki 
and its later amendments. All participants provided written 
informed consent before taking part in the study.

Study population and sample size

Eligible participants included adults who were classified as 
either high or low risk of CVD and were aged 18–70 years 
old. Participants had to either have confirmed type 2 diabetes 
OR have two or more of the following risk factors for CVD: 
systolic blood pressure ≥ 140 mm Hg or diastolic ≥ 90 mm 
Hg or receiving medication for high blood pressure; total 
cholesterol ≥ 5.2 mmol/L; LDL cholesterol ≥ 4.1 mmol/L; 
HDL cholesterol ≤ 1 mmol/L; family history of prema-
ture coronary heart disease (CHD) (≤ 60 years); or excess 

weight, BMI ≥ 25 kg/m2 in order to be classified as high 
risk of CVD. Participants had to report the absence of any 
chronic disease, not be on any routine medication, be below 
the cut-offs listed for high-risk individuals for BMI, blood 
pressure, cholesterol and report no family history of prema-
ture CHD in order to be classified as low risk of CVD.

Any participant who reported a history of angina, periph-
eral vascular disease, myocardial infarction, congenital heart 
disease, or stroke, or were current smokers were excluded. 
Participants who were taking medications or supplements 
known to impact measurements of PAF and/or Lp-PLA2, 
including cholesterol lowering medications such as statins, 
ezetimibe, fenofibrate, niacin, orlistat, omega-3, fish oil sup-
plements or hormone replacement therapy were excluded. 
Any participants who reported Asian or African ethnicity 
were also excluded due to these ethnic groups having lower 
levels of Lp-PLA2, possibly due to genetic polymorphisms 
[57–59].

With 100 participants, there was an 80% power to detect 
a correlation between inflammation level and food group of 
0.3 or greater assuming a level of significance with less than 
5% chance of type one error. Correlation of 0.3 is a medium 
effect size for a correlation according to Cohen [64].

Data collection

Data, including anthropometric, biochemical, and clini-
cal measurements, were collected at the Bond Institute of 
Health and Sport during a single study visit. Anthropometric 
data were measured in the fasted state without shoes and in 
light clothing. Standing height was measured using a wall 
mounted stadiometer, to the nearest 0.1 cm. A calibrated 
digital scale was used to measure weight to the nearest 0.1 
kg. Waist circumference was measured six times, using a 
medical grade, steel, retractable tape measure with a meas-
urement range of 10–200 cm, three times at minimum waist 
and three times at the umbilicus and was averaged [65]. BMI 
was calculated as weight in kilograms divided by height in 
meters squared using the formula kg/m2.

Sitting blood pressure was measured in the non-dominant 
arm, in triplicate, 2 min apart, with a clinical cuff [PC-900 
Pro Vital Signs Monitor: Creative Medical]. The first blood 
pressure reading was disregarded and the second and third 
measurement were averaged [66]. Age, sex, medical his-
tory, medication and supplement intake, menopausal status, 
smoking status and alcohol consumption were self-reported. 
Levels of physical activity (PA) was assessed using the 
self-administered World Health Organization’s (WHO’s) 
Global Physical Activity Questionnaire (GPAQ) [67]. PA 
was assessed by the completion of 16 questions assessing 
time spent physically active during work, travel, and recrea-
tion in addition to sedentary time. Participant scores were 
then converted into metabolic equivalent (MET) minutes 
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per weeks in accordance with the GPAQ Analysis Guide 
[68]. PA levels were further categorised into tertiles based 
on WHO’s PA recommendation using MET minutes where 
0 = low, MET < 600 min/week; 1 = moderate, MET ≥ 600 
to < 1500 min/week; and 2 = high, MET ≥ 1500 min/week. 
Methods for plasma sample collection and treatment and 
procedures for hsCRP, PAF and Lp-PLA2 assays were previ-
ously described and reported [63].

Dietary assessment

The European Prospective Investigation into Cancer and 
Nutrition (EPIC) food frequency questionnaire (FFQ) [69], 
modified for the Australian food environment, was used to 
assess usual dietary intake of the participants. The EPIC 
FFQ was developed to measure habitual food and nutrient 
intake in adults and children during the past year and has 
been previously validated. This FFQ is a semi-quantitative 
paper-based questionnaire that includes two parts. The first 
part consists of a food list of 130 common and less common 
food items. The second section includes questions around 
breakfast cereal brand, type and quantity of milk consumed, 
type of fat using in cooking and baking, and the amount of 
visible fat on meat consumed in addition to an open section 
where participants can add any foods routinely consumed 
that was not assessed in part one. Participants responded 
by reporting the consumption frequency of each food item 
using a 9-point scale from never or less than once a month, 
1–3 times per month, once per week, 2–4 times per week, 
5–6 times per week, once a day, 2–3 times per day, 4–5 times 
per day and 6 + times per day. Each food item consumption 
frequency was manually entered into a spreadsheet and was 
converted into grams based on frequency of consumption 
and was further converted into serving sizes according to 
the Australian Guide to Healthy Eating [70]. Serving sizes 
for each food were then added together to form food groups. 
Water consumption was calculated from 3-day food diaries 
that were completed by participants on three consecutive 
days (2 weekdays and 1 weekend day) following the study 
visit.

The Australian Guidelines are broadly similar to other 
English speaking population based dietary guidance [71]. 
There are five principal recommendations outlined in the 
Australian Dietary Guidelines with guideline two recom-
mending Australians to enjoy a wide variety of nutritious 
foods from five core food groups every day (which includes 
fruit, vegetables, grains and cereals, meat and alternatives, 
and milk and alternatives) and drink plenty of water [62]. 
Foods consumed were classified into these five food groups 
in accordance with the Australian Guide to Healthy Eat-
ing and water consumption was calculated in millilitres 
and included tea and coffee as these are considered sources 
of water in the dietary guidelines [62]. Some of the food 

groups were further subdivided into classes of foods based 
on known anti-inflammatory potential of the food [72–75]. 
Food groups and sub-groups assessed included fruit; cru-
ciferous vegetables (including broccoli, Brussels sprouts, 
cabbage, cauliflower); non-cruciferous vegetables (all 
other vegetables excluding legumes); whole grains; refined 
grains; meat and poultry; fish and seafood; nuts and legumes 
[including nuts, peanuts, peanut butter, dried lentils, beans 
and peas, tofu, soya meat, textured vegetable protein (TVP) 
and vegetarian burgers], and dairy, both fermented (yoghurt 
and cheese) and non-fermented (milk). Serves of alcohol 
consumed, including wine, were calculated. As guideline 
three of the Australian Dietary Guidelines states alcohol 
consumption should be limited and alcohol is not one of 
the recommended core food groups listed in guideline two, 
wine was not included in the regression models as a variable. 
However, alcohol consumption was added to both models as 
a confounder.

In order to calculate energy intake for analysis, the FFQ 
EPIC Tool for Analysis (FETA) software was utilised. The 
FETA software is a cross-platform, open sourced tool that 
processes dietary data from the food frequency question-
naire used by the EPIC-Norfolk study [76]. The software 
includes ten data files containing all the individual nutrients, 
foods and serving sizes based on European food composi-
tion data. The original FETA files were adapted to replace 
the European food composition data with the Australian 
Food Composition Database and AUSNUT values [77, 78]. 
This involved manually replacing each food item’s nutrients 
(energy, fat, carbohydrate, protein, and sodium, potassium, 
and phosphorus) according to the Australian Food Composi-
tion Database.

Data analysis

Data were analysed using SPSS version 28.0.0.0 (190) 
(SPSS Inc., Chicago, USA). Data were assessed for normal-
ity by examining distributions via Q–Q plots. Variables that 
were not normally distributed were log transformed before 
data analysis (PAF and hsCRP). Independent t tests were 
performed on normally distributed variables to test for dif-
ferences in mean values by sex and CVD risk. Mean (SD) 
serves of each food group were calculated. Linear associa-
tions between food groups and markers of inflammation 
were assessed using Pearson’s correlation co-efficient for 
descriptive purposes.

Multiple linear regressions were performed to examine 
associations between markers of inflammation and food 
groups and were reported as standardized coefficients β and 
P values. Models included all of the food groups. Model one 
adjusted for age, sex, energy intake, alcohol consumption 
and date of data collection. Model two adjusted for vari-
ables included in model one, plus waist circumference and 
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physical activity level. Model 2 for Lp-PLA2 was adjusted 
for LDL cholesterol due to the strong association between 
the LDL fraction and Lp-PLA2 enzyme activity [79–81]. 
Checks for multicollinearity were conducted using variance 
inflation factor (VIF) and tolerance indices. In order to adjust 
for multiple comparisons, the Bonferroni correction method, 
where the P value of 0.05 was divided by the number of 
variables being tested in the model (e.g., 0.05/8 equals a P 
value of 0.006) was used to indicate statistical significance.

To estimate the effect of a one serve change in food 
groups that were reported as statistically significant, the β 
coefficients were back transformed by exponentiating the 
coefficient. This allowed interpretation on a multiplicative 
scale, e.g., a back transformed value of 0.70 means a 1 serve 
increase in food group is associated with a 1–0.70 = 30% 
decrease in the inflammation measure.

Results

Clinical characteristics

A total of 132 people were recruited; four did not meet 
inclusion criteria and 28 declined to participate, leaving 100 
participants who attended a study data collection visit and 
were included in analysis (Supplementary Fig. 1). Forty-six 
participants (44 classified as at high-risk for CVD, 2 clas-
sified as at low-risk) attended study visits in 2021 and 54 
participants (24 classified as high-risk for CVD and 30 clas-
sified as low-risk) attended in 2022. Demographic and clini-
cal characteristics for the total cohort, males and females, 
and individuals at high- versus low-CVD risk are shown in 
Table 1. The mean age was 49 (range 20–69) years and 92% 
of the cohort were Caucasian.

Food group intake

Mean serves of food groups consumed are shown in Table 2. 
Females consumed more vegetables than males including 

Table 1  Demographic and clinical characteristics of study subjects [63]

BMI body mass index, hsCRP high-sensitivity c reactive protein, Lp-PLA2 lipoprotein-associated phospholipase  A2, mg/L milligrams per litre, 
ng/L nanograms per litre, nmol/min/mL nanomoles per min per millilitre, PA physical activity, PAF platelet-activating factor, SBP systolic blood 
pressure, SD standard deviation
a Independent T test performed P < 0.05 represents significant difference
b Mann Whitney U test performed P < 0.05 represents significant difference
c n = 99

Characteristics Mean ± SD or N (%) or median (IQR range) P valuea Mean ± SD or N (%) or median (IQR 
range)

P valuea

Total
n = 100

Male n = 31 Female n = 69 High Risk of CVD 
n = 68

Low Risk of CVD 
n = 32

Age,  yearsb 49 ± 13 46 ± 13 50 ± 13 0.120 53 ± 13 38 ± 14  < 0.001
Race, Caucasian 

n (%)
92 (92) 25 (86) 67 (94) – 65 (96) 27 (84) –

Male n (%) 31 (31) – 21 (31) 10 (31) –
BMI, kg/m2b 28.3 ± 6.5 27.41 ± 5.0 28.65 ± 7.2 0.729 30.65 ± 6.4 23.19 ± 2.7  < 0.001
Waist Circum-

ference (cm) 
 Umbilicusb

95.8 ± 6.7 95.99 ± 12.60 95.70 ± 18.40 0.526 102.36 ± 15.40 81.83 ± 9.15  < 0.001

Type 2 diabetes 
diagnosis %

4 (4) 3 (10) 1 (1) – 4 (6) 0 (0) –

Physical activ-
ity METs tertiles

1.41 ± 0.65 1.61 ± 0.72 1.32 ± 0.83 0.193 1.28 ± 0.84 1.69 ± 0.65 0.193

 n (%) low PA 20 (20) 4 (13) 16 (23) – 17 (25) 3 (9) –
 n (%) medium PA 19 (19) 4 (13) 15 (22) – 15 (22) 4 (13) –
 n (%) high PA 61 (61) 23 (74) 38 (55) – 36 (53) 25 (78) –

PAF ng/mLb 7.96 (3.89–16.77) 9.95 (4.31–15.33) 6.45 (3.81–18.90) 0.814 4.84 (3.24–14.57) 13.27 (9.59–21.63)  < 0.001
Lp-PLA2 nmol/min/

mL
14.91 ± 4.29 16.98 ± 4.90 13.98 ± 3.65  < 0.001 15.30 ± 4.42 14.09 ± 3.94 0.190

hsCRP mg/Lb,c 0.96 (0.49–2.98) 0.93 (0.41–2.1) 1.1 (0.5–3.14) 0.392 1.79 (0.64–3.80) 0.56 (0.22–1.01)  < 0.001
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cruciferous (1.56 ± 1.13 vs 0.84 ± 0.67, P < 0.001) and 
non-cruciferous vegetables (4.70 ± 2.24 vs. 3.61 ± 1.57, 
P = 0.017). Males consumed more refined grains than 
females (2.71 ± 2.35 vs. 1.50 ± 1.59, P = 0.003). There 
was no difference in consumption of any other food group 
between males and females.

The low-risk group consumed significantly more serves 
of nuts and legumes than the high-risk group (1.19 ± 1.06 vs. 
0.69 ± 0.76, P = 0.021). There was no significant difference 
in consumption of any other food group between high and 
low risk groups.

Food groups and inflammatory markers

Pearson’s correlations between individual food groups, 
water, and alcohol and the inflammatory markers are shown 
in Table 3.

Higher cruciferous vegetable consumption was associated 
with lower PAF in model 1 (β = − 0.22, P = 0.003, 95% CI 
[− 0.36, − 0.07]) and model 2 (β = − 0.27, P < 0.001, 95% 
CI [− 0.41, − 0.14]) (Table 4). Exponentiation of beta coef-
ficients for cruciferous vegetables and PAF were 0.80 and 
0.76 in model 1 and 2, respectively, thus a one serve increase 
in consumption of cruciferous vegetables per day was associ-
ated with 20% and 24% reduction in PAF levels.

Higher cheese consumption was associated with lower 
PAF in both models, however, these results were not signif-
icant at the P < 0.005 Bonferroni adjusted level (Table 4). 

Higher consumption of water and tea were associated 
with lower PAF (r = − 0.213 P = 0.033 and r = − 0.230 
P = 0.022, respectively.)

Higher cheese consumption was associated with lower 
Lp-PLA2, however, this relationship was not significant at 
the P < 0.005 Bonferroni adjusted level in model 1 and was 
not significant after adjusting for LDL cholesterol, waist 
circumference and physical activity in model 2. There was 
a small negative correlation between wine consumption 
and Lp-PLA2 (r = − 0.252, P = 0.012).

Higher nuts and legumes consumption was associated 
with lower hsCRP (β = − 0.51, P < 0.001, 95% CI [− 0.81, 
− 0.22]) in model 1 (Table 4). However, this was no longer 
significant after controlling for waist circumference and 
physical activity in model 2. The exponentiation of beta 
coefficient for nuts and legumes and hsCRP was 0.60, thus 
a one-serve increase in consumption of nuts and legumes 
(e.g. 30 g nuts or 70 g dried legumes or 170 g tofu) per day 
was associated with 40% lower hsCRP levels.

Consumption of cruciferous vegetables was not asso-
ciated with Lp-PLA2 or hsCRP. Consumption of cheese 
was not associated with hsCRP. Consumption of nuts and 
legumes was not associated with PAF or Lp-PLA2. Con-
sumption of wine was not associated with PAF or hsCRP 
and tea was not associated with Lp-PLA2 or hsCRP.

Consumption of fruit, non-cruciferous vegetables, 
whole grains, refined grains, meat and alternatives, fish 

Table 2  Mean consumption of serves per day of Core Food Groups according to the Australian Guide to Healthy Eating [70]

Bolded indicates significance at P < 0.05
a Serve size according to the Australian Guide to Healthy Eating [70]
b Independent T test performed

Serves/daya Mean ± SD Mean ± SD P  valueb Mean ± SD P  valueb

Total
n = 100

Male n = 31 Female n = 69 High risk of 
CVD n = 68

Low risk of 
CVD n = 32

Fruit 2.44 ± 1.75 2.19 ± 1.56 2.53 ± 1.82 0.357 2.24 ± 1.72 2.85 ± 1.75 0.101
Vegetables
 Cruciferous 1.33 ± 1.06 0.84 ± 0.67 1.56 ± 1.13  < 0.001 1.28 ± 1.12 1.44 ± .93 0.468
 Non-cruciferous 4.36 ± 2.10 3.61 ± 1.57 4.70 ± 2.24 0.017 4.13 ± 2.02 4.86 ± 2.24 0.104

Grains and cereals
 Grains—whole 1.72 ± 1.60 2.01 ± 1.70 1.59 ± 1.55 0.231 1.70 ± 1.59 1.78 ± 1.65 0.828
 Grains—refined 1.87 ± 1.93 2.71 ± 2.35 1.50 ± 1.59 0.003 1.81 ± 2.03 2.00 ± 1.72 0.647

Meat and alternatives
 Meat and poultry 1.75 ± 1.47 1.77 ± 0.94 1.74 ± 1.66 0.921 1.88 ± 1.01 1.48 ± 2.41 0.212
 Fish and seafood 0.43 ± 0.52 0.39 ± 0.30 0.45 ± 0.60 0.594 0.45 ± 0.58 0.39 ± 0.38 0.574
 Nuts and legumes 0.85 ± 0.89 0.75 ± 0.68 0.90 ± 0.98 0.441 0.69 ± 0.76 1.19 ± 1.06 0.021

Milk and alternatives
 Milk 1.17 ± 0.87 1.09 ± 0.75 1.21 ± 0.92 0.574 1.18 ± 0.94 1.70 ± 0.71 0.979
 Yoghurt 0.23 ± 0.28 0.25 ± 0.29 0.22 ± 0.27 0.531 0.21 ± 0.29 0.26 ± 0.26 0.433
 Cheese 0.25 ± 0.28 0.20 ± 0.18 0.28 ± 0.31 0.226 0.27 ± 0.31 0.21 ± 0.20 0.355
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and seafood, milk and yoghurt and alcohol were not asso-
ciated with any biomarkers of inflammation.

Discussion

This cross-sectional study examined the relationship 
between core food groups and novel markers of inflamma-
tion PAF and Lp-PLA2, and hsCRP in 100 Australian adults 
at varying levels of risk of CVD. Whilst previous research 
has investigated other dietary patterns, notably the Medi-
terranean diet [45, 46, 48, 49, 82], this is the first study to 
focus on a dietary pattern consistent with national dietary 
recommendations based on food groups and these markers 
of inflammation. It is also the first to examine the relation-
ship between the consumption of various healthy foods in 
humans using strict exclusion criteria and analysing PAF 
and Lp-PLA2 activity in a broadly Caucasian population 
outside of Greece [51]. A key finding from this study is that 
an increase in one serving (~ 75 g) of cruciferous vegetables 
per day was associated with 20–24% lower PAF levels. A 
significant inverse association was also found with cheese 
consumption and PAF and Lp-PLA2, however, these results 
were not significant in the fully adjusted, corrected model. 
Further, an increase of one serving of nuts and legumes (e.g. 

30 g of nuts, 70 g dried legumes or 170 g tofu) per day was 
associated with 40% lower hsCRP levels. These results are 
promising as they highlight that simple modifications to diet 
may have large impacts on serum markers of inflammation.

The finding of the significant association between crucif-
erous vegetables such as broccoli, Brussels sprouts, cabbage, 
and cauliflower, and lower levels of PAF is novel and sup-
ports previous research on the role that cruciferous vegeta-
bles play in the prevention and treatment of chronic disease 
[83]. Numerous epidemiological studies have found higher 
intakes of cruciferous vegetables to be associated with a 
lower risk of cardiometabolic diseases [84]. Bioactive com-
pounds in cruciferous vegetables such as glucosinolates, 
and their metabolites isothiocyanates, have been shown to 
modulate inflammation by inhibiting nuclear factor kappa 
B (NF-κB) and reducing cytokine secretion [85]. Further, 
increased PAF levels leads to increased platelet-activating 
factor receptor (PAFR) expression mediated via the (NF-
κB) pathway [86]. There also appears to be an effect with 
cruciferous vegetables on platelets as a recent study found 
that extracts from various cruciferous vegetables were found 
to significantly reduce platelet activation induced by adeno-
sine diphosphate and arachidonic acid in human platelet-rich 
plasma, with the highest result seen with cabbage with an 
88% reduction in platelet aggregation [87].

Table 3  Pearson’s Correlations 
between daily consumption 
of serves of core food groups, 
water and serves of alcohol and 
markers of inflammation

Bolded results indicate significance at P < 0.05. Serving size calculated according to the Australian Guide 
to Healthy Eating [70]
a Analysis relates to millilitres consumed per day

Food group Log PAF Lp-PLA2 Log hsCRP

r P value r P value r P value

Fruits 0.030 0.770 − 0.103 0.308 − 0.139 0.169
Vegetables
 Cruciferous − 0.211 0.035 − 0.206 0.039 − 0.108 0.289
 Non-cruciferous 0.003 0.974 − 0.185 0.065 − 0.105 0.299

Total grains and cereals
 Grains—whole − 0.052 0.610 − 0.019 0.851 − 0.143 0.159
 Grains—refined − 0.092 0.364 0.167 0.097 − 0.034 0.737

Total meat and alternative
 Red meat and poultry − 0.091 0.365 0.025 0.808 0.127 0.211
 Fish and Seafood 0.015 0.886 − 0.006 0.951 − 0.053 0.605
 Nuts and Legumes − 0.051 0.612 − 0.168 0.095 − 0.335  < 0.001

Total dairy
 Milk − 0.024 0.813 0.148 0.141 0.094 0.352
 Yoghurt 0.045 0.660 − 0.108 0.283 − 0.053 0.605
 Cheese − 0.235 0.019 − 0.259 0.009 − 0.012 0.903

Total  watera − 0.213 0.033 − 0.119 0.237 0.093 0.358
 Coffee 0.027 0.793 0.096 0.343 − 0.021 0.835
 Tea − 0.230 0.022 − 0.080 0.426 0.031 0.761

Total alcohol 0.164 0.103 − 0.166 0.098 − 0.116 0.254
 Wine .104 0.304 − 0.252 0.012 − 0.070 0.494
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The inverse relationship between cheese and PAF and 
Lp-PLA2 supports previous studies demonstrating that full 
fat dairy may not be as strongly associated with CVD risk as 
once thought. A recent meta-analysis examining biomark-
ers of dairy fat intake reported higher levels of circulating 
biomarkers associated with lower CVD risk [88]. However, 
it may be that specific types of full fat dairy play a cardio-
protective role as another meta-analysis found that full fat 
milk was associated with an increased risk of CHD whilst 
cheese was inversely associated [89].

Dairy products contain polar lipids, such as phospholip-
ids and sphingolipids, found in the milk fat globule, which 
have been shown to be potent inhibitors against PAF-induced 
platelet aggregation [90]. All sources of dairy milk contain 
lipids capable of inhibiting PAF-induced platelet aggrega-
tion with milk from caprine and ovine origins appearing 
to show the greatest anti-inflammatory effect [91]. Further-
more, a recent study has shown that consumption of bovine 
yoghurt enriched with olive pomace lowers biosynthetic 
enzymes of PAF [92]. As milk ferments to yoghurt and then 
to cheese, the bioactivity of the polar lipids increases the 
longer the fermentation process occurs, resulting in cheese 
having the most potent anti-inflammatory capabilities 
towards PAF [93].

A small association was seen with PAF and tea which 
aligns with research reporting that polyphenols in tea pos-
sess strong antithrombotic activities against PAF [94]. 
Recent research has shown there is a synergistic effect of 
polyphenols and polar lipids in tea which prevents oxidation 
and increases the anti-PAF effect [95]. A small association 
was seen with Lp-PLA2 and wine, which is in contrast to 
a recent study that found that wine consumption was not 
associated with Lp-PLA2 but was associated with lower PAF 
levels due to a reduction in biosynthetic enzymatic activity 
[96]. Research has shown wine has the ability to decrease 
postprandial platelet activity against PAF [97, 98] which 
may be due to polyphenols which are known for their anti-
inflammatory and antithrombotic properties against PAF 
[99]. However, mean consumption of wine in this group 
was low (0.29 ± 0.60 serves per day), and mean total alcohol 
intake (0.55 ± 0.76 serves per day) was equivalent to ~ 0.83 
to 1.10 standard drinks a day which is in line with the 
National Health and Medical Research Council (NHMRC) 
guidelines for alcohol consumption which advises adults 
drink no more than 10 standard drinks a week [100].

The significant association of nuts and legumes with 
lower levels of hsCRP aligns with recent research emphasis-
ing the positive role that plant protein plays in reducing CVD 
mortality [101]. Primary dietary sources of plant protein 
include legumes and nuts, and both appear to be associated 
with a reduction in CVD risk. A recent umbrella review 
concluded that the intake of nuts is inversely associated with 
the risk of CVD and a 21% reduction in risk is possible with 

the consumption of as little as 28 g of nuts a day [102]. How-
ever, the evidence specifically looking at nuts and inflamma-
tion is lacking; with two meta-analyses finding no associa-
tion with nuts and CRP or any other inflammatory markers 
such as IL-6, interleukin 10, intercellular adhesion molecule 
1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), 
and TNF-α [103, 104]. There is some evidence however, of 
nuts, in particular walnuts and pistachios, increasing Paraox-
onase 1 (PON1), which is an anti-inflammatory biomarker 
that plays a role in the antioxidant activity of HDL and is 
cardioprotective [105].

Research has demonstrated that the consumption of leg-
umes, like nuts, is inversely associated with CVD risk [106]. 
In studies examining legumes and inflammation, soy is often 
excluded or researched separately as soy has a different 
nutritional profile from legumes and contains a unique phy-
tochemical called isoflavones that exhibits anti-inflammatory 
properties [107]. Nevertheless, both types of legumes appear 
to be associated with lower levels of CRP. A meta-analysis 
of non-soy legumes and CRP found a trend toward a signifi-
cant effect on decreasing hsCRP concentrations, with the 
exclusion of one study (reporting on intakes of baked beans 
in sauce) leading to significant changes in the overall pool 
estimates [108]. Another meta-analysis looking solely at soy 
found consumption from natural soy products was associated 
with lower CRP, however, there was no association with 
products that contain soy extracts and supplements [109], 
which aligns with the current study’s results as only soy food 
intake was assessed.

The lack of association with other foods groups and PAF 
and Lp-PLA2 such as fruit and other vegetables was unex-
pected as previous research has found some associations 
with fruit and Lp-PLA2 [48] and Mediterranean diet type 
vegetables with PAF [110–112]. Despite research reporting 
that goat and sheep meat contain polar lipids with strong 
inhibitory properties against PAF-induced platelet aggrega-
tion, there was no observed link between meat consump-
tion and PAF or Lp-PLA2, however, goat meat intake was 
not assessed directly in the FFQ [75]. No correlation was 
seen with fish and seafood which was surprising as fish con-
tains polar lipids that have been shown in multiple studies 
to inhibit PAF-induced platelet aggregation and modulate 
the enzymes involved in PAF’s metabolism [113–115]. The 
absence of an association with PAF or Lp-PLA2 and nuts 
merits further investigation as no previous research has spe-
cifically investigated nuts and these markers, however, nut 
consumption increases PON1 and PON1 has been found to 
hydrolyse PAF [105, 116]. The lack of an association with 
legumes and whole grains with PAF and Lp-PLA2 is also 
interesting and warrants further research. Previous legume 
research has found peas to have the ability to inhibit PAF 
induced platelet aggregation [117]. Further, two studies 
reported that the substitution of whole grains and legumes 
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for white rice significantly reduced Lp-PLA2 levels in people 
with prediabetes or type 2 diabetes, [118, 119]; however, the 
specific quantities consumed were not reported.

However, these results of the current study should be 
viewed with caution, due to potential confounding. Amongst 
other things, confounding from vaccinations for COVID-19 
and/or infection due to the Omicron outbreak in Australia at 
the time of data collection, may have affected levels of PAF 
and Lp-PLA2 [63]. Briefly, levels of PAF were significantly 
higher in participants who had their blood sample collection 
in 2022, compared to 2021, which coincided with the Omi-
cron variant COVID-19 outbreak in Australia, and a boost 
in vaccination rates with adenovirus vector and mRNA vac-
cines. Similarly, Lp-PLA2 levels appear to be elevated due 
to COVID-19 vaccination and/or infection as the there was 
no significant difference in levels of Lp-PLA2 between the 
high-risk and low-risk groups and the low-risk group’s data 
collection predominantly occurred in 2022. This phenom-
enon is described in more detail elsewhere [45, 63]. Alter-
natively, the current study findings may simply reflect that 
there is little or no association between other food groups 
and these novel biomarkers.

The lack of association between the other food groups and 
CRP was unexpected due to the association of healthy food 
groups and CRP [120]. Fruit and vegetables in particular 
contain numerous anti-inflammatory and anti-oxidant phy-
tochemicals such as polyphenols and carotenoids, as well 
as vitamin C and E [121]. A similar study found fruit but 
not vegetables to be significantly associated with lower 
CRP [122], however, a systematic review and meta-analysis 
reported a significant reduction in CRP with increasing fruit 
and vegetable intake [123]. The lack of association between 
CRP and whole grains is supported by a recent systematic 
review of randomised controlled trials of inflammatory 
markers and whole grains, which found only 10 of the 32 
studies examining CRP reporting significant results. In this 
review, nearly half the population had a pre-existing health 
condition which put them at risk of CVD and half were peo-
ple with overweight or obesity which is similar to the current 
study’s population [124].

The lack of association with fish and seafood and CRP 
is counter to previous research which has shown that a high 
consumption of seafood is associated with lower rates of ath-
erosclerotic cardiovascular disease and acute major ischemic 
events [125]. Healthy adults consuming at least 300 g of 
fish a week (3 serves) have been found to have 33% lower 
CRP compared to non-fish consumers [4]. In the current 
study, the mean intake of fish and seafood was high with the 
total group consuming a mean of 0.43 ± 0.52 serves per day 
(approximately 3 serves per week). How fish is prepared 
may affect the potential impact on CVD risk as a recent 
study found that non-fried fish was associated with lower 
CVD events whilst fried fish was associated with increased 

risk [126], however, in the current study, mean intake of 
fried fish (including fish cakes and fish sticks) was only 
0.04 ± 0.09 serves per day.

The lack of association with milk, yoghurt and cheese 
and hsCRP is similar to results from a recent cross sectional 
study which found there was no association between fer-
mented and non-fermented dairy intake and CRP, however, 
there was a significant positive association with butter [127]. 
A recent review of meta-analyses, systematic reviews and 
randomized controlled trials investigating dairy and inflam-
mation concluded that while there is insufficient evidence to 
prove that dairy products are anti-inflammatory, dairy foods 
do not increase concentrations of biomarkers of chronic sys-
temic inflammation [128]. A specific dairy group analysis 
found the intake of cheese did not have any impact on CRP 
levels. It may be that cheese and its bioactive components 
are not involved in CRP’s inflammatory pathway which is 
different to the pathways PAF and Lp-PLA2 are involved in.

Strengths of this study include the use of strict exclusion 
criteria to prevent confounding from medication and sup-
plement intake, smoking and existing CVD on the novel 
markers of inflammation. In addition, certain ethnicities 
were excluded as they have been shown to have lower levels 
of Lp-PLA2 due to genetic polymorphisms which allowed 
for a more uniform sample for analysis. Diet was assessed 
using a validated FFQ and the multivariable statistical analy-
sis using the Bonferroni adjustment was robust to minimise 
type 1 errors.

There were, however, some limitations. The assessment 
of usual diet is difficult and prone to error with FFQs often 
overestimating some food groups like fruit and vegetables 
[129]. PAF and Lp-PLA2 levels may have been elevated 
in some of the participants due to the COVID-19 vaccine 
and/or infection which may affect results of the relation-
ship with food groups, however, we did adjust for this in 
our models [63]. Measures to control for the COVID-19 
outbreak, which included isolation, quarantine, and social 
distancing, may have affected dietary intake. A recent global 
review has reported mixed results on the impact of COVID-
19 lockdown on dietary intake with some studies reporting 
increased home baking and a reduction in intake of com-
fort food whilst other studies reported a reduction in fresh 
produce consumption and increased intake of energy dense 
foods [130]. Specifically in Australia, food insecurity was 
exacerbated [131] and young adults reported more negative 
and fewer positive changes in food practices during the pan-
demic [132] with increased energy intake especially from 
energy dense foods [133]. Results for PAF may have been 
different had we measured platelet aggregation as a measure 
of PAF action as seen in other research studies [44, 91, 110], 
rather than measuring PAF circulating blood levels using a 
commercially available ELISA assay. CRP has significant 
intra-individual variation and levels of this marker may be 
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elevated in acute inflammation and not reflect a true rela-
tionship with food groups. The cross-sectional nature of the 
study prevents any causal relationships from being inferred.

In conclusion, this study found several foods to be associ-
ated with lower levels of markers of inflammation, however, 
different foods were associated with different markers sug-
gesting that the bioactive components in the foods may each 
be involved in different inflammatory pathways. Crucifer-
ous vegetables were significantly associated with lower PAF 
levels, and nuts and legumes were significantly associated 
with lower hsCRP levels. Cheese was inversely associated 
with PAF and Lp-PLA2 however this relationship was not 
significant after Bonferroni correction. Research examining 
food groups and the novel markers should be repeated in a 
non-pandemic setting in order to gain a better understand-
ing of the true relationship between healthy food groups and 
PAF and Lp-PLA2.
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